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Introduction  

The interplay between charged dust grain and plasmas has lead to much interest in new research area called dusty (or complex) 

plasma. Linear as well as nonlinear collective processes in dusty or complex plasma have received special attention due to the 

realization of their occurrence in planetary rings, interstellar clouds and cometary environment [1-6].  There has been a rapidly 

growing interest in nonlinear phenomena (such as shocks, solitons and vortices) in dusty plasma (plasmas with extremely massive and 

negatively charged dust grains), because of its crucial role in understanding electrostatic disturbances in space and laboratory dusty 

plasmas [7-11]. Now, it is a well known fact that the presence of static charged dust grains modifies the existing plasma wave spectra 

[12-14]. 

Dust ion acoustic shocks in unmagnetized dusty plasma may arise when there is a balance between the nonlinearity (associated 

with the harmonic generation) and the kinematics viscosity, introduced by the dust ion drag.  The formation of dust ion acoustic shock 

wave (DIASWs) was observed by Nakamura et al. [15]. They found out that in the linear regime, the phase velocity of the Dust Ion 

Acoustic (DIA) waves increases while the wave suffers heavy damping when the dust number density in an electron –ion plasma is 

considerably increased. On the other hand, they found out that an oscillatory ion-acoustic shock wave in usual argon plasma 

transforms into a monotonic shock front when it travels through the dusty plasma column.  A number of studies have been made on 

the propagation of DIASWs in dusty plasma by several investigators [16 – 19].   

Recently, several theoretical investigations [20 – 24] on the properties of dust-ion acoustic and dust acoustic solitary waves in 

nonplanar geometry had been carried out.  Likewise, of recent, a theoretical investigation has been done by Sahu [25] to study the 

effect of nonplanar DIASWs in adiabatic dusty Plasma.  Moreover, in real dusty plasma, the effect of finite ion temperature cannot be 

neglected and the electron behaviour can be strongly modified by nonlinear potential of the localized DIA structures by generating a 

population of fast energetic electrons.  Therefore; in our present paper, we wish to study how finite ion temperature combined with 

electron non-thermality effects can be expected to modify the results arrived at in Sahu [25].  The manuscript is organized as follows; 

section 2 deals with the basic equations governing the adiabatic dusty plasma system under consideration, section 3 presents the 

investigation of nonplanar DIASWs by the reduction perturbation method (RPM).   In section 4, we present the numerical results and 

discussion, while section 5 is the conclusion.  

Governing Equations 

We consider an unmagnetized plasma comprising static negatively charged dust fluid, nonthermal distributed electrons and 

adiabatic ion fluid.  The dynamics of the DIASWs in nonplanar geometry for such dusty plasma is governed by the following 

normalized fluid equations: 
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ABSTRACT  

An unmagnetized dusty plasma consisting of static negatively charged dust fluid, 

nonthermal distributed electrons, and adiabatic ion fluid has been considered. Basic 

properties of the dust-ion-acoustic shock waves have been made by the reductive 

perturbation method to derive the Burgers’ equation for nonplanar geometry.  The solution 

of modified Burgers’ equation in nonplanar geometry is numerically analyzed and it has 

been found that, the nonplanar geometry effects have a very vital role in the development of 

shock waves.  We also discovered that; the inclusion of the nonthermal electron distribution 

significantly modifies the shock wave profile. The change of the DIASW structure due to the 

effect of ion temperature and dust density is studied. 
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where   is a parameter determining the number of non thermal electrons present in our plasma model.  In the above equation, in
 is the 

ion number density normalized by its equilibrium value ii un ,0  is the ion fluid speed normalized by 
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While 0v , for one-dimensional geometry,
2,1v

 for cylindrical and spherical geometry respectively.  0

0

i

e

n

n


 and i  is the 

viscosity coefficient of ion fluid normalized by

2

Dpi
w 

.  Note that in equation (4), we assumed the quasi-neutrality condition. 

Derivation of Nonplanar Burgers’ Equation 

We derive the Burgers’ equation from equations (1) – (4) by employing the reductive perturbation method (RPM) [26] and the 

stretched coordinates   
 tVr 0

2

1


 and  t2

3

 , where  is a smallness parameter measuring the weakness of the 

nonlinearity and 0V
 is the phase speed of DIASWs normalized by ic

.  Equations (1) – (4) can be expressed in terms of  and  as 

follows: 
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Now, substituting equation (9) into equations (5) – (8), we obtain the lowest order of the coefficient of  as: 
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  The next higher order in , is given as the following set of equations,  
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Now, using equations (10) – (17) and eliminating 222 ,, iii pnn
 and 2 , we finally obtain a modified Burgers’ equation  
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Numerical Results and Discussion  

Equation (18) is the modified Burgers’ equation describing the nonlinear propagation of the DIASWs in unmagnetized dusty 

plasma consisting of adiabatic ion fluid, nonthermal distributed electrons and static negatively charged dust fluid.  The stationary 

DIASWs of this modified Burgers’ equation for planar geometry 
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 is 
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Where V is a constant velocity normalized by ci.  For nonplanar geometry, an exact analytical solution of equation (18) is not 

possible, hence it is solved numerically. 

Figure 1, shows the variation of shock wave structure with 


 for the different given parameters in different geometries.  It is 

interesting to point out that the inclusion of non-thermal electron distribution gets the shock profile modified in terms of the shock 

height and shock steepness for the different geometry.  The height and steepness of one-dimensional shock wave are larger than that of 

cylindrical shock wave, which in turn is larger than that of the spherical shock wave.  The shock height is found to be decreasing 

monotonically with v  (the geometry). 
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Fig 1. Showing how the shock profile (  sV1  curves) varies in different geometries for 

0.1,5.0,5.0,5 0    and 4.0 .   

In figures 2 and 3, we present the effect of several values of   for both cylindrical 
 1v

 and spherical 
 2v

 geometries 

respectively.  It can be observed that as the value of   increases, the shock wave structures look like that of the one-dimensional 

geometry of fig. 1.  This is due to the fact that the nonplanar geometrical effect is no longer prominent for larger values of  . The 

nonplanar geometrical effects given by 






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v

 will become effective as the value of  decreases and the shock wave profiles differs 

from each other in both cylindrical and spherical geometry respectively.  
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Fig 2. Variation of 1 with respect to  at different values of  for the cylindrical geometry  1v  and the other parameters 

being the same as figure 1 
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Fig 3. Variation of 1 with respect to  at different values of  for the spherical geometry  2v  and the other parameters 

being the same as figure 1 

The shock wave structures for different values of the nonthermal electron parameter 
 

 are investigated in both cylindrical and 

spherical geometries as shown in figures 4 and 5 respectively.  It is found that; small variation, in the magnitude of   significantly 

affects the shock wave profile.  The shock height is found to be increasing monotonically with .  This effect is more pronounced in 

cylindrical geometry when compared to the spherical geometry.  
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Fig 4. Variation of 1 with respect to  at different values of nonthermal electron parameter () for the cylindrical geometry 

 1v  and the other parameters being the same as figure 1 

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-30 -20 -10 0 10 20 30

β=0

β=0.1

β=0.15

 
Fig 5. Variation of 1 with respect to  at different values of nonthermal electron parameter () for the spherical geometry 

 2v  and the other parameters being the same as figure 1 

The effects of ion temperature () and dust density () on the shock wave structures are also studied. The dust density can be 

expressed by the variation of  owing to 1-  = Zd ndo  / nio  . Figure 6 shows how the steepness of the shock wave structure is also 

modified by dust density and it decreases with dust density. While from fig. 7, it can be observed that the ion temperature has a weak 

effect on the steepness of shock wave structure.  
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Fig 6. Variation of 1 with respect to  at different values of  for the cylindrical geometry (=1) and the other parameters 

being the same as figure 1 
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Fig 7. Variation of 1 with respect to  at different values of (ion temperature) for the cylindrical geometry (=1) and the 

other parameters being the same as figure 1 
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Conclusion 

We have derived the cylindrical and spherical Burgers’ equation for Dust-ion acoustic shock waves in unmagnetized adiabatic 

dusty plasmas comprising static negatively charged dust fluid, nonthermal distributed electrons and adiabatic ion fluid.  Employing the 

standard reductive perturbation method to derive the Burgers’ nonplanar geometry equation, the choice of non-thermal distribution for 

energetic electrons used in our model is due to its convenience rather than as a precise fitting model of what is observed. 

We have found out that, the propagation of Dust ion acoustic shock wave in nonplanar geometry with the inclusion of non-

thermal electrons distribution gets the shock wave modified as the shock profile is found to vary significantly with the nonthermal 

parameter .  This effect is more prominent in cylindrical as compared to the spherical geometry.  It is also observed that, the shock 

height decreases monotonically with the geometry.  We realize that for large negative values of , the nonplanar geometry approaches 

the planar geometry.  Finally, the amplitude and steepness of the one-dimension shock waves are larger than that of the cylindrical 

shock waves, which in turn is larger than that of the spherical shock waves.  we have also shown that the ion temperature and the dust 

density will modify the properties of  DIASWs. These are also confirmed by experiments. This work could further throw more light 

on the understanding of the nonlinear propagation characteristic of DIASWs that are necessary in laboratory plasma as well as in 

plasma application. 
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