
V. Purushothama Raju and G.P. Saradhi Varma/ Elixir Comp. Engg. 81 (2015) 31915-31919 

 
31915 

Introduction  
Data mining has attracted the information industry and the 

society in recent years, due to the availability of large amounts 

of data and the requirement for converting such data into useful 

information and knowledge. The knowledge obtained can be 

utilized in different applications such as market analysis, 

customer retention, finance, insurance, production control and 

fraud detection. 

The concept of sequential pattern mining was first 

introduced by R. Agrawal and R. Srikanth in [1], and aimed at 

finding sequential patterns in a sequence database, given a user-

specified minimum support threshold. There are several 

applications of sequential pattern mining including mining 

customer shopping sequences, DNA sequences and Web click 

streams. Closed sequential pattern mining was introduced to 

eliminate the drawbacks of sequential pattern mining algorithms.  

Closed sequential pattern mining produces more compact result 

set than sequential pattern mining and also offers better 

efficiency for mining long sequences. 

In general closed sequential patterns are produced from 

large data sets by applying algorithms like CloSpan, ClaSP and 

etc, which take more execution time to find all the closed 

sequential patterns. By using Genetic Algorithm (GA) we can 

reduce the execution time.  The major advantage of using GA in 

the discovery of closed sequential patterns is that it performs 

global search and its time complexity is less compared to other 

algorithms as the genetic algorithm is based on the greedy 

approach.  

Genetic algorithms are adaptive heuristic search algorithms 

based on the evolutionary approaches of natural selection and 

genetic. The basic idea of GAs is to simulate methods in natural 

system necessary for evolution, particularly those that follow the 

rules first laid down by Charles Darwin‟s survival of the  fittest. 

As such they correspond to an intelligent utilization of a 

random search within a distinct search space to resolve a 

problem. 

GAs provide alternative methods for solving the problem 

and outperform other traditional methods in most of the 

problems. Genetic algorithms are easy to develop and validate 

which makes them attractive for a large number of applications. 

GAs have been effectively applied in many search, optimization 

and machine learning problems. Most of the real world problems 

concerned determining optimal parameters, which might prove 

hard for traditional methods but perfect for GAs. 

Basically, genetic algorithms are solutions to optimization 

or search problems by means of simulated evolution. Methods 

based on natural selection, crossover, and mutation are 

frequently applied to a population of binary strings which 

correspond to potential solutions. Over time, the number of 

above average individuals increases and highly fit individuals 

are combined with several fit individuals to find good solutions 

to the problem at hand. 

Use of mutation makes the method suitable for finding 

global optimal solution, even in difficult problem domains. GAs 

do not need information about the distribution of the data and 

can efficiently explore the search space of possible solutions. 

We make use of the ideas of GA to focus on the search space 

with good solutions because this always finds more frequent 

patterns first. GA is more useful than methods which treat all 

candidates equally, particularly at low support thresholds.  

In this paper, we propose a novel algorithm GCSP for 

mining closed sequential patterns from a given sequence 

database using genetic approach. It uses an efficient fitness 

function to improve the performance. The results show that the 

proposed algorithm GCSP can find closed sequential patterns 

efficiently and has remarkable performance compared with 

CloSpan and ClaSP. 

The rest of this paper is organized as follows. Section 2 

discusses the related work. Section 3 briefly introduces the basic 

concepts of genetic algorithms. Section 4 presents the proposed 

method. Section 5 reports the performance evaluation. Finally, 

we conclude the work in Section 6. 

Related Work 
Agrawal and Srikant [1] introduced the problem of 

sequential pattern mining. Later, several algorithms were 

proposed for sequential pattern mining, the efficient algorithms 
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are SPADE[2], PrefixSpan[3] and SPAM[4].  SPADE adopts 

breadth-first search where as PrefixSpan and SPAM adopt 

depth-first search. SPADE adopts a vertical data format and 

mines the sequential patterns through a simple join on id-lists. 

PrefixSpan adopts a horizontal data format and mines the 

sequential patterns under the pattern growth paradigm. SPAM 

mines sequential patterns using vertical bitmap representation 

and it outperforms PrefixSpan and SPADE on large datasets. 

However, SPAM requires more memory than the other two 

methods. 

In recent years, some research has started to focus on closed 

sequential pattern mining. There are only a few popular 

algorithms CloSpan [5], BIDE[6] and ClaSP[7] in closed 

sequential pattern mining. CloSpan produces a candidate set for 

closed sequential patterns and performs post pruning on it.  

CloSpan requires more storage to store the closed sequence 

candidates when mining long patterns or the support threshold is 

low and it offers poor scalability. BIDE adopts the framework of 

PrefixSpan and uses BackScan pruning method to stop growing 

redundant patterns. BIDE is a computational intensive approach 

since it requires more number of  database scans for the bi-

direction closure checking and the BackScan pruning.  

ClaSP mines closed sequential patterns in temporal 

transaction data. It is inspired on the Spade algorithm that uses 

vertical database format strategy for generating sequential 

patterns. ClaSP has two main phases: The first phase produces 

Frequent Closed Candidates (FCC) that is kept in main memory; 

and the second phase performs a post-pruning to remove all non-

closed sequences from FCC to finally get exactly frequent closed 

sequences. 

A. Bilal and A. Erhan [8] proposed a genetic algorithm 

based method to mine negative quantitative association rules. 

They used an adaptive mutation probability and an adjusted 

fitness function. Sandra de Amo et al.[9] used a genetic 

algorithm to mine generalized sequential patterns but it is based 

on SQL expressions. S.Ghosh et al. [10] proposed a genetic 

algorithm for mining frequent itemsets. They defined a 

performance measure based on Apriori algorithm. B. Bidgoli et 

al.[11] presented a genetic algorithm for classifying students in 

order to predict their final grade based on features extracted from 

logged data in an education web-based system. 

Basic Concepts of Genetic Algorithms 
Standard GA uses genetic operators such as selection, 

crossover and mutation to compute a new generation of strings. 

GA creates improved solutions for successive generations. The 

probability of selecting an individual is proportional to the 

goodness of the solution it represents. Hence the quality of the 

solutions in successive generations is improved. The process is 

terminated when an acceptable or optimum solution is found. 

Selection operator deals with the probabilistic survival of the 

fittest.  Only the chromosomes with high fitness value are 

selected to survive. The fitness of a chromosome  is measured 

according to its support. 

The crossover operator chooses genes from parent 

chromosomes and produces a new offspring. The crossover 

operation is performed over two chromosomes as follows. 

Random positions P1, P2 in the first and second chromosomes 

are selected for crossover. The portion of the first chromosome 

on the left side of P1 is exchanged with the portion of the second 

chromosome on the right side of P2 to create child1 and the 

portion of the first chromosome on the right side of P1 is 

exchanged with the portion of the second chromosome on the 

left side of P2 to create child2. 

The mutation operator is used to avoid falling all solutions 

of a population into a local optimum. Mutation alters randomly 

the new offspring. The mutation is performed over a 

chromosome   in the following way.  An arbitrary element in  

is chosen and it is replaced with a different element of the same 

kind. For example, the bits in the chromosome are changed 

randomly from 1 to 0 or from 0 to 1.   

Genetic algorithm is a general purpose search algorithm 

which uses principles motivated by natural genetic populations 

to grow solutions to problems. All GAs typically begins from a 

set, known as population, of random solutions. These solutions 

are developed by the repeated selection and variations of more 

fit solutions, following the rule of survival of the fittest. The 

components of the population are called individuals or 

chromosomes, which correspond to candidate solutions. 

Chromosomes are usually chosen according to the quality of 

solutions they represent. Fitness function is allotted to every 

chromosome in the population. Therefore, the better the fitness 

of a chromosome, the  possibility for selecting the chromosome 

is more for reproduction and the more parts of its genetic 

material will be passed on to the next generations.  

Genetic Algorithms are easy to build and validate, which 

makes them highly attractive for a large number of applications. 

The algorithm is parallel; it can be used for large populations 

efficiently, even if it starts with a poor original solution it can 

quickly evolve to good solutions. Genetic algorithms are good at 

handling huge search space and navigating them, looking for 

optimal combination of the solutions. 

Proposed Method 

The flowchart of the proposed method is given in Fig. 1. 

The proposed method includes steps such as encoding the 

sequences, population, fitness function, selection, crossover, 

mutation and closure checking. 
 

 

Fig. 1. Flowchart of the proposed method 

a) Encoding the Sequences 

There are many different approaches for encoding the 

sequences. We use permutation encoding approach because its 

format is similar to the format of the sequences. Each sequence 

is represented by a chromosome in genetic algorithm. We have 

to correctly define the chromosome to map the problems of 

closed sequential pattern mining.  
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Table 1. Encoding 

 

 

 

 

A sequence contains a list of elements and each element can 

contain one or more items. Each element of the sequence is 

mapped into a gene in the chromosome. Given a sequence <e1 e2 

... en>, it is mapped into a chromosome with n-genes. For 

example, a sequence (a)(b)(cd) is mapped into a 3-gene 

chromosome. Table 1 shows how a sequence is encoded into a 

chromosome. 

b) Population  

In general, the number of populations is fixed. We do not 

restrict the number of populations in our algorithm. All 1-item 

sequences are collected from the database and selected as the 

initial population. When new sequential patterns are produced 

during the evolvement, the new patterns are kept into next 

population for the selection.  The new patterns are ignored if the 

population already contains the same patterns.  We use a hash 

table to check whether a new pattern has already included in the 

population for increasing the performance. 

c) Fitness Function 

The candidates in the current population are evaluated using 

a fitness function to select the best candidates for the next 

generation. The fitness function is shown in  “(1)”. The support 

of a candidate  is the no of records in the database which 

contain . If the candidate support is high then its fitness will be 

high, so that the candidate has good characteristics to consider 

for the next generation.  

 

 

 

The initial value of fitness decreases during the evolvement. 

It shows that the candidates in the population will gradually die 

down to evolve. If a candidate‟s fitness value is less than 0 then 

the candidate is considered as a worthless candidate and it is not 

considered for the next generation. 

The decay rate specifies the decreased speed of candidate‟s 

fitness. The decay rate is a percentage value between 0 and 100.  

If a candidate is selected by the selection process, its fitness will 

decrease by the speed of the decay rate. If the decay rate is high 

then the no of frequent patterns will be less.  If the decay rate is 

low, such as 4%, then the no of frequent patterns will be more 

but it increases the runtime. 

d) Selection 

In every generation, the algorithm sorts all the candidates in 

the population in descending order based on the fitness value 

and then selects only the top K candidates, where K is a constant 

represents the number of candidates that are selected for the next 

generation.   

e) Crossover   

The crossover takes place at different points between 

parents with varied lengths to generate sequential patterns with 

varied lengths. For example, a crossover can take place at a 

point, which is indicated by „↕‟ in Table 2. Two children are 

created after crossover. Child1 (aq) contains the first part of 

parent1 and the second part of parent2. Child2 (pbc) contains the 

first part of parent2 and the second part of parent1.  

 

 

 

 

Table 2. Crossover 

Parent1 a↕bc → Child1 aq 

Parent2 p↕q → Child2 pbc 

If a crossover happens at the end/head of parent1 and at the 

head/end of parent2 then child2 will be empty. In that case, the 

child2 is created by reversing the child1. It is shown in Table 3. 

A Crossover Rate is employed to control the possibility of 

crossover when parents create their children. 

Table 3. Crossover at head/end 

Parent1 abc↕ → Child1 abcpq 

Parent2 ↕pq → Child2 pqabc 

f) Mutation 

Mutation is required to avoid falling all solutions in 

population into a local optimum. Mutation selects a random 

point and replaces all genes after that point with 1-item patterns. 

For example, the mutation changes the candidate (abc) into (apq) 

if p and q are 1-item patterns. Mutation Rate is a percentage that 

represents the likelihood of mutation when parents create their 

children. 

g) Closure Checking 

The Closure checking is used to eliminate nonclosed 

sequential patterns. After crossover and mutation operations a 

new population will be created. It is important to check whether 

the new population satisfies the requirements of closed 

sequential patterns. We call a sequence  as a closed sequential 

pattern if there is no super sequence of   with the same support.  

h) GCSP Algorithm  

Algorithm: GCSP 

Input: Sequence database, min_sup, k, decay rate, crossover rate 

and mutation rate. 

Output: The complete set of closed sequential patterns. 

1: Encode the sequences.  

2: Create an initial population with all 1-item sequences. 

3: Calculate the fitness of the candidates.  

4: Retain only candidates that have high fitness in the  

     population. 

5: Select top-k candidates in the population. 

6: Perform crossover and mutation  to create the new population. 

7: Eliminate nonclosed sequential patterns in the new  

     population. 

8: Repeat the steps from 3 to 7 until all candidates in the 

     population have high fitness value. 

After encoding of the dataset, the GCSP algorithm starts 

with initial population that contains all 1-item sequences. Then 

the following processes are repeated until all the candidates in 

the population have high fitness value. The fitness value is 

calculated for each candidate in the population. Only the fittest 

candidates in the current population are retained. Top-k 

candidates in the current population are selected to increase the 

speed of crossover operation. The crossover and mutation 

operations are performed to create the new population. Finally 

closure checking is applied to eliminate the nonclosed sequential 

patterns. 

Performance Evaluation 

In our experiments we used a real world dataset BMS 

WebView2 of KDD CUP 2000[12] and two synthetic datasets. 

BMS WebView2 is a click stream data from an e-commerce web 

store named Gazelle and it has been used widely to assess the 

performance of frequent pattern mining. This dataset contains 

77,512 sequences and 3340 distinct items. The average length of 

sequences is 4.62 items with a standard deviation of 6.07 items. 

The characteristics of the BMS WebView2 dataset are given in 

Sequence Chromosome 

gene1    gene2    gene3 

(a)(b)(cd)  a             b            cd 
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Table 4. We generated the synthetic datasets using SPMF[13] 

framework. The characteristics of the two synthetic datasets are 

given in Table 5. 

Table 4. Characteristics of the dataset 

 

 

 

 

 

Table 5.  Characteristics of the Synthetic datasets 

 

All experiments were conducted on a 2GHz Intel Core2 Duo 

processor PC with 1GB main memory running Microsoft 

Windows XP. The algorithms were implemented in Java and 

were executed using different support values. Three sets of 

experiments were conducted to evaluate the performance of the 

GCSP algorithm. The first set compares the runtime 

performance of GCSP with CloSpan and ClaSP using real world 

dataset BMS WebView2 for different support values. The 

second and third sets compare the runtime performance of GCSP 

with CloSpan and ClaSP using synthetic datasets for different 

support values. The tests are based on Crossover Rate=70%, 

Mutation Rate=8% and Decay Rate=4%.   

Fig. 2 shows the results of runtime performance using the 

real world dataset BMS WebView2. The X-axis is the minimum 

support, while the Y-axis is the algorithms runtime. The support 

values are set from 0.01 to 0.06.  Our proposed algorithm GCSP 

runs faster than CloSpan and ClaSP when the support threshold 

is low.      

 

Fig 2.  Performance Comparison using BMS WebView2 

Dataset 

Fig. 3 and Fig. 4 show the results of runtime performance 

using the synthetic datasets. The X-axis is the minimum support, 

while the Y-axis is the algorithms runtime. The support values 

are set from 0.01 to 0.06.  Our proposed algorithm GCSP 

outperforms CloSpan and ClaSP on both the synthetic datasets.  

 

 

 

Fig 3. Performance comparison using synthetic dataset1 

 

Fig 4. Performance comparison using synthetic dataset2 

Conclusion 

In this paper, we propose a novel algorithm GCSP to mine 

closed sequential patterns by using genetic approach. Closed 

sequential pattern mining helps users to find more interesting 

patterns and reduces the burden of users to explore too many 

patterns. Extensive experimental results on a real-world dataset 

and synthetic datasets show that the proposed algorithm GCSP 

can find closed sequential patterns efficiently and has 

remarkable performance compared with CloSpan and ClaSP. In 

our future work, we will focus on new measures for fitness 

function, selection and crossover to make our algorithm more 

efficient. 
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