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Introduction  

The major problem which is in any development and management of a water resources system is water quality [1, 2]. In fact, with 

the increased demand for water in most parts of the world, and with the intensification of water utilization, the quality problem 

becomes the limiting factor in the development of water resources in many parts of the world. Although in such regions, the quality of 

both surface and groundwater resources deteriorates as a result of pollution. Main reason of the pollution of groundwater in aquifers is 

their very slow velocity although; groundwater is more protected than surface water against pollution. The term “quality” usually 

refers either to energy in the form of heat or nuclear radiation or to materials contained in the water. Many materials dissolve in water. 

Due to new materials are coming into the market every day groundwater quality can be measured in terms of practically hundreds of 

parameters. The relevance of any of these materials depends on the use that is being considered. For example, salinity may be 

important if the water is intended for drinking, for irrigation, or for certain industries, but less important for recreation. Groundwater 

already contains a certain amount of dissolved matter, the term “pollutant” to denote dissolved matter carried with the water and 

accumulating in the aquifer. The Groundwater pollution is usually traced back from four sources, (1) Environmental (2) Domestic (3) 

Industrial (4) Agricultural. Aquifer is the geological formation that carries the water and allowed to pass through it. There are two 

types of aquifer based on the present or absent of water table known as unconfined or confined aquifer respectively. Coastal aquifers 

constitute an important source for water, especially in arid and semi-arid zones which border the sea. Many coastal areas are also 

heavily urbanized, a fact which makes the need for fresh water even more acute. In coastal aquifer hydraulic gradient exists toward the 

sea that serves as a recipient for the excess of their fresh water (replenishment minus pumpage). Owing to the presence of sea water in 

the aquifer formation under the sea bottom, a zone of contact is formed between the lighter fresh water (specific weight
f

 ) flowing to 

the sea and the heavier underlying sea water (specific weight
s f
  ). Typical cross sections with interfaces under natural conditions 

are shown in figure 1 gives a coastal phreatic aquifer with exploitation. The region of the soil that is unsaturated is known as the 

vadose zone (or unsaturated zone), and this is the region where the most interesting nonlinear hysteretic behaviour is observed [2, 3]. 

In the unsaturated zone, only part of the void space is occupied by water and the remainder being occupied by a gaseous and possibly 

by a non-aqueous phase liquid. In saturated ground water aquifers, all available pore spaces are filled with water. Above a capillary 

fringe some part of pore spaces also contains air. The mixing of pollutants with surrounding water flows generally includes 

underground porous layers, and the dispersion is a macroscopic phenomenon caused by a combination of molecular diffusion and 

hydrodynamic mixing occurring with laminar flow through porous medium. Analyzing the generic case of two fluids in contact 

flowing (simultaneous flow) through a porous medium it is observed that mixing is almost associated to the random walk of fluid (or 

tracer) particles through the disordered structure of the pore volume and thermal molecular agitation is dominant only at very low 

mean flow velocities. The steps of the random walk are much larger than those of thermal brownian motion so that the corresponding 

spreading scale and the width of the dispersion front are correspondingly increased. Of course, the minimum size of heterogeneities of 

the mixture obtained in this way is also larger; however, if the medium is adequately homogeneous, this size is of the order of the 

grain diameter so that molecular diffusion can generally complete the mixing. This mixing is known as hydrodynamic dispersion and 

it is referred to as mixing of miscible fluids. The flow of groundwater in coastal aquifers can be treated as an interface problem in 

which two fluids of different densities, fresh water and salt water, have a clear interface rather than a transition zone. This flow 

problem assumes that the fresh water flows over the salt water which is at rest. Saltwater intrusion, in which saline water displaces or 

mixes with fresh groundwater, is one of the major causes of groundwater contamination. Saltwater intrusion is usually caused when 

the hydrodynamic balance between the fresh water and the saline water is disturbed, such as when fresh groundwater is over pumped 
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ABSTRACT  

The present paper discusses an approximate solution of the Burger’s equation arising in 

longitudinal dispersion phenomenon in groundwater flow. In the groundwater flow pure 

water displaced in longitudinal direction by salt water (or contaminated water) form a non 

linear partial differential equation which is known as of Burger`s equation. The longitudinal 

dispersion phenomenon may be rise in miscible or immiscible fluid flow through porous 

media. The problem of miscible displacement can be seen in the coastal areas, where fresh 

water beds are gradually moved by salt water (sea water). Longitudinal dispersion 

phenomenon plays an important role to control salinity of the soil in seashore region. We use 

the optimal homotopy analysis method based on the homotopy analysis method to solve the 

governing non-linear Burger`s equation and the numerical and graphical representations 

have been given.                                                                                                             
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in coastal aquifers. Saltwater intrusion can also occur when the natural barriers that separate fresh and saline water are destroyed, such 

as in construction of coastal drainage canals that enable tidal water to advance inland and percolate into a freshwater aquifer. In 

coastal aquifers, according to Ghyben-Herzberg [4, 5], fresh water exists below sea level for every meter of fresh water above sea 

level. 

 
Figure 1. Typical cross section of a coastal aquifer 

 

Mathematical model of the problem 

In order to construct the mathematical model for the Burger’s equation arising in longitudinal dispersion phenomena in 

groundwater flow, we have considered certain assumptions. We have considered that the dispersion zone is in one direction i.e. 

x direction only, so we avoids the transverse component of dispersion. Also we have assumed that the medium is homogeneous. 

According to Darcy’s law [1] the equation of continuity for the mixture, in the case of incompressible fluids are given as 

  0,V
t





 


       (1) 

where,  is the density for mixture and V is the seepage velocity vector.  

The equation of diffusion for a fluid flow through a homogeneous porous medium, without increasing or decreasing the dispersing 

material is given by 

  ,
C C

CV D
t




  
     

   
     (2) 

where, C  is the concentration of the fluid
s

f  into the other host fluid
f

f  (i.e. C  is the mass of fluid sf  per unit volume of the 

mixture) and D  is the tensor coefficient of dispersion with nine components ijD .In a laminar flow through a homogeneous porous 

medium at constant temperature  may be considered as constant, then 

0V          (3) 

Therefore equation (2) can be rewritten as 

  ,
C

V C D C
t


   


      (4) 

Here, we assume that the seepage velocityV is along the x axis, then ( , )V u x t and none zero component will be 

11 LD D    (coefficient of longitudinal dispersion) and other components will be zero by Polubarinova [4]. 

2

2
,L

C C C
u D

t x x

  
 

  
       (5) 

where, u is the component of flow velocity V along the x axis. It is depending on distance also it is time dependent along the 

x axis in the non-negative direction. By Mehta [6-9]  it has been observed that seepage flow velocity u is related with concentration 

of the dispersing material as 
 

0

,
; 0,

C x t
u x

C
   

where, the concentration of the contaminated water at 0x   is very high and it is constant 0 1C  . Hence, 

2

2
,

C C C
C

t x x


  
 

          (6) 

subject to appropriate initial and boundary conditions are taken as 

 

 

,0 ; 0

0, 1 ; 0

xC x e x

C t t

 

 
       (7) 
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Solution of mathematical model by OHAM 

According to OHAM first we construct the zeroth order deformation equation as  

       0 01 , ; , , ;q x t q C x t c q x t q         £ N
   

 (8)
 

Where,  0,1q is the embedding parameter,
0 0c  is an auxiliary parameter also know as convergence control parameter. We 

choose 
t




£ =  is an auxiliary linear operator [12] and    0

, 1
x

C x t x t e


  
 

is an initial guess of  ,C x t  [13]. According to 

OHAM expanding ( ,  ; )x t q in Maclaurin series with respect to q, then the corresponding mth order deformation equation is given 

by 

     1 0 1, , , ,m m m m mC x t C x t c C x t  
       £    (9) 

where 

     
1

1 1 1 1

0

,
m

m m m r m r mt xx
r x

C x t C C C C


    



 
      

 


 
Taking inverse operator 

     1

1 0 1, , , ,m m m m mC x t C x t c C x t 

 
    £    (10) 

where  

0, 1

1, 1
m

m

m



 

  

To, find the optimal value of convergence 0c  applying Yabushita’s approach [14] by means of finding the minimum square residual 

error as 

 
  

2

0

0 0 0

1
,

1 1

m

m n

i

M N

j n

i j
E c

M N
C

M N  

    
          

 N   (11) 

The optimal value of convergence control parameter
0

0.0024146449553088577c  with minimum square residual error 

6
2.3854 01E E   at six order approximation, which can be notice by figure 2. 

 
Figure 2. Square residual error at 6

th
-order approximation 

Substituting the optimal value of convergence control parameter 
0

0.0024146449553088577c  and solve equation (10) for 

different values of m we have following approximations  
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   3x  
Using initial guess and all sixth order approximation we get the approximate solution of Burger`s equation arising in costal aquifer in 

groundwater flow.  
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

 (12) 

Numerical and graphical representation 

The following table 1 is shows the numerical values of solution of Burger’s equation up to six approximations of OHAM using 

MATHEMATICA coding.  

Table 1. Numerical value for the concentration  ,C x t of contaminated water for 1   

X T=0 T=0.1 T=0.2 T=0.3 T=0.4 T=0.5 T=0.6 T=0.7 T=0.8 T=0.9 T=1.0

0.1 0.9048 0.9161 0.9270 0.9375 0.9477 0.9576 0.9671 0.9763 0.9851 0.9935 1.0016

0.2 0.8187 0.8369 0.8548 0.8724 0.8897 0.9068 0.9235 0.9400 0.9562 0.9721 0.9877

0.3 0.7408 0.7645 0.7879 0.8112 0.8342 0.8569 0.8795 0.9018 0.9239 0.9458 0.9674

0.4 0.6703 0.6983 0.7261 0.7537 0.7811 0.8084 0.8355 0.8624 0.8891 0.9156 0.9419

0.5 0.6065 0.6378 0.6689 0.6998 0.7307 0.7613 0.7919 0.8223 0.8525 0.8826 0.9126

0.6 0.5488 0.5824 0.6160 0.6494 0.6827 0.7159 0.7490 0.7820 0.8149 0.8476 0.8802

0.7 0.4966 0.5319 0.5671 0.6022 0.6373 0.6722 0.7071 0.7419 0.7766 0.8113 0.8458

0.8 0.4493 0.4857 0.5219 0.5582 0.5943 0.6304 0.6664 0.7024 0.7383 0.7741 0.8099

0.9 0.4066 0.4434 0.4803 0.5170 0.5538 0.5905 0.6271 0.6637 0.7002 0.7367 0.7732

1 0.3679 0.4048 0.4418 0.4787 0.5156 0.5524 0.5892 0.6260 0.6627 0.6994 0.7361  
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Figure 3. Concentration of contaminated water  ,C x t at different distance x  with fix time level 

t 0.0,0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,  0.9,  1.0  
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Figure 4. concentration of contaminated water  ,C x t at different time intervals t with fix 

distance 0.0,0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,  0.9,  1.0x   

The figure 3 shows the approximate solution of mathematical model of Burger’s equation arising in longitudinal dispersion 

phenomena in groundwater flow. From that one can predict the value of concentration at any time and any distance. Figure 4 shows 

that graph of concentration vs time at fix different distances.  

Conclusion 

In this study, optimal homotopy analysis method is use to find the analytic solution of the Burger’s equation arising in 

longitudinal dispersion phenomenon in groundwater flow, and the optimal value of convergence control parameter 

0
0.0024146449553088577c   is successfully obtained by minimizing the square residual error at sixth order approximation.  

The numerical values of the solution is sited in table 1 and also graphically demonstrated in order to consistence of the physical 

situation. From figure 3 we conclude that the concentration  ,C x t of contaminated water decreases as the distance x increases for the 

given time 0t  . Here the initial concentration of contaminated water at 0x   is highest and it decreases as distance x  increases 

for given time 0t  , which is physically fact that at the source the concentration of contaminated water  ,C x t
 
is always highest 

and it is decreasing and dispersing from the source. It is also concluded from the figure 4 of the concentration  ,C x t of contaminated 

water vs time t for fix distance x , the concentration of contaminated water is increasing for time t for fix distances x . Hence, it is fact 

that at the initial source the dispersion of contaminated water is not fast; therefore the concentration of contaminated water is slightly 

increasing with time t , for fixed distance x . 
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