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Introduction

In recent years, the distribution of sum of random variables has gained great importance in many areas of science and
engineering. For example, sums of independent gamma random variables have application in problems of queuing theory such as
determination of total waiting time, in civil engineering such as determination of the total excess water flow in a dam. They also
appear in obtaining the inter arrival time of drought events which is the sum of the drought duration and the successive non drought
duration. In last several years many authors notably Linhart [9], Jackson [8] and Grice and Bain [5] have studied the applications of
distribution of sum of random variables. The distribution of the sum of two independent random variables has been obtained by many
research workers, particularly when both the variates come from the same family of distribution. In this context the works of Albert
[1] for uniform variates, Holm and Alouini [7], Moschopoulos [11] and Provost [13] for gamma variates, Van-Dorp and Kotz [21] for
triangular variats and Loaiciga and Leipnik [10] for Gumbel variates are worth mentioning.

Furthermore, Nason [12] has obtained the distribution of the sum of t and Gaussian random variables and pointed out its
application in Bayesian wavelet shrinkage. Very recently, Singh and Kumar [16], Chaurasia and Singh [2] and Gupta [6] have studied
the distribution of mixed sum of two independent random variables with different probability density functions. We know that the
distribution of sum of several independent random variables when each random variable is of simply infinite or doubly infinite range
can easily be obtained by means of characteristic function or moment generating function. But, when the random variables are
distributed over finite range, these methods are not much useful and the power of integral transform method comes sharply into focus.
In the present paper, we obtain the distribution of sum of two independent random variables, X; and X,, where X; possess finite
uniform probability density function and X, follows infinite probability density function involving the product of Srivastava’s
polynomials and X-function, given by the equations (1) and (2) respectively. Thus
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(iii) The parameters of N -function and Srivastava’s polynomials are real and so restricted that f,(X,) remains non-negative.

In the study of fractional driftless Fokker-Planck equations with power law diffusion coefficients, there arises naturally a special
function, which is a special case of the N, that is Aleph-function. The X-function is a generalization of the familiar H-function and I-
function. The idea to introduce Aleph-function belongs to Sidland et al. [19], however the notation and complete definition is
presented here in the following manner in terms of the Mellin-Barnes type integrals [also see 20]:
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The parameter A;, Bj, Aji, Bj > 0 and a;, b, a;, b € C. The empty product in (5) is interpreted as unity. For the existence
conditions and other details of the Aleph-function see Stdland et al [19,20].
The Srivastava’s polynomials [17] is defined as
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where v is an arbitrary positive integer, the coefficients ' are arbitrary constants, real or complex.
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Distribution of the mixed sum of two independent random variables
Theorem 1. If X; and X, are two independent random variables having the probability density function defined by (1) and (2)
respectively. Then the probability density function of
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(iii) The parameters of N-function and Srivastava’s polynomials are real and so restricted that g;(y) and g,(y) remains non-
negative.

(
Proof. Let the Laplace transform of Y be denoted by (I)y then
=L{f (x );s}L{f_(x,);s}

The Laplace transform of fi(x;) is a simple integral so it can easily be evaluated and for the Laplace transform of f,(x,), we
express the KX-function in terms of Mellin-Barnes type contour integral (4) and the Srivastava’s polynomials in form of series (6).
Further, we interchange the order of summation, x,- and &-integrals and evaluate X,-integral as gamma integral to get
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To obtain the inverse Laplace transform of first term of equation (13), we express the N—functlon in contour integral, collect the
terms involving ‘s’ and take its inverse Laplace transform and use the known result (Erdélyi [3], p.238, eq.9). Further, writing the
confluent hypergeometric function thus obtained in series form and interpreting the result by equation (4), we get the value of gi(y).
The inverse Laplace transform of second term easily follows by the value of g,(y) and shifting property for Laplace transform.

Special Cases

As Aleph function and Srivastava’s polynomials are the most generalized special function, numerous special cases can be
deduced by making suitable changes in the parameters. But, for the sake of brevity, some interesting special case of Theorem 1 are
given below.

t. =1 Vi=1,
0] If we take ' in the main Theorem, then the Aleph function reduces to an I-function [14] and there holds
the following result
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where Cy is given by (15) and the same conditions are satisfied as given in Theorem 1.
t.=1LVi=1..,r

(i) Further, if we set ' and r = 1 in the main theorem, then the Aleph function reduces to the familiar H-
function of Fox [4], we arrive at the results recently obtained by Chaurasia and Singh [2].

(iii) By applying Theorem 1 to the case of Hermite polynomials (Srivastava and Singh [16] and Sezgd [15]) and by setting
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in which case v = 2, the pdf f,(x,) assumes the following form
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where C, is given by (20) and the same conditions are satisfied as given in Theorem 1.

The importance of our result lies in its manifold generality. In view of the generality of the Aleph-function and Srivastava’s
polynomials, on specializing the various parameters in the Aleph-function and the Srivastava’s polynomials, we obtain, from our
results, several pdfs such as the gamma pdf, beta pdf, Rayleigh pds, Weibull pdf, Chi-Squared pdf, one-sided exponential pdf, half-
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Cauchy pdf etc. and their distribution functions. Thus, the results presented in this paper would at once yield a very large number of
pdfs occurring in the problems of science and engineering.
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