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Introduction  
The nonlinear sine-Gordon equation is one of the basic equations of the modern nonlinear wave theory [1]. Firstly it appeared in 

the study of differential geometry of surfaces with constant Gaussian curvature. This equation also appeared in many scientific 

research areas such as the magnetic-flux propagation in large Josephson junctions, the motion of rigid pendulum attached to a 

stretched wire, solid state physics, nonlinear optics, and dislocations in metals, etc. [2,3]. Due to its wide applications and important 

mathematical properties, a great deal of potential has been devoted to studying the different solutions and physical phenomena related 

to this equation [4-9]. 

Preliminaries       

    The fractional order Klein-Gordon equation in one dimensional space has the form [4] 
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where )(uVV   is a general nonlinear function of u . We will consider a particular case of equation (1), the so-called time-

fractional sine-Gordon equation which has the form  
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Differential equations of fractional order have been paid particular attention of many studies due to their frequent appearance in 

various applications in fluid mechanics, economic, viscoelasticity, biology, physics and engineering. This is because of the fact that 

the realistic modeling of a physical phenomenon does not depend only on the instant time, but also on the history of the previous time 

which can also be successfully achieved by using fractional calculus. In other words, previous values of the solution and the 

derivatives in fractional order differential equations are required to obtain a solution at a particular instance. The memory effect of the 

convolution in the fractional integral gives the equation increased expressive power. Also using fractional -order differential equations 

can help us to minimize the errors arising from the neglected parameters in modeling real life phenomena. 

The basic goal of this work is devoted to introduce an analytical technique, namely fractional modified Laplace decomposition 

method (FMLDM) [10] to solve time-fractional sine-Gordon equation (2.1). The proposed method (FMLDM) is coupling of Adomian 

decomposition method (ADM) and the Laplace decomposition method (LDM). The main advantage of this proposed method is its 

capability of combining two powerful methods for obtaining rapid convergent series for fractional partial differential equations. 

Fractional calculus 

Fractional calculus is a generalization of classical differentiation and integration to arbitrary (non-integer) order. The use of 

fractional-orders differential and integral operators in mathematical models has become increasingly widespread in recent years [11]. 

Many mathematicians and applied researchers have tried to model real processes using the fractional calculus [12-15]. 

Definition 2.1. The fractional integral of order R  of the function )(tf , 0t  is defined by  
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and the Caputo fractional derivative of order ],1( nn   of the function 0),( ttf  is defined by 
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Definition 2.2. The Laplace transform )]([ tfL  of the Riemann-Liouville fractional integral is defined as [2]: 
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                                                                                             (3.3) 

Definition 2.3. The Laplace transform )]([ tfL  of the Caputo fractional derivative is defined as [2] 
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For the main properties of the fractional derivatives and integrals ([16-19]. 

The modified fractional Laplace decomposition method (MFLDM) 

The basic idea of the fractional modified Laplace decomposition for the fractional partial differential equation can be clarified as 

follow [10]. Consider the following general nonlinear fractional partial differential equation 

),,()],([)],([),( txgtxuNtxuRtxuDt    0t , Rx , nn  1 ,       (4.1) 

where ][],[ uNuR  indicate the linear and nonlinear terms and ),( txg  are continuous functions.  The methodology consists of 

applying Laplace transform first on both sides of Eq. (4.1), we get 
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Operating the inverse Laplace transform on both sides in Eq. (4.2), we get 

  )],([)],([),(),( 1 txuNtxuRLsLtxGtxu    ,                                       (4.3) 

where ),( txG  represents the term arising from the source term and the prescribed initial conditions. 

    The Laplace transform decomposition admits a solution in the form 
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The nonlinear term )],([ txuN  decomposed as 
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where 
nA  are Adomian polynomials of 

nuuu ,...,, 10
 and it can be calculated by the following formula 
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Substituting Eqs. (8) and (9) in Eq. (7), we get 
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The modified Laplace decomposition method suggests that if the zeroth component ),(),(0 txGtxu   and the function 

),( txG  can be dividing into two parts such as ),(0 txG  and ),(1 txG , then one can formulate the recursive algorithm 

),(0 txu  and general term in a form of the modified recursive scheme as follows 

),(),( 00 txGtxu  ,                                                                                                  (4.7) 
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Applications 

Example 1. Consider the following time-fractional sine-Gordon equation 
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;0)sin(  uuuD xxt
  ,21   0,  tx ,                                        (5.1) 

Subject to initial condition  

,0)0,( xu  xhxu t sec4)0,(  ,                                                                               

the exact solution, for the special case 1 , is given by 

]sec[tan4),( 1 xhttxu 
.                                                                                        (5.2) 

By using Eqs. (4.7)-(4.9) we could be able to calculate some of the terms of the decomposition series (4.4) as 
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and so on. Substituting
0u , 

1u , 
2u , 

3u ,… into Eq. (4.4) gives the solution ),( txu  in the series form: 
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Fig 1. The approximate solution of Eq. (5.1) shown in the figure (a) in comparison with the exact solution Eq. (5.2) shown in 

the figure (b) when 2 , in (c) when 99.1  and in (d) when 95.1  

Example 2. Consider the following time-fractional sine-Gordon equation 
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subject to initial condition  
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.                      

We could be able to calculate some of the terms of the decomposition series (4.4) by using Eqs. (4.7)- (4.9) as 
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And so on, so the solution ),( txu  in the series form: 
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Fig 2. The approximate solution of Eq. (5.4) shown in the figure (a) when 2 , 1 , in (b) when  95.1 , 1 , in (c) 

when 2 , 1.0 and in (d) when 95.1 , 1.0 . 

Conclusion  

In this letter, the fractional modified Laplace decomposition method has been successfully applied to obtain the numerical 

solutions of the time fractional nonlinear sine-Gordon equation. The reliability of this method and reduction in computations give this 

method a wider applicability. From Figs. 1-2, we deduce the behavior of the approximate solutions is the same behavior of the exact 

solution at some different values of . The modified fractional Laplace decomposition method was clearly very efficient and 

powerful technique in finding the approximate solutions of the proposed equations. 
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