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Introduction  

In recent years, the distribution of sum of random variables has gained great importance in many areas of science and 

engineering. For example, sums of independent gamma random variables have application in problems of queuing theory such as 

determination of total waiting time, in civil engineering such as determination of the total excess water flow in a dam. They also 

appear in obtaining the inter arrival time of drought events which is the sum of the drought duration and the successive non drought 

duration. In last several years many authors notably Linhart [9], Jackson [8] and Grice and Bain [5] have studied the applications of 

distribution of sum of random variables. The distribution of the sum of two independent random variables has been obtained by many 

research workers, particularly when both the variates come from the same family of distribution. In this context the works of Albert 

[1] for uniform variates, Holm and Alouini [7], Moschopoulos [11] and Provost [13] for gamma variates, Van-Dorp and Kotz [21] for 

triangular variats and Loaiciga and Leipnik [10] for Gumbel variates are worth mentioning. 

Furthermore, Nason [12] has obtained the distribution of the sum of t and Gaussian random variables and pointed out its 

application in Bayesian wavelet shrinkage. Very recently, Singh and Kumar [16], Chaurasia and Singh [2] and Gupta [6] have studied 

the distribution of mixed sum of two independent random variables with different probability density functions. We know that the 

distribution of sum of several independent random variables when each random variable is of simply infinite or doubly infinite range 

can easily be obtained by means of characteristic function or moment generating function. But, when the random variables are 

distributed over finite range, these methods are not much useful and the power of integral transform method comes sharply into focus. 

In the present paper, we obtain the distribution of sum of two independent random variables, X1 and X2, where X1 possess finite 

uniform probability density function and X2 follows infinite probability density function involving the product of Srivastava’s 

polynomials and -function, given by the equations (1) and (2) respectively. Thus 
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ABSTRACT  

The aim of the present paper is to obtain the distribution of mixed sum of two independent 

random variables with different probability density functions. One with probability density 

function defined in finite range and the other with probability density function defined in 

infinite range and associated with product of Srivastava’s polynomials and Aleph-function. 

We use the Laplace transform and its inverse to obtain our main result. The result obtained 

here is quite general in nature and is capable of yielding a large number of corresponding 

new and known results merely by specializing the parameters involved therein. To illustrate, 

some special cases of our main result are also given. 
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 (iii)  The parameters of -function and Srivastava’s polynomials are real and so restricted that f2(x2) remains non-negative. 

In the study of fractional driftless Fokker-Planck equations with power law diffusion coefficients, there arises naturally a special 

function, which is a special case of the , that is Aleph-function. The -function is a generalization of the familiar H-function and I-

function. The idea to introduce Aleph-function belongs to Südland et al. [19], however the notation and complete definition is 

presented here in the following manner in terms of the Mellin-Barnes type integrals [also see 20]: 
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The parameter Aj, Bj, Aji, Bji > 0 and aj, bj, aji, bji  C. The empty product in (5) is interpreted as unity. For the existence 

conditions and other details of the Aleph-function see Südland et al [19,20]. 

The Srivastava’s polynomials [17] is defined as 
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Distribution of the mixed sum of two independent random variables 

Theorem 1. If X1 and X2 are two independent random variables having the probability density function defined by (1) and (2) 

respectively. Then the probability density function of 

 
21

XX Y 
        …(7) 

is given by  

 
ay  0 y),gg(y)

1


 

  
  y   ay),g y)g

21      …(8) 

where 

!n 

y)
y wA

!k 

t)

a

C
y)g

n
kk

kt,

vk

0n

t/v]

0k
1


 










 

     

0y ,y z
rip1,njiAjiain1,jAjan,k1

n,kriq1,mjiBjibim1,jBjb

1nm,

ri1iq1ip























  …(9) 

and 

!n 

a)}y
a)y wA

!k 

t)

a

C
y)g

n
kk

kt,

vk

0n

t/v]

0k
2





 










 

     

ay ,a)(y z
rip1,njiAjiain1,jAjan,k1

n,kriq1,mjiBjibim1,jBjb

1nm,

ri1iq1ip























 …(10) 

C is given by (3) and the following conditions are satisfied: 

(i) 


















0

B

b
mink00

j

j

m j1

 

(ii) 

;r 1,...,
2

|arg(z)0 


 


 

 

0,  1R{ and 
2

|arg(z)0 





 
where 

 














 










 j

q

1mj
j

p

1nj
j

m

1j
j

n

1j

BABA

 
and 

 















 











qp

2

1
abab

j

p

1nj
j

q

1mj
j

n

1j
j

m

1j
 

(iii) The parameters of -function and Srivastava’s polynomials are real and so restricted that g1(y) and g2(y) remains non-

negative. 

Proof. Let the Laplace transform of Y be denoted by 
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To obtain the inverse Laplace transform of first term of equation (13), we express the -function in contour integral, collect the 

terms involving ‘s’ and take its inverse Laplace transform and use the known result (Erdélyi [3], p.238, eq.9). Further, writing the 
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The inverse Laplace transform of second term easily follows by the value of g1(y) and shifting property for Laplace transform. 

Special Cases 
As Aleph function and Srivastava’s polynomials are the most generalized special function, numerous special cases can be 
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function of Fox [4], we arrive at the results recently obtained by Chaurasia and Singh [2]. 

(iii) By applying Theorem 1 to the case of Hermite polynomials (Srivastava and Singh [16] and Sezgö [15]) and by setting 
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and the corresponding pdf of Y as obtained from the equation (8) is given by 
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 …(22) 

where C2 is given by (20) and  the same conditions are satisfied as given in Theorem 1. 

The importance of our result lies in its manifold generality. In view of the generality of the Aleph-function and Srivastava’s 

polynomials, on specializing the various parameters in the Aleph-function and the Srivastava’s polynomials, we obtain, from our 

results, several pdfs such as the gamma pdf, beta pdf, Rayleigh pds, Weibull pdf, Chi-Squared pdf, one-sided exponential pdf, half-
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Cauchy pdf etc. and their distribution functions. Thus, the results presented in this paper would at once yield a very large number of 

pdfs occurring in the problems of science and engineering. 
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