
V. Purushothama Raju and G.P. Saradhi Varma/ Elixir Comp. Engg. 81 (2015) 31915-31919

31915

Introduction
Data mining has attracted the information industry and the

society in recent years, due to the availability of large amounts

of data and the requirement for converting such data into useful

information and knowledge. The knowledge obtained can be

utilized in different applications such as market analysis,

customer retention, finance, insurance, production control and

fraud detection.

The concept of sequential pattern mining was first

introduced by R. Agrawal and R. Srikanth in [1], and aimed at

finding sequential patterns in a sequence database, given a user-

specified minimum support threshold. There are several

applications of sequential pattern mining including mining

customer shopping sequences, DNA sequences and Web click

streams. Closed sequential pattern mining was introduced to

eliminate the drawbacks of sequential pattern mining algorithms.

Closed sequential pattern mining produces more compact result

set than sequential pattern mining and also offers better

efficiency for mining long sequences.

In general closed sequential patterns are produced from

large data sets by applying algorithms like CloSpan, ClaSP and

etc, which take more execution time to find all the closed

sequential patterns. By using Genetic Algorithm (GA) we can

reduce the execution time. The major advantage of using GA in

the discovery of closed sequential patterns is that it performs

global search and its time complexity is less compared to other

algorithms as the genetic algorithm is based on the greedy

approach.

Genetic algorithms are adaptive heuristic search algorithms

based on the evolutionary approaches of natural selection and

genetic. The basic idea of GAs is to simulate methods in natural

system necessary for evolution, particularly those that follow the

rules first laid down by Charles Darwin‟s survival of the fittest.

As such they correspond to an intelligent utilization of a

random search within a distinct search space to resolve a

problem.

GAs provide alternative methods for solving the problem

and outperform other traditional methods in most of the

problems. Genetic algorithms are easy to develop and validate

which makes them attractive for a large number of applications.

GAs have been effectively applied in many search, optimization

and machine learning problems. Most of the real world problems

concerned determining optimal parameters, which might prove

hard for traditional methods but perfect for GAs.

Basically, genetic algorithms are solutions to optimization

or search problems by means of simulated evolution. Methods

based on natural selection, crossover, and mutation are

frequently applied to a population of binary strings which

correspond to potential solutions. Over time, the number of

above average individuals increases and highly fit individuals

are combined with several fit individuals to find good solutions

to the problem at hand.

Use of mutation makes the method suitable for finding

global optimal solution, even in difficult problem domains. GAs

do not need information about the distribution of the data and

can efficiently explore the search space of possible solutions.

We make use of the ideas of GA to focus on the search space

with good solutions because this always finds more frequent

patterns first. GA is more useful than methods which treat all

candidates equally, particularly at low support thresholds.

In this paper, we propose a novel algorithm GCSP for

mining closed sequential patterns from a given sequence

database using genetic approach. It uses an efficient fitness

function to improve the performance. The results show that the

proposed algorithm GCSP can find closed sequential patterns

efficiently and has remarkable performance compared with

CloSpan and ClaSP.

The rest of this paper is organized as follows. Section 2

discusses the related work. Section 3 briefly introduces the basic

concepts of genetic algorithms. Section 4 presents the proposed

method. Section 5 reports the performance evaluation. Finally,

we conclude the work in Section 6.

Related Work
Agrawal and Srikant [1] introduced the problem of

sequential pattern mining. Later, several algorithms were

proposed for sequential pattern mining, the efficient algorithms

A Genetic Algorithm Based Approach to Closed Sequential Pattern Mining
V. Purushothama Raju

1
 and G.P. Saradhi Varma

2

1
Research Scholar, Department of CSE, Acharya Nagarjuna University, Guntur, India.

2
Department of IT, S.R.K.R. Engineering College, Bhimavaram, India.

ABSTRACT

Closed sequential pattern mining has attracted increasing concerns in recent data mining

research because it is more efficient than sequential pattern mining and produces more

compact result set. Genetic algorithms perform global search and have less time complexity

compared to other algorithms. In this paper, we propose a novel algorithm GCSP for mining

closed sequential patterns using genetic approach. It uses an efficient fitness function to

improve the performance. The results show that the proposed algorithm GCSP can find

closed sequential patterns efficiently and outperforms CloSpan and ClaSP.

 © 2015 Elixir All rights reserved.

ARTICLE INFO

Article history:

Received: 12 March 2015;

Received in revised form:

15 April 2014;

Accepted: 21 April 2015;

Keywords

Data mining,

Sequential pattern mining,

Closed sequential pattern mining,

Genetic algorithm

Sequence database.

Elixir Comp. Engg. 81 (2015) 31915-31919

Computer Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Tele:

E-mail address: prajusvs@gmail.com

 © 2015 Elixir All rights reserved

V. Purushothama Raju and G.P. Saradhi Varma/ Elixir Comp. Engg. 81 (2015) 31915-31919

31916

are SPADE[2], PrefixSpan[3] and SPAM[4]. SPADE adopts

breadth-first search where as PrefixSpan and SPAM adopt

depth-first search. SPADE adopts a vertical data format and

mines the sequential patterns through a simple join on id-lists.

PrefixSpan adopts a horizontal data format and mines the

sequential patterns under the pattern growth paradigm. SPAM

mines sequential patterns using vertical bitmap representation

and it outperforms PrefixSpan and SPADE on large datasets.

However, SPAM requires more memory than the other two

methods.

In recent years, some research has started to focus on closed

sequential pattern mining. There are only a few popular

algorithms CloSpan [5], BIDE[6] and ClaSP[7] in closed

sequential pattern mining. CloSpan produces a candidate set for

closed sequential patterns and performs post pruning on it.

CloSpan requires more storage to store the closed sequence

candidates when mining long patterns or the support threshold is

low and it offers poor scalability. BIDE adopts the framework of

PrefixSpan and uses BackScan pruning method to stop growing

redundant patterns. BIDE is a computational intensive approach

since it requires more number of database scans for the bi-

direction closure checking and the BackScan pruning.

ClaSP mines closed sequential patterns in temporal

transaction data. It is inspired on the Spade algorithm that uses

vertical database format strategy for generating sequential

patterns. ClaSP has two main phases: The first phase produces

Frequent Closed Candidates (FCC) that is kept in main memory;

and the second phase performs a post-pruning to remove all non-

closed sequences from FCC to finally get exactly frequent closed

sequences.

A. Bilal and A. Erhan [8] proposed a genetic algorithm

based method to mine negative quantitative association rules.

They used an adaptive mutation probability and an adjusted

fitness function. Sandra de Amo et al.[9] used a genetic

algorithm to mine generalized sequential patterns but it is based

on SQL expressions. S.Ghosh et al. [10] proposed a genetic

algorithm for mining frequent itemsets. They defined a

performance measure based on Apriori algorithm. B. Bidgoli et

al.[11] presented a genetic algorithm for classifying students in

order to predict their final grade based on features extracted from

logged data in an education web-based system.

Basic Concepts of Genetic Algorithms
Standard GA uses genetic operators such as selection,

crossover and mutation to compute a new generation of strings.

GA creates improved solutions for successive generations. The

probability of selecting an individual is proportional to the

goodness of the solution it represents. Hence the quality of the

solutions in successive generations is improved. The process is

terminated when an acceptable or optimum solution is found.

Selection operator deals with the probabilistic survival of the

fittest. Only the chromosomes with high fitness value are

selected to survive. The fitness of a chromosome  is measured

according to its support.

The crossover operator chooses genes from parent

chromosomes and produces a new offspring. The crossover

operation is performed over two chromosomes as follows.

Random positions P1, P2 in the first and second chromosomes

are selected for crossover. The portion of the first chromosome

on the left side of P1 is exchanged with the portion of the second

chromosome on the right side of P2 to create child1 and the

portion of the first chromosome on the right side of P1 is

exchanged with the portion of the second chromosome on the

left side of P2 to create child2.

The mutation operator is used to avoid falling all solutions

of a population into a local optimum. Mutation alters randomly

the new offspring. The mutation is performed over a

chromosome  in the following way. An arbitrary element in 

is chosen and it is replaced with a different element of the same

kind. For example, the bits in the chromosome are changed

randomly from 1 to 0 or from 0 to 1.

Genetic algorithm is a general purpose search algorithm

which uses principles motivated by natural genetic populations

to grow solutions to problems. All GAs typically begins from a

set, known as population, of random solutions. These solutions

are developed by the repeated selection and variations of more

fit solutions, following the rule of survival of the fittest. The

components of the population are called individuals or

chromosomes, which correspond to candidate solutions.

Chromosomes are usually chosen according to the quality of

solutions they represent. Fitness function is allotted to every

chromosome in the population. Therefore, the better the fitness

of a chromosome, the possibility for selecting the chromosome

is more for reproduction and the more parts of its genetic

material will be passed on to the next generations.

Genetic Algorithms are easy to build and validate, which

makes them highly attractive for a large number of applications.

The algorithm is parallel; it can be used for large populations

efficiently, even if it starts with a poor original solution it can

quickly evolve to good solutions. Genetic algorithms are good at

handling huge search space and navigating them, looking for

optimal combination of the solutions.

Proposed Method

The flowchart of the proposed method is given in Fig. 1.

The proposed method includes steps such as encoding the

sequences, population, fitness function, selection, crossover,

mutation and closure checking.

Fig. 1. Flowchart of the proposed method

a) Encoding the Sequences

There are many different approaches for encoding the

sequences. We use permutation encoding approach because its

format is similar to the format of the sequences. Each sequence

is represented by a chromosome in genetic algorithm. We have

to correctly define the chromosome to map the problems of

closed sequential pattern mining.

V. Purushothama Raju and G.P. Saradhi Varma/ Elixir Comp. Engg. 81 (2015) 31915-31919

31917

Table 1. Encoding

A sequence contains a list of elements and each element can

contain one or more items. Each element of the sequence is

mapped into a gene in the chromosome. Given a sequence <e1 e2

... en>, it is mapped into a chromosome with n-genes. For

example, a sequence (a)(b)(cd) is mapped into a 3-gene

chromosome. Table 1 shows how a sequence is encoded into a

chromosome.

b) Population

In general, the number of populations is fixed. We do not

restrict the number of populations in our algorithm. All 1-item

sequences are collected from the database and selected as the

initial population. When new sequential patterns are produced

during the evolvement, the new patterns are kept into next

population for the selection. The new patterns are ignored if the

population already contains the same patterns. We use a hash

table to check whether a new pattern has already included in the

population for increasing the performance.

c) Fitness Function

The candidates in the current population are evaluated using

a fitness function to select the best candidates for the next

generation. The fitness function is shown in “(1)”. The support

of a candidate  is the no of records in the database which

contain . If the candidate support is high then its fitness will be

high, so that the candidate has good characteristics to consider

for the next generation.

The initial value of fitness decreases during the evolvement.

It shows that the candidates in the population will gradually die

down to evolve. If a candidate‟s fitness value is less than 0 then

the candidate is considered as a worthless candidate and it is not

considered for the next generation.

The decay rate specifies the decreased speed of candidate‟s

fitness. The decay rate is a percentage value between 0 and 100.

If a candidate is selected by the selection process, its fitness will

decrease by the speed of the decay rate. If the decay rate is high

then the no of frequent patterns will be less. If the decay rate is

low, such as 4%, then the no of frequent patterns will be more

but it increases the runtime.

d) Selection

In every generation, the algorithm sorts all the candidates in

the population in descending order based on the fitness value

and then selects only the top K candidates, where K is a constant

represents the number of candidates that are selected for the next

generation.

e) Crossover

The crossover takes place at different points between

parents with varied lengths to generate sequential patterns with

varied lengths. For example, a crossover can take place at a

point, which is indicated by „↕‟ in Table 2. Two children are

created after crossover. Child1 (aq) contains the first part of

parent1 and the second part of parent2. Child2 (pbc) contains the

first part of parent2 and the second part of parent1.

Table 2. Crossover

Parent1 a↕bc → Child1 aq

Parent2 p↕q → Child2 pbc

If a crossover happens at the end/head of parent1 and at the

head/end of parent2 then child2 will be empty. In that case, the

child2 is created by reversing the child1. It is shown in Table 3.

A Crossover Rate is employed to control the possibility of

crossover when parents create their children.

Table 3. Crossover at head/end

Parent1 abc↕ → Child1 abcpq

Parent2 ↕pq → Child2 pqabc

f) Mutation

Mutation is required to avoid falling all solutions in

population into a local optimum. Mutation selects a random

point and replaces all genes after that point with 1-item patterns.

For example, the mutation changes the candidate (abc) into (apq)

if p and q are 1-item patterns. Mutation Rate is a percentage that

represents the likelihood of mutation when parents create their

children.

g) Closure Checking

The Closure checking is used to eliminate nonclosed

sequential patterns. After crossover and mutation operations a

new population will be created. It is important to check whether

the new population satisfies the requirements of closed

sequential patterns. We call a sequence  as a closed sequential

pattern if there is no super sequence of  with the same support.

h) GCSP Algorithm

Algorithm: GCSP

Input: Sequence database, min_sup, k, decay rate, crossover rate

and mutation rate.

Output: The complete set of closed sequential patterns.

1: Encode the sequences.

2: Create an initial population with all 1-item sequences.

3: Calculate the fitness of the candidates.

4: Retain only candidates that have high fitness in the

 population.

5: Select top-k candidates in the population.

6: Perform crossover and mutation to create the new population.

7: Eliminate nonclosed sequential patterns in the new

 population.

8: Repeat the steps from 3 to 7 until all candidates in the

 population have high fitness value.

After encoding of the dataset, the GCSP algorithm starts

with initial population that contains all 1-item sequences. Then

the following processes are repeated until all the candidates in

the population have high fitness value. The fitness value is

calculated for each candidate in the population. Only the fittest

candidates in the current population are retained. Top-k

candidates in the current population are selected to increase the

speed of crossover operation. The crossover and mutation

operations are performed to create the new population. Finally

closure checking is applied to eliminate the nonclosed sequential

patterns.

Performance Evaluation

In our experiments we used a real world dataset BMS

WebView2 of KDD CUP 2000[12] and two synthetic datasets.

BMS WebView2 is a click stream data from an e-commerce web

store named Gazelle and it has been used widely to assess the

performance of frequent pattern mining. This dataset contains

77,512 sequences and 3340 distinct items. The average length of

sequences is 4.62 items with a standard deviation of 6.07 items.

The characteristics of the BMS WebView2 dataset are given in

Sequence Chromosome

gene1 gene2 gene3

(a)(b)(cd) a b cd

V. Purushothama Raju and G.P. Saradhi Varma/ Elixir Comp. Engg. 81 (2015) 31915-31919

31918

Table 4. We generated the synthetic datasets using SPMF[13]

framework. The characteristics of the two synthetic datasets are

given in Table 5.

Table 4. Characteristics of the dataset

Table 5. Characteristics of the Synthetic datasets

All experiments were conducted on a 2GHz Intel Core2 Duo

processor PC with 1GB main memory running Microsoft

Windows XP. The algorithms were implemented in Java and

were executed using different support values. Three sets of

experiments were conducted to evaluate the performance of the

GCSP algorithm. The first set compares the runtime

performance of GCSP with CloSpan and ClaSP using real world

dataset BMS WebView2 for different support values. The

second and third sets compare the runtime performance of GCSP

with CloSpan and ClaSP using synthetic datasets for different

support values. The tests are based on Crossover Rate=70%,

Mutation Rate=8% and Decay Rate=4%.

Fig. 2 shows the results of runtime performance using the

real world dataset BMS WebView2. The X-axis is the minimum

support, while the Y-axis is the algorithms runtime. The support

values are set from 0.01 to 0.06. Our proposed algorithm GCSP

runs faster than CloSpan and ClaSP when the support threshold

is low.

Fig 2. Performance Comparison using BMS WebView2

Dataset

Fig. 3 and Fig. 4 show the results of runtime performance

using the synthetic datasets. The X-axis is the minimum support,

while the Y-axis is the algorithms runtime. The support values

are set from 0.01 to 0.06. Our proposed algorithm GCSP

outperforms CloSpan and ClaSP on both the synthetic datasets.

Fig 3. Performance comparison using synthetic dataset1

Fig 4. Performance comparison using synthetic dataset2

Conclusion

In this paper, we propose a novel algorithm GCSP to mine

closed sequential patterns by using genetic approach. Closed

sequential pattern mining helps users to find more interesting

patterns and reduces the burden of users to explore too many

patterns. Extensive experimental results on a real-world dataset

and synthetic datasets show that the proposed algorithm GCSP

can find closed sequential patterns efficiently and has

remarkable performance compared with CloSpan and ClaSP. In

our future work, we will focus on new measures for fitness

function, selection and crossover to make our algorithm more

efficient.

References

[1] R. Agrawal and R. Srikant, “Mining sequential patterns,”

Proceedings of ICDE ‟95, pp. 3-14, Mar. 1995.

[2] M. Zaki, “SPADE: An efficient algorithm for mining

frequent sequences,” Machine Learning, vol. 42, pp. 31-60,

2001.

[3] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U.

Dayal, and M. Hsu, “PrefixSpan : Mining sequential patterns

efficiently by prefix-projected pattern growth,” Proc. Int‟l Conf.

Data Engineering (ICDE ‟01), pp. 215-224, Apr. 2001.

[4] J. Ayres, J. Gehrke, T. Yiu, and J. Flannick, “Sequential

pattern mining using a bitmap representation,” Proceedings of

ACM SIGKDD ‟02, pp. 429-435, July 2002.

[5] X. Yan, J. Han, and R. Afshar, “CloSpan: Mining closed

sequential patterns in large databases,” Proceedings of SIAM‟s

SDM ‟03, pp. 166-177, May 2003.

[6] J. Wang, J. Han, and Chun Li, “Frequent closed sequence

mining without candidate maintenance,” IEEE TKDE., vol. 19,

no. 8, pp. 1042-1056, Aug. 2007.

[7] Antonio Gomariz, Manuel Campos, Roque Marin, and Bart

Goethals, “ClaSP: An efficient algorithm for mining frequent

S. No. Characteristic Value

1 No of sequences 77512

2 No of distinct items 3340

3 Average length of sequences 4.62

S.No. Characteristic Dataset1

Value

Dataset2

Value

1 No of sequences 20000 25000

2 No of distinct items 300 200

3 No of items per itemset 4 3

4 No of itemsets per sequence 5 6

V. Purushothama Raju and G.P. Saradhi Varma/ Elixir Comp. Engg. 81 (2015) 31915-31919

31919

closed sequences,” PAKDD 2013, LNAI 7818, Part I, pp. 50–

61, 2013.

[8] A. Bilal and A. Erhan, “An efficient genetic algorithm for

automated mining of both positive and negative quantitative

association rules,” Soft. Computing, vol. 10, no. 3, pp. 230–

237, 2006.

[9] Sandra de Amo, Ary dos Santos Rocha, “Mining generalized

sequential patterns using genetic programming,” IC-AI CSREA

Press, pp. 451-456, 2003.

[10] S. Ghosh, S. Biswas, D. Sarkar and P. P. Sarkar, “Mining

frequent itemsets using genetic algorithm,” International Journal

of Artificial Intelligence & Applications, vol. 1, no.4, Oct. 2010.

[11] B. Bidgoli and William F. Punch, “Using genetic

algorithms for data mining optimization in an educational web-

based system, ”Springer Lecture Notes in Computer

Science, vol. 2724, pp. 2252-2263, 2003.

[12] Ron Kohavi, Carla E. Brodley, Brian Frasca, Llew Mason,

and Zijian Zheng, “KDD-Cup 2000 organizers' report: Peeling

the onion,” SIGKDD Explorations, vol. 2, no. 2, pp. 86-93, Dec.

2000.

[13] Fournier-Viger P., An Open-Source Data Mining Library,

http://www.philippe-fournier-viger.com/spmf/index.php?link=

datasets.php, 2008, Accessed 12 Dec 2014.

[14] R.L. Haupt and S.E. Haupt, Practical genetic algorithms,

Wiley, New York, 1998.

[15] M. Mitchell, Introduction to genetic algorithms, MIT

Press,Cambridge,1996.

