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Introduction 

De‟ath (2000) introduced new and powerful BRT 

techniques by introducing classification and regression trees to 

analyse complex ecological data. Nonlinear relationships, high-

order interactions, and missing values of data require more 

flexible and robust methods. De‟ath and Fabricius (2000) used 

classification and regression trees to analyse a survey from the 

Australian central Great Barrier Reef. The study used S-Plus 

statistical software along with a library of tree routines which 

used the recursive partitioning (RPART) for all classification 

and regression tree analysis. The analysis focused on the 

relationships between each of the physical variables (sediment, 

visibility, wave action and slope angle) and spatial variables 

(cross-shelf position, reef type, within-reef location, depth zone, 

reef identity) and the response variables, which is the presence–

absence of the ratings of abundance of Asterospicularialaurae. It 

was found that classification and regression trees are powerful 

tools for the analysis of complex ecological data. According to 

De‟ath (2000) the advantages of the tree and its features include: 

the flexibility to handle a wide range of response types, rank 

statistics, which result in invariance of the tree to any monotonic 

transformations of the explanatory variables, ease and 

robustness of construction, ease of interpretation of complex 

results involving interactions, and the ability to handle missing 

values in both response and explanatory variables. 

In his recent work, De‟ath (2007) developed a new form of 

BRT, namely, „aggregated boosted trees‟ (ABT), which aim to 

reduce prediction error relative to boosted trees. ABT comprise 

a collection of BRTs, each of which is grown on a cross-

validation subset of the data. A single regression tree (SRT) and 

a series of ABTs were fitted to the data.  

The results show that the performance of BRTs can be 

improved using ABTs. Another enhancement is that BRTs 

typically assume the data are independent; however, BRTs and 

ABTs can also be adapted to deal with multilevel errors, as are 

frequently encountered when subsampling of stratified sampling 

is used. In conclusion, the number of trees per component is 

consistently predicted more accurately than in the case of a SRT. 

These approaches were marginally, but consistently better than 

BRT and also computationally found to be more efficient 

compared to BRT when applied to the biological field. The most 

comprehensive and updated application of BRTs was conducted 

and reported by Elith et al. (2008), who provided a 

workingguide to BRT. The ensemble method presented for 

fitting statistical models differs fundamentally from 

conventional techniques that aim to fit a single ungenerous 

model. The report explains and provides a working guide to 

BRT. The work also demonstrates the practicalities and 

advantages of using BRT as an analytical tool to analyse the 

distribution of the short-finned eel from native freshwater fish 

data from New Zealand. From the above discussion, compared 

to other applications such as GAM, classification and regression 

trees (CART) and other tree-based models, it is clear that the 

BRT technique has been proven to be the most effective
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ABSTRACT 

In tackling with a big dataset, a new and better approach is crucial to be used for. As in this 

paper, to develop an algorithm modelling for Boosted Regression Trees (BRT), author are 

decided to use the programming R statistical data analysis tool. The data used in this 

research, is a one-hour time range of data collected from 2009 up to 2012 for an 

environment station located at coastal-environment area somewhere in northern of 

Malaysia. Thus, step by step flowchart from the beginning till the objective been achieve, 

were provided, and created. Sensitive testing of model been carried out with the three main 

parameters. Only the number of trees (nt) is to be determine by using the method of 

estimating the optimal number of iterations; an independent test set (test), out-of-bag 

estimation (OOB), and five-fold CV. While the learning rate (lr) and interaction depth (tc) 

been fixed at 0.001 and 5 respectively. Results indicated that the BRT analysis algorithm 

best modelled with the best combination of parameters nt of 10000 together with lr and tc 

that achieves minimum predictive error (minimum error for predictions). Besides, with the 

boosting output of relative influence plot, and partial dependency plot, the variables 

significantly influenced Ozone are humidity, ambient temperature, NO, and wind speed 

with 61.72%, 18.17%, 10.27% and 4.5% respectively. The algorithm model for BRT 

produced by using the simulated data is best guidance to be used in the field of air 

pollution specifically. As a matter of fact, the BRT Algorithm can be modelled in varies 

field with big dataset.    
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technique to analyse data. Higher accuracies obtained from BRT 

analysis such as those in the Lawrence (2004) study provides an 

opportunity to researchers in other areas such as the atmospheric 

environment to choose BRT as a tool to analyse air pollution 

data. It is clear from the above that the highly effective learning 

algorithm in BRT can be applied to other situations and studies. 

Methodology 

The analysis of boosted regression trees would comply with 

the dataset that has been prepared. The data is very big as they 

would be refer as big dataset. The simulation of BRT in R 

statistical software will be using a one-hour time range of data 

from a station installed in a coastal-environment area 

somewhere in Penang. Data used is the secondary data acquired 

from the Department of Environment (DOE) Ministry of Natural 

Resources and Environment NRE Malaysia. The analysis and 

definitely the algorithm modelling is using R statistical software 

– a programming statistical open-source tool. According to 

Chambers (2007), the open-source approach can help lead to 

trustworthy software that is fully accountable and readily 

accessible, and this is an important component of the aim of this 

study. 

The model was fitted in R 2.15.1 software (R Development 

Core Team, 2012) using the gbm package version 1.6-3.1 

(Ridgeway, 2010).The gbm package was combined with other 

packages, namely, sp, rJava, raster, dismo, survival, reshape and 

lattice, gplot and ggplots. For all settings other than those 

mentioned, we used the defaults in the gbm. Three-model fitting 

typically needs the specification of three main parameters, 

namely, the number of trees (nt), the learning rate (lr) and the 

interaction depth or tree complexity (tc). The use of cross-

validation (CV) to select optimal settings is becoming 

increasingly common (Hastie, 2001), and is led by machine 

learning, which focuses on predictive success. 

 

Figure 1.1. Flowchart of step-by-step Process for the BRT 

Algorithm Modelling 

Figure 1.1 shows the steps to be taken thoroughly from the 

beginning of collecting data method up till the analysis and 

algorithm modelling. The flowchart is adapted and reconstructed 

to suit author research.   

The development of the BRT model involves determining 

the model algorithm settings of the main model input parameters 

(learning rate, number of trees and interaction depth) that are 

fitted using the R software by choosing a 10-fold cross-

validation approach, as proposed by Hastie et al. (2001). Three 

important terminologies in BRT are: learning rate or shrinkage– 

a shrinkage parameter applied to each tree in the expansion; tree 

size or number of trees – the total number of trees to fit, which is 

equivalent to the number of iteration sets for each setting and the 

number of basic functions in the additive expansion; and 

interaction depth – the maximum depth of the interactions of 

variables, where 1 implies an additive model and 2 implies a 

model with up to two-way interactions. 

The process of obtaining the BRT algorithm and the 

analyses there on is divided into three main stages, which are 

discussed in which are data compilation and preparation, second 

the analysis and development of the Ozone boosting algorithm 

for the dataset and finally the BRT output and interpretations, 

and algorithm setting. 

The gbm offers three methods for estimating the optimal 

number of iterations or nt after the gbm has been fitted: an 

independent test set (test), out-of-bag estimation (OOB), and 

five-fold CV. The optimal number of iterations based on the 

independent test set method uses a single holdout base dataset, 

which is similar to Friedman‟s MART software (Ridgeway, 

2007). 

According to De‟ath (2007), the AdaBoost was examined 

from a statistical perspective by Friedman et al. (2000) and 

Hastie et al. (2001). This led to a series of theoretical and 

practical advances and work on understanding boosting which 

realised the power and potential of boosting as a general method 

for approximation based on additive models. 

Explanation of Boosted Regression Trees 

There are several techniques that aim to improve the 

performance of a single model by fitting many models and 

combining them for prediction. A „decision tree learning‟ or 

„decision trees‟ is a tool in machine learning and/or data mining 

which maps observations about a certain item to conclusions 

about a certain item‟s target value (Kriegler, 2007). According 

to Friedman (2001), no matter how dimensionally large the 

predictor variable space is, or how many variables are used for 

the prediction, the model subcomponents can be represented by 

a two-dimensional graphical representation which can be easily 

plot and interpreted. 

Modern decision trees are described statistically by 

Breidman (1984) and Hastie et al. (2001). The tree-based models 

partition the predictor space into rectangles by using a series of 

rules to identify regions having the most homogeneous 

responses to predictors (Elith et al. 2008). The partitions can be 

described by a series of if-then statements or they can be 

visualised by a graph that looks like a tree (Schonlau, 2005). 

They fit a constant to each region, with classification trees fitting 

the most probable class as a constant, and regression trees fitting 

the mean response for observations in that region, assuming 

normally distributed errors. For example, in Figure 2.2a and 2.2b 

the two predictor variables, X1 and X2, could be, for example in 

this study, wind speed and direction, and the response, Y, could 

be the mean Ozone of the station. Region Y1 and Y2 etc. are the 

terminal nodes or leaves, and t1 and t2 are split points which are 

chosen to minimise prediction errors. An effective strategy for 

fitting a single decision tree is to grow a large tree, then prune it 

by collapsing the weakest links identified through cross-

validation (Hastie, 2001). 

It is explained that a regression tree is a piecewise constant 

or piecewise linear estimate of a regression function, which is 

constructed by recursively partitioning the data and sampling the 

data space. The ease of interpretation from two-dimensional 

plots as shown is a powerful tool for practitioners and has 

proven to be an appropriate methodology to study air pollution. 

In related literature on the theory of boosting, many 

boosting algorithms have been coded in packages such as the 

open-source R software, proprietary software called 

STATISTICA developed by StatSoft, and many more (Carty, 

2011). Although the approaches are different, the typical 

structure of the boosting algorithms is similar. 



M.A.M. Asriet al./ Elixir Statistics82 (2015) 32419-32424 
 

32421 

 

Figure 2.2. A single decision tree, (a) with a response Y, two 

predictor variables, X1 and X2, and split points, t1, t2; (b) 

shows the prediction surface (Hastie, 2001) 

Friedman et al. (2000) comments that the bounds and the 

theory associated with AdaBoost algorithms are interesting, but 

tend to be too loose to be of practical importance. Later, 

Friedman (2001) developed the gradient boosting algorithm, 

which called for all of the training data observations to be 

included in the function estimation process at each iteration. The 

basic structure of the basic boosting algorithm developed by 

Friedman (2001) can be explained as follows: 

1. For all observations, initialise the fitted values to a scalar. 

2. For a given loss function, compute the „error‟ – the difference 

between the fitted and actual values of y – for each observation. 

3. Fit a model of the error against the predictors. 

4. Compute the fitted values of the errors. 

5. Compute the „boosted‟ fitted values of training data 

observations by adding the predicted values from the various 

iterations to the fitted errors from step 4. 

6. Repeat steps 2 to 5 a large number of times, each time 

producing a new vector of predictions. 

The Mechanics of Stochastic Gradient Boosting 

In 2002, Friedman added a stochastic element to the above 

boosting algorithm by proposing to take a random sample of 

observations in each iterations. The performance of gradient 

boosting was improved by adding an element of randomness to 

the algorithm and creating the stochastic gradient boosting 

machine (GBM) or stochastic BRT (Friedman, 2002).This 

involves taking subsamples of training data; between typically 

40–60% in each iteration. This can be achieved by indicating the 

percentage of the training data in the algorithm. The term 

„stochastic gradient boosting‟ is also simplified to „gradient 

boosting‟ or more simply „boosted trees‟. Hereinafter, the term 

BRT, will denote „stochastic gradient boosting‟ (SGB) using 

least squares regression trees. Friedman (2002, p. 367) states 

that “gradient boosting constructs additive regression models by 

sequentially fitting a simple parameterised function to current 

„pseudo‟- residuals by least squares at each iteration. In each 

training data point, the „pseudo‟-residuals are the gradient of the 

loss function being minimised.” Although many approaches 

exist, the original structure of a boosting algorithm is generally 

the same. The discussion here will focus on the function 

approximation, which comes directly from Friedman‟s SGB 

algorithm (Friedman, 2002) as follows: 

Let {      + 
 

of known (y, x) values be the entire training data 

sample and{ ( )   
 

be a random permutation of the integers 

{1,.......N}. According to Friedman (2002) the function 

estimation in BRT has a system of random response variables, y, 

and a set of data input or explanatory variables, x.  The used of 

given „training‟ data {      }  

 
  of known (y, x), is to  find a 

function   ̂(x) that maps x to y, over the join distribution of to 

expect the value of some loss function  (   ( )) is minimised. 

Initialise ̂(x) to the same constant value across all observations, 

  ̂ ( )   .      
 ( )

/      (   ( )) 

 

Boosting approximates  ̂(x) by an additive expansion of the 

form 

∑   
 
        


where function h(x ; a) are simple functions of x with parameters 

a = {a1, a2, .....}. In a forward stage-wise manner, the expansion 

coefficients    and the parameters    are jointly fit to the 

training data sets (Carty, 2011 p 22).  

First, one starts with a preliminary guess, Fo(x), and then for m = 

1, 2, .....,Mto the following is done: 

     
      

   
∑   

   (         )    (   ))

and 

             


According to Friedman (2001), gradient boosting 

approximation solves (4.3) for arbitrary differentiable loss 

function  (   ( )) with two-step procedure as follows: 

First, by fitting the function of h(x ; a) using least squares 

  
      

   
∑ , ̃  

 
     (  


  

and to the current „pseudo‟-residuals 

 ̃  0
  (    (  ))

  (  )
1
 ( )      ( )

  

Second, to calculate the optimal value for the coefficient    

from given h(x;  ) 

  
      

 
∑   

   (        (  )    (    ))  (2.7) 

This approach has been applied to the case where the base 

learner h(x ; a) is an L terminal node regression tree. Friedman 

(2002) also states that at each iteration, m, a regression tree 

partitions the x space into L- disjoint regions,*   +   
 , and 

predicts a separate constant value in each one as 

*   +   
 ∑ , ̅  

 
          

where ̅   = mean xiϵRlm( ̅  ) is the mean of (4.18) in each 

separate region Rlm. 

The tree as calculated in (4.20) predicts a separate constant 

value of  ̅   within each region Rlm, and the solution to (4.19) 

diminishes to a simple „location‟ estimate based on    

   
      

 
∑         

(        (  )    ) 

Friedman (2002) also clarifies that the existing 

approximation,    (x), is separated and updates in each region: 

                 

where   is the „shrinkage‟ parameter that ranges between 0 <   

≤1. The role of shrinkage in the context of boosting is to scale 

the contribution of each tree by a factor of   when it is added to 

the current approximation (Hastie, 2009). 

Shrinkage or regularisation is an important feature that has 

an impact on each additional tree and is used in an effort to 
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avoid over fitting. Therefore Friedman‟s boosting algorithm 

includes shrinkage, λ in the iterations to control the gradient‟s 

steps, so that a more optimal solution is not overshot. In other 

words, λ tends to mitigate over fitting, in which the only trade-

off is computational time. It is important to note that smaller 

values of shrinkage always give improved predictive 

performance. The shrinkage parameter 0 < v< 1 controls the 

learning rate of the procedure. Smaller shrinkage values require 

a larger number of iterations. Friedman (2000) found that small 

values (≤ 0.1) lead to much better generalisation error. For a 

reasonable computational time, the number of iterations is 

usually 3,000–10,000 with a shrinkage rate between 0.01 and 

0.001 (Ridgeway, 2007). 

Friedman (2002) made a minor modification to the gradient 

boosting algorithm to include randomness as an essential part of 

the boosting procedure, which led to the introduction of the SGB 

algorithm. The difference in SGB algorithm is that in each 

iteration a subsample of the training data is selected at random 

and without replacement from the full training data set. 

The stochastic procedure as applied to the gradient boosting 

algorithm is described as follows: Let { 
   
  +

 

 

of known (y,x) 

values be the entire training data sample and* ( )   

 
be a 

random permutation of the integers {1,.......N}. Then a random 

subsample of size  ̃<N is given by { 
 ( )    ( )}

 

 ̃

 . The SGB 

algorithm is then: 

1.  ̂ ( )          ∑   
   (    )  

2.               
* ( )+ 

  = rand_perm * + 
 .    (2.12) 

 ̃   = - ,
  (    (  ))

  (  )
- ( )     ( )  I = 1,  ̃.   (2.13) 

*   + 
 ) = L – terminal node tree ( { ̃ ( )    ( ) }

 

 ̃
  

      (2.14) 

    =         ∑    ( )    
(  ( )      (  ( ))   ) 

      (2.15) 

   (x) =     (x) +       1(x     ).   (2.16) 
3. End For 

4. End Algorithm 

According to Friedman (2002), the smaller the fraction f = 

 ̃/N, the more the random samples used in successive iterations 

will differ. Making the value of f smaller reduces the amount of 

data available to train the base learner at each iteration. This 

condition causes the variance associated with the individual base 

learner estimates to increase. 

The BRT is controlled through a „bag fraction‟ that 

specifies the proportion of data to be selected at each step. The 

default bag fraction is 0.5, meaning that, at each iteration, 50% 

of the data are drawn at random, without replacement, from the 

full training set. Optimal bag fractions can be established by 

comparing predictive performance and model-to-model 

variability under different bag fractions. Study by Elith et al. 

(2008) shows that stochasticity improves model performance, 

and fractions in the range 0.5–0.75 have given the best results 

for the responses. This additional feature of the algorithm results 

in the marked improvement of predictions from the BRT model. 

There are five tuning parameters that need to be controlled (in 

addition to the distribution): the training sample size relative to 

the training population (bag.fraction), the number of iterations 

(nr), the learning rate (lr), the maximum tree depth (interaction 

depth), and the number of observations in each terminal node. 

For each iteration, only the random subset of the residuals is 

used to build the tree. The in-bag fraction signifies the fraction 

of observations in the training data to sample for each iteration. 

The fraction of the training set observations is randomly selected 

to propose the next tree in the expansion. 

Partial Dependencies Function and Plots 

Friedman (2001) indicates that visualisation is one of the 

most powerful interpretational tools for graphical renderings of 

the value of the derived approximation ( ̂(x)). Considering the 

predictors, x, the variables that are used in BRT model fitting are 

represented as „x‟ while the response variables are represented as 

„y’. The interpretation of BRT output can be graphically 

presented in three different ways, namely, relative influence 

variables, partial dependence plots between variables and two-

way variables interactions, all of which will be discussed in the 

next sections. 

Discussion 

 

Figure 3.1. The methods for estimating the optimal number 

of iterations with (a) OOB, (b) CV, and (c) Test. 

Author has selected the method of “CV” in gbm to obtain 

an estimate of the optimal number of boosting iterations for a 

gbm object and to plot performance measures (Ridgeway, 2010). 

These can be determined by the number of iterations using the 

test set, which can be found when the iterations achieve 

minimum predictive error (minimum error for predictions for 

independent samples), as indicated by Elith et al.(2008). First, 

the prediction performance of the model was assessed by 

estimating the optimal number of boosting iterations for a gbm 

object by obtaining the boosting model with minimum predictor 

error using the “CV” method (De‟ath 2007; Elith et al., 2008; 

Ridgeway, 2010) and proven graphically by an error plot, which 

shows the minimum error. The best number of iterations for 

“CV” with a minimum square error from a five-fold CV method 

was performed by using the gbm package in R software to 

indicate the best iteration for the number of tree. The number of 

trees is 1000. 

 

Figure 3.2. Relative Influence of Significant Variables 

As illustrated in Figure 3.2, the most influence variable to 

Ozone is humidity with 61.72%. While the second most 

influence would be ambient or temperature with 18.17%. The 
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least significant influence to Ozone is NOX with at most of 

0.73% only 

 

Figure 3.3. Partial Dependence Plot of Most Influenced 

Variables. 

Figure 3.displays the partial dependence function performed 

on four fitted variables from the sample of data. This is a single-

variable partial dependence plots on a few of the important 

predictor variables for the first randomly generated function 

used in the simulation study. As we can see, unlike most other 

approximation methods, there is no explicit smoothness 

constraint imposed upon the boosted model. 

 

Figure 3.4. The Algorithm Setting for BRT  

 

Figure 3.5. The Algorithm Setting for BRT (Determination 

of Number of Tree) 

 

Figure 3.6. The Algorithm for Partial Dependency Plot 

Conclusion and Acknowledgement 

We have been fortunate to work with and learn from each 

other. So grateful to so many people who have discussed the 

theme of big data, as the term even have been popular long ago. 

As well as the Boosted Regression Trees, an approach of 

methodology in focus to analyse the cross-sectional study to 

handle big data. Author would like to express special gratitude 

to Assoc. Prof. Dr. Sabri Bin Ahmad for his tutoring, from the 

beginning until this recent time. Not to mention, millions of 

thanks would go to Dr. Noor Zaitun Binti Yahaya (AHEA, UK) 

for her determination and guidance to author in order to 

complete the boosted regression trees methodology 

understanding. This would be the reason for her to be the 

author‟s co-supervisor. This short paper, not yet to complete is 

the fundamental step in setting of boosted regression trees 

algorithmically. 

Reference 

1. BREIMAN, L., FRIEDMAN, J.H., OLSHEN, R.A, & 

STONE. 1984. Classification and Regression Trees. Wadsworth 

International Group. Belmore, California, USA. 

2. BREIMAN, L. 1999. Using adaptive bagging to de bias 

regressions, Technical Report 547, Statistics Dept. UCB. 

3. CARSLAW, D. C. & TAYLOR, P. J. 2009. Analysis of air 

pollution data at a mixed source location using boosted 

regression trees. Atmospheric Environment, 43, 3563-3570. 

4. CARSLAW, D.C AND ROPKINS. 2012. Open-air R-package 

for air quality data analysis. Env. Modelling & Software. Vol. 

27-28. 

5. CARTY, D, M. 2011. An analysis of boosted regression trees 

to predict the strength properties of wood composites. Master‟s 

thesis, University of Tennessee, 

http://trace.tennessee.edu/utk_gradthes/954 

6. CHAMBERS 2007. Software for Data Analysis: 

Programming with R. New York: Springer. 

7. DE'ATH, G. & FABRICIUS, K. E. 2000. Classification and 

Regression Trees: A Powerful Yet Simple Technique for 

Ecological Data Analysis. Ecology, 81, 3178-3192. 

8. DE'ATH, G. 2002. Multivariate Regression Trees: A New 

Technique for Modeling Species-Environment Relationships. 

Ecology, 83, 1105-1117. 



M.A.M. Asriet al./ Elixir Statistics82 (2015) 32419-32424 
 

32424 

9. DE'ATH, G. 2007. Boosted Trees for Ecological Modeling 

and Prediction. Ecology, 88, 243-251. 

10. DE'ATH, G. & FABRICIUS, K. E. 2000. Classification and 

Regression Trees: A Powerful yet Simple Technique for 

Ecological Data Analysis. Ecology, 81, 3178-3192. 

11. ELITH, J., LEATHWICK, J. R. & HASTIE, T. 2008. A 

working guide to boosted regression trees. Journal of Animal 

Ecology, 77, 802-813. 

12. FRIEDMAN, J.H. 1999. Greedy Function Approximation: 

A Gradient Boosting Machine. Technical Report, Department of 

Statistics, Stanford University, USA. 

13. FRIEDMAN, J.H., HASTIE, T., TIBSHIRANI, R. 2000.  

Additive logistic regression a statistical view of boosting. 

Annals. Of Statistics. 28(2): 337-374. 

14. FRIEDMAN, J. H. 2001. Greedy Function Approximation: 

A Gradient Boosting Machine. The Annals of Statistics, 29, 

1189-1232. 

15. FRIEDMAN, J. H. 2002. Stochastic gradient boosting. 

Computational Statistics & Data Analysis, 38, 367-378. 

16. FRIEDMAN, J.H, POPESCU, B.E.  2005. Predicting 

learning via rule ensembles. Technical Report. Stanford 

University. Online: http://.stat.stanford.edu .California, USA.  

17. FRIEDMAN, J. H. & POPESCU, B. E. 2008. Predictive 

learning via rule ensemble. Annals of Applied Statistics, 2, 916. 

18. FREUND, Y. & SCHAPIRE, R.E. 1996. Experiments with 

a new boosting algorithm. In machine learning: Proceedings of 

the 13
th

 International Conference 148-156. San Francisco, USA. 

19. GARDNER, M. W. & DORLING, S. R. 2000. Statistical 

surface ozone models: an improved methodology to account for 

non-linear behaviour. Atmospheric Environment, 34, 21-34. 

20. GHAZALI, N.A., RAMLI, N.A., YAHAYA, A.S. 2009. A 

Study to investigate and Model the Transformation of Nitrogen 

Dioxide into Ozone Using Time Series Plot. European Journal 

of scientific Research 37(2), p. 192-205. 

21. GHAZALI N. A., RAMLI N. A., YAHAYA A. S., YUSOF 

N. F., SANSUDDIN N.,  MADHOUN W. A. 2010. 

Transformation of nitrogen dioxide into ozone and prediction of 

ozone concentrations using multiple linear regression 

techniques. Environmental Monitoring & Assessment 165(1) p. 

475-489. Doi: 10.1007/s10661-009-0960-3. 

22. HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J. 2001. The 

Elements of Statistical Learning: Data mining, Inference, and 

Prediction. 2
nd

 edition.  Springer-Verlag, New York. 

23. HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J. 2009. The 

Elements of Statistical Learning: Data mining, Inference, and 

Prediction. 2
nd

 edition.  Springer-Verlag, New York. 

24. KRIEGLER, B. 2007 Cost-sensitive Stochastic Gradient 

Boosting within a Quantitative Regression Framework. PhD 

Thesis. University of California, LA. 

25. KRIEGLER, B. AND BERK, R. 2007. Estimating the 

homeless population in Los Angeles: An Application of cost-

sensitive Stochastic Gradient Boosting. Department of Statistic 

series. University of California. 

26. LAWRENCE, R., BUNN, A., POWELL, S. & ZAMBON, 

M. 2004. Classification of remotely sensed imagery using 

stochastic gradient boosting as a refinement of classification tree 

analysis. Remote Sensing of Environment, 90, 331-336. 

27. LEATHWICK, J. R., ELITH, J., FRANCIS, M. P., 

HASTIE, T. & TAYLOR, P. 2006. Variation in demersal fish 

species richness in the oceans surrounding New Zealand: an 

analysis using boosted regression trees. Marine Ecology 

Progress Series, 321, 267-281. 

28. MOISEN, G. G., FREEMAN, E. A., BLACKARD, J. A., 

FRESCINO, T. S., ZIMMERMANN, N. E. & EDWARDS JR, 

T. C. 2006. Predicting tree species presence and basal area in 

Utah: A comparison of stochastic gradient boosting, generalized 

additive models, and tree-based methods. Ecological Modelling, 

199, 176-187. 

29. R DEVELOPMENT GROUP. 2008. R: A Language and 

environment for Statistical Computing. In: COMPUTING., R. F. 

F. S. (ed.). Vienna, Austria. 

30. RIDGEWAY, G. 1999. The State of Boosting. Journal of 

Computing Sciences and Statistics, 31, 171-181. 

31. RIDGEWAY, G. 2007. Generalized Boosted Models: A 

guide to the gbm package. 

32. RIDGEWAY, G. 2010. GBM: Generalized Boosted 

Regression Models. . R Package Version 1.6-3.1. 

33. SCHAPIRE, R.E. 1990.  The strength of weak learnability. 

Machine Learning, 5(2):197–227. 

34. SCHONLAU, M. 2005. Boosted Regression (Boosting): An 

Introductory tutorial and a stata plugin. The Stata Journal, 5, 

330-354. 

35. SCHONLAU, M. 2005. Boosted Regression (Boosting): An 

Introductory tutorial and a stata plugin. The Stata Journal, 5, 

330-354. 

36. WESTMORELAND, E. J., CARSLAW, N., CARSLAW, 

D. C., GILLAH, A. & BATES, E. 2007. Analysis of air quality 

within a street canyon using statistical and dispersion modelling 

techniques. Atmospheric Environment, 41, 9195-9205. 

37. WORLD HEALTH ORGANIZATION (WHO). 2005. 

WHO air quality guidelines for particulate matter, ozone, 

nitrogen dioxide and sulfur dioxide. World Health Organization 

2006. 

38. YAHAYA, N. Z., TATE, J. E. & TIGHT, M. R. 2010a. The 

Spatial and temporal Variation of PNC around urban traffic 

junction. Annual Aerosol Science Conference,The Aerosol 

Society UK. University of Southampton, Southampton, United 

Kingdom. 

39. YAHAYA, N. Z., TATE, J. E. & TIGHT, M. R. 2010b. The 

Influence of Traffic Flow, Synoptic and In-street Winds on 

Particle Number Concentrations (PNC) around an Urban 

Intersection. In:  The 15th Int. Union of Air Pollution Prevention 

and Env. Protection Assoc. World Clean Air Congress, 9 - 16 

September 2010. Vancouver, British Columbia, Canada. 

40. YAHAYA, N. Z., TATE, J. E. & TIGHT, M. R. 2011. 

Analysing Roadside Particle Number Concentrations using 

Boosted Regression Trees (BRT). In:  The European Aerosol 

Conference, EAC 2011, 5 9 September 2011. The University of 

Manchester, Manchester, United Kingdom. 22. 

41. YOUNG, T, M. 2007. Parametric and non-parametric 

regression tree models of the strength properties of engineered 

wood panels using real-time industrial data. Doctor of 

Philosophy degree, The University of Tennessee, Knoxville, US. 


