
Dr.Haresh Pandya et al./ Elixir Elec. Engg. 81 (2015) 31999-32004

31999

Introduction

Data acquisition is the process by which physical

phenomena from the real world are transformed into electrical

signals that are measured and converted into a digital format for

processing, analysis, and storage. The required data can be

collected from any peripheral input devices, such as transducers,

sensors and other subsystems. In data acquisition system, it is a

growing challenge to acquire the data at a required rate and to

accumulate the data in an on chip memory processor. There are

devices like microprocessors; microcontrollers and DSP are

available which can be programmed as a data acquisition

system. The main disadvantage of using these devices is their

slower data acquisition speed, non-availability of sufficient on-

chip memory. Apart from this, the rigidity in the hardware

configuration of these devices does not allow flexibility for the

user in configuring these devices according to the requirement.

To overcome these drawbacks this research work proposes a

novel technique of design and develop a data acquisition system

using CPLD which provides flexibility in configuring the device

according to the user requirement. The major defining

characteristic of the CPLD is that it can be reprogrammed.

Programming a CPLD is very different from a microprocessor or

a DSP processor. Microprocessor is a stored program computer.

A computer system contains both a CPU and a separate memory

that stores the instruction and data. CPLD program is

interwoven into the structure of CPLD. A CPLD does not fetch

instructions. The CPLD’s programming directly implements the

logic functions and interconnections. In the CPLD’s there is no

wait for completing the design to obtain a working chip. The

design can be programmed into the chip and can be tested

immediately. When a CPLD is used in final design, the jump

from prototype to product is much smaller and easier. They are

having a large number of input and output lines compared to

microprocessors, microcontrollers and DSP’s. CPLD’s are

having a higher processing speed compared to microprocessors

and microcontrollers. With CPLD devices, it is possible to tailor

the design to fit the requirements of applications.

The data acquisition system is broadly utilized in a number

of automatic test and measuring equipments. They can be used

to collect the required data from any peripheral input devices,

such as meters, sensors and etc. via controlling software. The

measured data could be stored in the PC. Their values can be

shown numerically whereas their relationship can be displayed

graphically as a curve on the screen and value can be display on

LCD screen. This paper proposed a design of the data

acquisition system using CPLD, interfacing to a PC. The system

has capability to receive the digital signals from multi-channels

sensors with eight different ADC channel.

Overall System

The design mainly involves the development of signal

conditioning circuits for varies sensors used in the application

and programming the CPLD using VHDL. It presents the ADC

connection to the eight different (analog to digital converter)

sensors with eight different Parallel buses. CPLD utilized as a

data acquisition system is programmed to fetch the data at the

output of ADC with the help of a multiplexer and the digital data

is stored in its internal RAM. The CPLD collects the individual

data from all ADC sensors. After that it produces a stream of

data through the output USB port, which sends these ADC data

to the LCD. We have written a specific application program to

control the LCD. This program has a function to communicate

to the CPLD so that the PC could prepare itself for the data

transfer. The block diagram of CPLD based data acquisition

system is given below in Fig. 1.

Firstly, the PC will check the CPLD for data availability on

the system. The analog inputs corresponding to temperature and

gas are given to signal conditioning circuit which consists of a

multiplexer. The multiplexed analog signals are taken as analog

Tele:

E-mail addresses: jeetusingh86@yahoo.co.in

 © 2015 Elixir All rights reserved

CPLD-Based Data Acquisition System with High Speed Interface
Dr.Haresh Pandya

1
, Mahesh Rangapariya

1
 and Jitendra Rajput

2

1
Department of Electronics, Saurashtra University, Rajkot- 360005, Gujarat, India.

2
SSR College of Arts, Commerce & Science (Affiliated to Savitribai Phule Pune University), Silvassa- 396230, D & NH, India.

ABSTRACT

This paper presents a novel approach to the design and implementation of CPLD (Complex

Programmable Logic Devices) based DAS (Data Acquisition System) for varies

application. This technique performs the acquisition of physical signal, conversion of

analog signal to digital signal and storing of the information. The core heart of the

proposed system is CPLD, which allows individual modules on a chip to work

independently from each other which is configured and programmed to acquire real time

data. The data for the process is acquired using suitable temperature and gas sensors.

Signal conditioners are designed for each sensor and are tested in real time. The ADC0808

(analog to digital converter) is adopted for this system, which is a high speed monolithic

CMOS device with an 8-bit, 8-channel analog-to-digital converter using successive

approximation as the conversion technique. Cool Runner-II CPLD by Xilinx is used as the

main controller from which all modules are implemented in VHDL using Xilinx ISE

Design Suite9.2 and simulated using Isim.

 © 2015 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 2 March 2015;

Received in revised form:

19 April 2015;

Accepted: 27 April 2015;

Keywords

Data Acquisition system,

VHDL (VHSIC Hardware Description

Language),

CPLD (Complex Programmable Logic

Devices),

ADC0808,

LCD (Liquid Crystal Display).

Elixir Elec. Engg. 81 (2015) 31999-32004

Electronics Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Dr.Haresh Pandya et al./ Elixir Elec. Engg. 81 (2015) 31999-32004

32000

input of ADC and corresponding 8 bit digital data is obtained.

Here ADC0808 works in free running mode. So 8 bit digital data

is directly obtained at CPLD ports and is stored in the Block

RAM. The stored data is then compared with threshold values

already stored in the CPLD. First the data corresponding to

temperature and then gas is considered. After comparison when

the stored data corresponding to either temperature or gas is

greater than threshold value, it indicates that there is chance for

fire to occur which is shown by using an alarm at the output.

The data will be interpreted into separate data bytes for the

individual channels. Finally, the data can be shown to the user,

and saved to the main database at the same time. The hardware

consists of temperature sensor LM35, Gas sensor MQ6 and their

signal conditioning circuits, IC555 Timer, ADC 0808 and Cool

Runner-II CPLD. After that it will send a set of the instructions

to the CPLD for getting these data from USB port.

Cool Runner-II CPLD

The processing unit Cool Runner-II CPLD Starter Kit from

Xilinx Company is employed for this design. The Cool Runner-

II Evaluation Board is a complete USB-powered circuit

development platform for the Xilinx Cool Runner-II CPLD. The

board includes highly efficient power supplies, a user

configurable oscillator, several user I/O devices, a real-time

current meter, and a USB port for board power and CPLD

programming. The board includes five expansion connectors

that route 64 signals available from the CPLD to external

circuits to expand board capability. Board features include A

256 microcells Cool Runner-II CPLD in a TQ-144 package. An

on-board USB port for board power, CPLD programming and

user data transfers. An on-board three-channel 16-bit A/D

converter that measures real-time current on VCCINT and the

two VCCIO banks during board operation (data is sent to the PC

for display via the USB cable). A user-configurable silicon

oscillator (1000/100/10 kHz) and socket for a second crystal

oscillator. 64 I/O signals available on expansion connectors (32

on Pmod connectors; 32 on a parallel connector).

B. ADC0808

The ADC0808 data acquisition component is a monolithic

CMOS device with an 8-bit analog-to-digital converter, 8-

channel multiplexer and microprocessor compatible control

logic. The 8-bit A/D converter uses successive approximation as

the conversion technique. The converter features a high

impedance chopper stabilized comparator, a 256R voltage

divider with analog switch tree and a successive approximation

register. The 8-channel multiplexer can directly access any of 8-

single-ended analog signals. The device eliminates the need for

external zero and full-scale adjustments. Easy interfacing to

microprocessors is provided by the latched and decoded

multiplexer address inputs and latched TTL TRI-STATE outputs

in this work ADC0804 operates in free running mode which

provides self-clocking and so no control signal is needed for

ADC from CPLD.

IC555 TIMER

These devices are precision timing circuits capable of

producing accurate time delays or oscillation. In the astable

mode of operation, the frequency and duty cycle can be

controlled independently with two external resistors and a single

external capacitor. The threshold and trigger levels normally are

two-thirds and one-third, respectively, of VCC. These levels can

be altered by use of the control-voltage terminal. The output

circuit is capable of sinking or sourcing current up to 200 mA.

Operation is specified for supplies of 5 V to 15 V. With a 5-V

supply, output levels are compatible with TTL inputs. The

NE555 is characterized for operation from 0°C to 70°C.

All above process require external master clk pulses. This is

provided by IC555 timer with 3.3 operating voltage.

Liquid Crystal Display (LCD)

LCD is used to display three values, one is the system

initialising message, second is the input data entered through

keyboard, third one is the selected channel respective sensor

output reading. The 8X2 LCD is used, which contains two lines

and 8 characters in each line. It is a general purpose

alphanumeric display.

Parallel Protocol

This protocol is the traditional type for most ADC’s. It has

the advantage of the high speed throughput. This design uses

ADC0808 for the peripheral device. Figure 3 presents the

simulation of how the CPLD gets data from this ADC. There

are two main steps in the conversion process:

 The CPLD sends the start signal to activate the ADC then it

will wait for the acknowledge signal.

 After finishing the data converting, the ADC will send the

acknowledge signal to the CPLD. Then the CPLD reads the data

from the bus. After that the CPLD sends the start signal to

activate ADC again for getting the data on next read cycle.

Obviously, this data acquisition is sow simple and fast. Thus,

this protocol should be employed with the high speed system.

VHDL Design Process

There has to be a better way, and, of course, there is. It is

called high-level design (HLD), behavioural, or hardware

description language (HDL). For our purposes, these three terms

are essentially the same thing. The idea is to use a high-level

language to describe the circuit in a text file rather than a

graphical low-level gate description. The term behavioural is

used because in this powerful language you describe the

function or behaviour of the circuit in words rather than figuring

out the appropriate gates needed to create the application. There

are two major flavours of HDL: VHDL and Verilog.

Dr.Haresh Pandya et al./ Elixir Elec. Engg. 81 (2015) 31999-32004

32001

VHDL Program Window

VHDL Program Code for Data Acquisition System

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity led is

 Port (Clk,b,ch,eoc : in STD_LOGIC;

 din : in STD_LOGIC_VECTOR (7 downto 0);

 RS1,rs2,RW1,rw2,E1,e2 : out STD_LOGIC;

 sc : out STD_LOGIC_VECTOR (1 downto 0);

 add : out STD_LOGIC_VECTOR (2 downto 0);

 DB : out STD_LOGIC_VECTOR(7 DOWNTO 0));

end led;

architecture Behavioral of led is

 signal DB1,DB2:STD_LOGIC_VECTOR(7 DOWNTO 0);

 signal DB3,DB4:STD_LOGIC_VECTOR(7 DOWNTO 0);

 signal E,RS,RW,e3,rs3,rw3: STD_LOGIC ;

 signal temp,temp1 : integer range 0 to 75;

 signal count : integer range 0 to 15;

 signal temp3 : integer range 0 to 245;

begin

process(Clk,b)

 begin

 if(b='1')then

 if(Clk'event and Clk = '1')then temp<= temp+1;

 if(temp=74)then temp<=0;

 end if ;

end if;

 case temp is ----d7d6....d1d0...

 when 1 => RS<= '0'; RW<= '0'; E<= '0'; DB1<=

"00111000";--funct

 when 2 => RS<= '0'; RW<= '0'; E<= '1'; DB1<=

"00111000";

 when 3 => RS<= '0'; RW<= '0'; E<= '0'; DB1<=

"00001100";--display on

 when 4 => RS<= '0'; RW<= '0'; E<= '1'; DB1<=

"00001100";

 when 5 => RS<= '0'; RW<= '0'; E<= '0'; DB1<=

"00000001";--clear display

 when 6 => RS<= '0'; RW<= '0'; E<= '1'; DB1<=

"00000001";

 when 7 => RS<= '0'; RW<= '0'; E<= '0'; DB1<=

"00000110";--entry mod

 when 8 => RS<= '0'; RW<= '0'; E<= '1'; DB1<=

"00000110";

 when 9 =>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01010111"; --W

 when 10=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01010111";

 when 11=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01000101"; --E

 when 12=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01000101";

 when 13=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01001100"; --L

 when 14=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01001100";

 when 15=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"10110000"; -- -

 when 16=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"10110000";

 when 17=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01000011"; -- C

 when 18=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01000011";

 when 19=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01001111"; -- O

 when 20=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01001111";

 when 21=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01001101"; -- M

 when 22=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01001101";

 when 23=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01000101"; -- E

 when 24=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01000101";

 when 25=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"10100000"; -- space

 when 26=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"10100000";

 when 27=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01010100"; -- T

 when 28=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01010100";

 when 29=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01001111"; -- O

 when 30=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01001111";

 when 31=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"10100000"; -- space

 when 32=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"10100000";

 when 33=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01000011"; -- C

 when 34=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01000011";

Dr.Haresh Pandya et al./ Elixir Elec. Engg. 81 (2015) 31999-32004

32002

 when 35=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01010000"; -- P

 when 36=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01010000";

 when 37=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01001100"; -- L

 when 38=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01001100";

 when 39=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01000100"; -- D

 when 40=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01000100";

 when 41=>RS<= '0'; RW<= '0'; E<= '0'; DB1<=

"11000001"; --give 2-line--address

 when 42=>RS<= '0'; RW<= '0'; E<= '1'; DB1<=

"11000001";

 when 43=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01000001"; -- A

 when 44=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01000001";

 when 45=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01000100"; -- D

 when 46=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01000100";

 when 47=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01000011"; -- C

 when 48=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01000011";

 when 49=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"00110000"; -- 0

 when 50=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"00110000";

 when 51=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"00111000"; -- 8

 when 52=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"00111000";

 when 53=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"10100000"; -- space

 when 54=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"10100000";

 when 55=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01000011"; -- C

 when 56=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01000011";

 when 57=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01001111"; -- O

 when 58=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01001111";

 when 59=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01001110"; -- N

 when 60=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01001110";

 when 61=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01010100"; -- T

 when 62=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01010100";

 when 63=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01010010"; -- R

 when 64=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01010010";

 when 65=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01001111"; -- O

 when 66=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01001111";

 when 67=>RS<= '1'; RW<= '0'; E<= '0'; DB1<=

"01001100"; -- L

 when 68=>RS<= '1'; RW<= '0'; E<= '1'; DB1<=

"01001100";

 when 69=>RS<= '0'; RW<= '0'; E<= '0'; DB1<=

"00011100";-- display shift right

 when 70=>RS<= '0'; RW<= '0'; E<= '1'; DB1<=

"00011100";

 when 71=>RS<= '0'; RW<= '0'; E<= '0'; DB1<=

"00011000";-- display shift left

 when 72=>RS<= '0'; RW<= '0'; E<= '1'; DB1<=

"00011000";

 when 73=>RS<= '0'; RW<= '0'; E<= '0'; DB1<=

"00011000";-- display shift left

 when 74=>RS<= '0'; RW<= '0'; E<= '1'; DB1<=

"00011000";

 -- when 77=>RS<= '0'; RW<= '0'; E<= '0'; DB1<=

"00011000";-- display shift left

 -- when 78=>RS<= '0'; RW<= '0'; E<= '1'; DB1<=

"00011000";

 when others =>null ;

 end case;

 DB<=DB1 ; E1<=E ; RS1<=RS ; RW1<= RW ; e2<=E ;

rs2<=RS ; rw2<= RW ;

 end if ;

if(b='0')then

 if(Clk'event and Clk = '1')then temp1<= temp1+1;

 if(temp1=43)then temp1<=0;

 end if ;

 end if;

case temp1 is ----d7d6....d1d0...

when 1=>rs3<= '0'; rw3<= '0'; e3<= '0'; DB2<= "00000001";--

clear display

when 2=>rs3<= '0'; rw3<= '0'; e3<= '1'; DB2<= "00000001";

when 3=>rs3<= '0'; rw3<= '0'; e3<= '0'; DB2<= "00000110";--

entry mod

when 4=>rs3<= '0'; rw3<= '0'; e3<= '1'; DB2<= "00000110";

when 5=>rs3<= '0'; rw3<= '0'; e3<= '0'; DB2<= "10000010"; --

give 1-line--address

when 6=>rs3<= '0'; rw3<= '0'; e3<= '1'; DB2<= "10000010";

when 7=>rs3<= '1'; rw3<= '0'; e3<= '0'; DB2<= "01001001"; --

I

when 8=>rs3<= '1'; rw3<= '0'; e3<= '1'; DB2<= "01001001";

when 9=>rs3<= '1'; rw3<= '0'; e3<= '0'; DB2<= "01001110"; --

N

when 10=>rs3<= '1'; rw3<= '0'; e3<= '1'; DB2<= "01001110";

when 11=>rs3<= '1'; rw3<= '0'; e3<= '0'; DB2<= "01010000"; -

- P

when 12=>rs3<= '1'; rw3<= '0'; e3<= '1'; DB2<= "01010000";

when 13=>rs3<= '1'; rw3<= '0'; e3<= '0'; DB2<= "01010101"; -

- U

when 14=>rs3<= '1'; rw3<= '0'; e3<= '1'; DB2<= "01010101";

when 15=>rs3<= '1'; rw3<= '0'; e3<= '0'; DB2<= "01010100"; -

- T

when 16=>rs3<= '1'; rw3<= '0'; e3<= '1'; DB2<= "01010100";

when 17=>rs3<= '1'; rw3<= '0'; e3<= '0'; DB2<= "10100000"; -

- space

when 18=>rs3<= '1'; rw3<= '0'; e3<= '1'; DB2<= "10100000";

when 19=>rs3<= '1'; rw3<= '0'; e3<= '0'; DB2<= "01010110"; -

- V

when 20=>rs3<= '1'; rw3<= '0'; e3<= '1'; DB2<= "01010110";

when 21=>rs3<= '1'; rw3<= '0'; e3<= '0'; DB2<= "01001111"; -

- O

when 22=>rs3<= '1'; rw3<= '0'; e3<= '1'; DB2<= "01001111";

Dr.Haresh Pandya et al./ Elixir Elec. Engg. 81 (2015) 31999-32004

32003

when 23=>rs3<= '1'; rw3<= '0'; e3<= '0'; DB2<= "01001100"; -

- L

when 24=>rs3<= '1'; rw3<= '0'; e3<= '1'; DB2<= "01001100";

when 25=>rs3<= '1'; rw3<= '0'; e3<= '0'; DB2<= "01010100"; -

- T

when 26=>rs3<= '1'; rw3<= '0'; e3<= '1'; DB2<= "01010100";

when 27=>rs3<= '1'; rw3<= '0'; e3<= '0'; DB2<= "01000001"; -

- A

when 28=>rs3<= '1'; rw3<= '0'; e3<= '1'; DB2<= "01000001";

when 29=>rs3<= '1'; rw3<= '0'; e3<= '0'; DB2<= "01000111"; -

- G

when 30=>rs3<= '1'; rw3<= '0'; e3<= '1'; DB2<= "01000111";

when 31=>rs3<= '1'; rw3<= '0'; e3<= '0'; DB2<= "01000101"; -

- E

when 32=>rs3<= '1'; rw3<= '0'; e3<= '1'; DB2<= "01000101";

when 33=>rs3<= '0'; rw3<= '0'; e3<= '0'; DB2<= "11000110"; --

give 2-line--address

when 34=>rs3<= '0'; rw3<= '0'; e3<= '1'; DB2<= "11000110";

when 35=>rs3<= '1'; rw3<= '0'; e3<= '0'; DB2<= DB3;

when 36=>rs3<= '1'; rw3<= '0'; e3<= '1'; DB2<= DB3;

when 37=>rs3<= '1'; rw3<= '0'; e3<= '0'; DB2<= "00101110";

when 38 =>rs3<= '1'; rw3<= '0'; e3<= '1'; DB2<= "00101110"; -

- .

when 39 =>rs3<= '1'; rw3<= '0'; e3<= '0'; DB2<= DB4;

when 40 =>rs3<= '1'; rw3<= '0'; e3<= '1'; DB2<= DB4;

when 41=>rs3<= '1'; rw3<= '0'; e3<= '0'; DB2<= "01010110"; -

- V

when 42=>rs3<= '1'; rw3<= '0'; e3<= '1'; DB2<= "01010110";

when others =>null ;

 end case;

 DB<=DB2 ;E1<=e3 ; RS1<=rs3 ; RW1<= rw3 ;e2<=e3 ;

rs2<=rs3 ; rw2<= rw3 ;

 end if ;

end process;

process(Clk)

 begin

if(Clk'event and Clk = '0')then temp3 <= temp3+1;

 if(temp3=225)then temp3<=0;

 end if;

end if;

end process;

 with temp3 select

 sc<= "11" when 220,---up to 210 allow not bellow

that.

 "11" when 221,"11" when 222,"11" when

223,"00" when others;

process (eoc,din)

 begin

 if(eoc='1')then --d7--d0

if((din>="00000000") and (din<= "00010010"))then

DB3<="00110000"; DB4<="00110011"; --0.3V

elsif((din>="00010011") and (din<= "00010100"))then

DB3<="00110000"; DB4<="00110100"; --0.4V

elsif((din>="00010101") and (din<= "00101000"))then

DB3<="00110000"; DB4<="00110101"; --0.5V

elsif((din>="00101001") and (din<= "00101100"))then

DB3<="00110000"; DB4<="00110110"; --0.6V

elsif((din>="00101101") and (din<= "00110000"))then

DB3<="00110000"; DB4<="00110111"; --0.7V

elsif((din>="00110001") and (din<= "00111000"))then

DB3<="00110000"; DB4<="00111000"; --0.8V

elsif((din>="00111001") and (din<= "01000000"))then

DB3<="00110000"; DB4<="00111001"; --0.9V

elsif((din>="01000001") and (din<= "01001000"))then

DB3<="00110001"; DB4<="00110000"; --1.0V

elsif((din>="01001001") and (din<= "01010000"))then

DB3<="00110001"; DB4<="00110001"; --1.1V

elsif((din>="01010001") and (din<= "01010110"))then

DB3<="00110001"; DB4<="00110010"; --1.2V

elsif((din>="01010111") and (din<= "01011110"))then

DB3<="00110001"; DB4<="00110011"; --1.3V

elsif((din>="01011111") and (din<= "01100110"))then

DB3<="00110001"; DB4<="00110100"; --1.4V

elsif((din>="01100111") and (din<= "01101110"))then

DB3<="00110001"; DB4<="00110101"; --1.5V

elsif((din>="01101111") and (din<= "01110100"))then

DB3<="00110001"; DB4<="00110110"; --1.6V

elsif((din>="01110101") and (din<= "01111100"))then

DB3<="00110001"; DB4<="00110111"; --1.7V

elsif((din>="01111101") and (din<= "10000100"))then

DB3<="00110001"; DB4<="00111000"; --1.8V

elsif((din>="10000101") and (din<= "10001100"))then

DB3<="00110001"; DB4<="00111001"; --1.9V

elsif((din>="10001101") and (din<= "10010010"))then

DB3<="00110010"; DB4<="00110000"; --2.0V

elsif((din>="10010011") and (din<= "10100000"))then

DB3<="00110010"; DB4<="00110010"; --2.2V

elsif((din>="10100001") and (din<= "10101110"))then

DB3<="00110010"; DB4<="00110100"; --2.4V

elsif((din>="10101111") and (din<= "10111110"))then

DB3<="00110010"; DB4<="00110110"; --2.6V

elsif((din>="10111111") and (din<= "11001100"))then

DB3<="00110010"; DB4<="00111001"; --2.8V

elsif((din>="11001101") and (din<= "11011100"))then

DB3<="00110011"; DB4<="00110000"; --3.0V

elsif((din>="11011101") and (din<= "11111111"))then

DB3<="00110011"; DB4<="00110100"; --3.4V

 end if ;

 end if;

end process;

process (ch)

 begin

 if(ch'event and ch= '0')then count<= count+1;

 if(count>15)then count<=0;

 end if;

 end if;

 case count is

when 0 => add<= "000"; when 1 => add<= "000"; when 2 =>

add<= "001"; when 3 => add<= "001"; when 4 => add<= "010";

when 5 => add<= "010"; when 6 => add<= "011"; when 7 =>

add<= "011";

when 8 => add<= "100"; when 9 => add<= "100"; when 10 =>

add<= "101"; when 11 => add<= "101";

when 12 => add<= "110"; when 13 => add<= "110"; when 14

=> add<= "111";

when 15 => add<= "111";

 end case ;

 end process;

end Behavioral;

Simulate Behavioral Model

You can now run a functional simulation on the

display_drive module. With display_drive.vhd highlighted in the

Source window, the Process window will give all the available

operations for the particular module. A VHDL file can be

synthesised and then implemented through to a bit stream.

Normally, a design consists of several lower level modules

Dr.Haresh Pandya et al./ Elixir Elec. Engg. 81 (2015) 31999-32004

32004

wired together by a top-level file. In this instance, we are going

to simulate only one lower-level module to introduce the

functional simulation methodology.

Conclusions

The proposed project-based approach encompasses whole

engineering cycle, starting from specification, through design,

modelling, simulation and verification, implementation, to

performance measurement, and closing the cycle with the design

improvements in order to maximize performance at minimal

cost. Students have an opportunity to apply their theoretical

knowledge of hardware description languages, digital design and

computer architecture, and to gain real-world experience in

developing IP cores. The work in small teams follows a real

industry pattern, with one student designated as team leader, and

instructor conducting design reviews every week. We feel that

such projects are essential to educate future architects of

complex systems-on-a-chip.

References

 Data Acquisition Linear devices Data Book - National

Semiconductor.

 VHDL Programming by Example By Douglas L. Perry

Circuit Design with VHDL By Volnei A. Pedroni

 DIDITAL DESIGN principles & practices By JOHN F.

WAKERLY

 Fundamentals of Digital Logic with VHDL Design.

By Stephen Brown and Zonked Varanasi

 The Practical Xilinx Designer Lab Book- Prentice Hall.

By David Van den Bout

 The Practical Xilinx Designer Lab Book- Prentice Hall.

By David Van den Bout

 VHDL Starter’s Guide.-Prentice Hall. By Sudhakar

Yalamanchili

 Digital Designing with Programmable Logic Devices.-

Prentice Hall. By John W. Carter

 International Journal of Advanced Research in Computer

Science and Software Engineering (Volume 3, Issue 8, August

2013)

 Programmable Logic Design Quick Start Guide (UG500

(v1.0) May 8, 2008)

