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Introduction 

Chemometrics refers to the application of statistical and 

mathematical methods, in particular multivariate methods, to 

handle chemical or process data. The need for chemometrics 

methods originates from the massive amounts of data produced 

by modern measuring devices [1,2]. Chemometrics tends to deal 

with data tables or matrices consisting of several variables 

(columns of tables or matrices) and measurement targets (rows 

or tables or matrices) as a whole rather than as single variables 

or means or variations of single variables [3]. This multivariate 

approach enables finding the so-called latent variables or 

information of interrelated variables in the original data matrix 

which can then be extracted. The latent variable models are 

based on the assumption that the original data base 

dimensionality is not a full rank [4]. The new latent variables are 

projections of the original variables on multivariate space. Thus, 

even the 100 dimensional variable space can be reduced into a 

subspace consisting of a few latent variables that describes 

underlying phenomena [5] such that the originally 100 

dimensional space can be visualized. There are several 

advantages of using multivariate methods over univariate 

techniques [5] such as robust modelling, noise removal, 

handling of interacting variables or overlapping spectral profiles, 

outlier or fault detection [6,4], variable reduction and 

understanding the reasons for similarity or dissimilarity of 

measurements (interpretation plus causality). 

Chemometricians have adopted methods from other 

research fields such as econometrics and psychometrics where 

bilinear partial least squares and multi-way methods, 

respectively, have been applied and refined [1]. Chemometric 

methods have been widely applied in the food, biosciences, 

petroleum, oil and nowadays pharmaceutical industries, and it is 

continuing to diverge into new fields such as metabonomics. 

 

Principal component analysis (PCA) 

Principal component analysis (PCA), is a linear projection 

method and used for reduction of dimensionality and 

multivariate data compression. The idea of PCA dates back in 

19th century and was named by Hotelling in 1933 [7,8]. At that 

time, mathematicians explored multivariate data by fitting it 

onto lines and planes [7]. Today, PCA is one of the vast utilized 

multivariate method since its wide applicability for multivariate 

problems. PCA is deployed for data compression [9] and data 

exploring within different fields of science. PCA is also used for 

checking groupings of the X data, as well as grouping among the 

Y data matrix [10,11]. In process monitoring, PCA is used to 

detect trends, to find a correlation structure of variables and, in 

particular, to examine the changes in variable correlations [11, 

12]. It should be noted that PCA is feasible for variable 

reduction if variables are correlated and thus contain a similar 

variance. 

Properties of PCA 

Principal components are so-called latent variables that are 

weighted linear combinations of the original data matrix. A 

special feature of a latent variable is that it cannot be measured 

directly; instead it consists of a linear combination of 

measurables, i.e. manifest variables [13]. The components are 

intended to capture the systematic structure of data and not to 

describe noise (non-systematic part). The principal components 

are based on the variance of original data matrix, and are 

extracted by different approaches, such as eigenvalue or singular 

value decomposition or in a sequential manner by using a 

noniterative partial least squares (NIPALS) algorithm. It has 

been proposed that NIPALS is preferable when the number of x- 

variables is large [14]. However, the commonality for all 

methods is that they find new sets of coordinate axis of the 

original data matrix X(I x J) with many objects (I) and variables 

(J) that are believed to be correlated and arranges them to 
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Chemometrics is the application of statistical and mathematical methods, in particular 

multivariate methods, to handle chemical or process data. In this study, the global and 
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solvents (THF,DMF and water), five tautomers, CA2, CA4, CA5, CA6 and  CA7 

constitute one group, but CA4, CA5, CA6 and  CA7 unique  well distinguished from the 

rest. The CA8, CA9 and CA1 tautomers constitute second group and CA10, CA11 and 

CA3 constitute a cluster of three tautomer types. In ethanol solvent , three tautomers,  CA5, 

CA6 and  CA7 constitute one group, the CA8, CA9 and CA1 tautomers constitute second 

group and CA10 and CA11  constitute a third group and CA2,CA3 and CA4 constitute a 

fourth group. The HCA results are very similar to those obtained with the PCA results. 
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orthogonal directions where variance of the data is maximized. 

Thus, the PC space is the subspace of the original data space X 

and spans X in lower dimensions. The matrix notation for PCA 

is presented as 

TP ET

F X
    (1) 

where T(IxF) denotes score matrix, P(JxF) loadings matrix and 

EF(I x J) residual matrix after F components. Eq. 1 can be 

written as vector outer product, respectively 

1

X ....
F

T T T

i i F F F i i F

i

t p t p E t p E


     
  (2) 

where i = 1, ..., F and F is the number of latent components (F ≤ 

I). 

The first PC explains the largest part of the variance of the 

data corresponding to the largest eigenvalue of the eigenvector 

of the mean centered X
T
X covariance matrix. The next 

component comprises the maximal variance of the residual data 

matrix of the first component that corresponds to the second 

largest eigenvalue, thus the direction of second largest variance. 

The variance explained by a subsequent principal component 

decreases with increasing order of PC. Since the basic concept 

of PCA is that data matrix with many variables is not a full rank 

and holds a latent structure that could be explained by a few 

latent variables, only a small number of the principal 

components is needed to explain the maximum variance of the 

original data. In the ideal case, the rest of the data contains 

redundant data, i.e., noise and error due to the measurement 

conditions. 

Clustering Methods 

Clustering is a data analysis technique that, when applied to 

a set of heterogeneous items, identifies homogeneous subgroups 

as defined by a given model or measure of similarity. Of the 

many uses of clustering, a prime motivation for the increasing 

interest in clustering methods is their use in the selection and 

design of combinatorial libraries of chemical structures pertinent 

to pharmaceutical discovery. 

Clustering methodology has been developed and used in a 

variety of areas including archaeology, astronomy, biology, 

computer science, electronics, engineering, information science, 

and medicine. Good, general introductory texts on the topic of 

clustering include those by Sneath and Sokal[15], Kaufmann and 

Rousseeuw[16], Everitt[17], and Gordon[18]. The main text that 

is devoted to clustering of chemical data sets is by Willett[19], 

with review articles by Bratchell[20], Barnard and Downs[21], 

and Downs and Willett[22]. 

The methods must be able to handle large data sets of high-

dimensional data. For small, low-dimensional data sets, most 

clustering methods are applicable, and descriptions in the 

standard texts and implementations available in standard 

statistical software packages [23,24[ suffice. Implementations 

designed for use on chemical data sets are available from most 

of the specialist software vendors, [25–30] the majority of which 

were reviewed by Warr [31]. 

The overall process of clustering involves the following 

steps: 

1. Generate appropriate descriptors for each compound in the 

data set. 

2. Select an appropriate similarity measure. 

3. Use an appropriate clustering method to cluster the data set. 

4. Analyze the results. 

To address this problem, many numerical clustering 

techniques have been developed, and the techniques themselves 

have been classified. For our purposes the methods considered 

belong to one of the following types. 

(a) Hierarchical techniques in which the elements or objects are 

clustered to form new representative objects, with the process 

being repeated at different levels to produce a tree structure, the 

dendrogram. 

(b) Methods employing optimization of the partitioning between 

clusters using some type of iterative algorithm, until some 

predefined minimum change in the groups is produced. 

(c) Fuzzy cluster analysis in which objects are assigned a 

membership function indicating their degree of belonging to a 

particular group or set. 

In this study, multivariate chemometric techniques have 

been applied in evaluating grouping operations in tautomers. 

Computational and Chemometric methods 

Molecular geometries of tautomeric forms of Cyanuric acid 

were fully optimized by using the Gaussian quantum chemistry 

software package Gaussian 09 w [32] at DFT/B3LYP level of 

theory, using the 6-311++G (d,p) basis set. Following the 

geometry optimizations, analytical frequency calculations were 

preceded following the standard procedures, to obtain the 

thermo chemical properties. In addition the effects of solvents 

on the tautomeric structure properties were studied by means of 

the self-consistent reaction-field (SCRF) method based on PCM 

developed by Tomasi and coworkers
 
[33] , it is one of the most 

widely used approaches. In this model, a solute is considered 

inside a cavity and the solvent as a structureless medium 

characterized by some parameters such as its dielectric constant, 

molar volume and polarizability. This consideration can 

substantially improve the simulation results for the electronic or 

vibrational spectroscopy of real molecular systems [34,35].The 

solvents chose for this studies are polar protic solvents namely 

water (ε = 74.80) and ethanol (ε = 24.55) and polar aprotic 

solvents like tetrahydrofuran(THF) (ε = 7.50) and 

dimethylformamide (ε = 38.00). 

In our previous research paper [36] we calculated the 

HOMO and LUMO energies in order to determine, the 

usefulness of global reactivity descriptors namely, the 

electrophilicity, Chemical hardness (ɳ), chemical potential (µ), 

polarizability (α) electrophilicity index (ω), softness (S), 

nucleofugality, and electrofugality, values for the prediction of 

the reactivity of the cyanuric acid tautomers. In present work, 

we have been applied the chemometrics methods for the data of 

global reactivity descriptors. The correlation between the 

molecular properties calculated and the stability and reactivity 

studied was done by using the pattern recognition methods (PCA 

and HCA) built in the statistical package Ky-plot software with 

bivariate comparisons. P value below 0.05 was considered as 

statistically significant. 

Results and Discussion 

Cyanuric acid shows keto-enol or more precisely 

aminoketo-iminoalcohol tautomerism. A prominent example is 

the isomerism between isocyanuric acid (1a) and cyanuric acid 

(1b) and may exist in several different tautomeric forms.  

HN

N
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O O
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N

N

OH

HO OH
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Isocyanuric acid Cyanuric acid  



  N.Surendra Babu and Jayaparkesh/ Elixir Appl. Chem. 83 (2015) 33285-33291 
 

33287 

Isocyanuric acid 1a has ten tautomeric forms: two mono 

hydroxy, six di-hydroxy and two tri-hydroxy isomers, these are 

differing in the mono proton, di proton and tri proton transfer 

and orientation of the hydroxyl groups. The isomers are labelled, 

CA1: Cyanuric acid (1,3,5-triazinane-2,4,6-trione), CA2 and 

CA3: 6-hydroxy-1,3,5- triazine-2,4(1H,3H)- dione , CA4, CA5, 

CA6, CA7, CA8 and CA9: 4,6-dihydroxy-1,3,5-triazin-2(1H)-

one and CA10 and CA11: 1,3,5-triazine-2,4,6-triol(scheme1). 

The global and chemical reactivity descriptors [25], 

hardness (ɳ), chemical potential (µ), softness (S), 

electronegativity (χ) and electrophilicity index (ω) were 

calculated from HOMO and LUMO energies and incorporated 

in Table 1. in gas phase and in different solvents. 

 
Scheme 1. Diffrernt tautomeric forms of Cyanuric acid 

Scores and loadings 

Principal components consist of scores and loadings as 

shown in Eqs. 1 and 2. Most commonly these vectors are plotted 

because score (Fig. 1) and loading (Fig. 2) plots visualize 

original observations (samples) and variables in new coordinate 

systems. The loading values depict how the original variables 

are weighted in order to comprise the new axis whereas the 

sample scores shows their position in a new coordinate system. 

These two plots (Figs. 1 and 2) are interactive, and thus 

reasoning for e.g. clustering of the samples or presence of 

outliers can be assessed. 

We are now in a position to return to the complete set of 

global descriptors data in Table 1 and apply principal 

components analysis to the full data matrix. The techniques 

described and used in the above example to extract and 

determine the eigenvalues and eigenvectors for two variables 

can be extended to the more general, multivariate case but the 

procedure becomes increasingly difficult and arithmetically 

tedious with large matrices. Instead, the eigenvalues are usually 

found by matrix manipulation and iterative approximation 

methods using appropriate computer software. Before such an 

analysis is undertaken, the question of whether to transform the 

original data should be considered. 

Examination of Table 1 indicates that the variates 

considered have widely differing means and standard deviations. 

Rather than standardizing the data, since they are all recorded in 

the same units, one other useful transformation is to take 

logarithms of the values. Having performed the our data, the 

results of performing PCA on all 13 for the 11 tautomers are as 

given in Table 2. 

According to the eigenvalue results present in Table 2, over 

98 % of the total variance in the original data can be accounted 

for by the first two principal components. The transformation of 

the 13 original variables to two new linear combinations 

represents considerable reduction of the data presented whilst 

retaining much of the original information. A scatter plot of the 

first two principal components scores is shown in Figure 14 and 

patterns to the samples according to the distribution of the 

tautomers in the data are evident. 

Three tautomers, CA1, CA10 and CA11 constitute unique 

group, well distinguished from the rest. The CA8, CA4 and CA5 

valves constitute a cluster of four tautomer types and CA2 and 

CA3 constitute a cluster of two tautomer types finally, there is a 

group of two tautomers CA7 and CA6 constitute a cluster in gas 

phase. 
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Fig 1. Score plots for the global descriptors of cyanuric acid 

tautomers in different solvents at B3LYP/6-311++G(d,p) 

level of theory 

The tautomers constituting groups are similar in three 

solvents namely THF, DMF and water, but in ethanol solvent 

show different groups. In three solvents (THF,DMF and water), 

five tautomers, CA2, CA4, CA5, CA6 and  CA7 constitute one 

group, but CA4, CA5, CA6 and  CA7 unique  well distinguished 

from the rest. The CA8, CA9 and CA1 tautomers constitute the 

second group and CA10, CA11 and CA3 constitute a third group 

. In ethanol solvent , three tautomers,  CA5, CA6 and  CA7 

constitute one group, the CA8, CA9 and CA1 tautomers 

constitute group and CA10 and CA11  constitute a cluster of two 

tautomer types and CA2,CA3 and CA4 constitute a group. 
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Fig 2. Loading plots for the global descriptors of cyanuric 

acid tautomers in different solvents at B3LYP/6-

311++G(d,p) level of theory. 

Hierarchical Techniques 

When employing hierarchical clustering techniques, the 

original data are separated into a few general classes, each of 

which is further subdivided into still smaller groups until finally 

the individual objects themselves remain. Such methods may be 

agglomerative or divisive. By agglomerative clustering, small 

groups, starting with individual samples, are fused to produce 

larger groups. In contrast, divisive clustering starts with a single 

cluster, containing all samples, which is successively divided 

into smaller partitions. Hierarchical techniques are very popular, 

not least because their application leads to the production of a 

dendrogram which can provide a two-dimensional pictorial 

representation of the clustering process and the results. 

Agglomerative hierarchical clustering is very common and we 

will proceed with details of its application. 

The entire process involved in undertaking agglomerative 

clustering using distance measures can be summarized by a four-

step algorithm.  

Step 1. Calculation of the between-object distance matrix.  

Step 2. Find the smallest elements in the distance matrix 

and join the corresponding objects into a single cluster. 

Step 3. Calculate a new distance matrix, taking into account 

that clusters produced in the second step will have formed new 

objects and taken the place of original data points. 
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Table 1. The theoretical electronic properties (HOMO, LUMO) and energy gap (Eg) and reactive descriptors ionization 

potential (IP), electron affinity (EA), electronegativity (χ), hardness (ɳ), softness (S), chemical potential (µ), electrophilicity 

index (ω), charge transfer (ΔNmax), nucleofugality (ΔEn) and electrofugality (ΔEe) of cyanuric acid tautomers calculated by 

B3LYP/6-311++ G(d,p) in gas phase and different solvents 
Gas 

 Tautomers HOMO LUMO ΔEg I A χ ɳ S µ ω ΔNmax ΔEn ΔEe 

CA1 -8.3242 -1.1021 7.2221 8.3228 1.1029 4.7128 3.6099 0.2770 -4.7128 3.0764 1.3055 1.9735 11.3991 

CA2 -8.0738 -1.5184 6.5554 8.0749 1.5182 4.7965 3.2784 0.3050 -4.7965 3.5089 1.4631 1.9907 11.5837 

CA3 -8.0874 -1.4694 6.6180 8.0860 1.4703 4.7782 3.3079 0.3023 -4.7782 3.4510 1.4445 1.9807 11.5370 

CA4 -7.8262 -1.6354 6.1907 7.8248 1.6365 4.7307 3.0941 0.3232 -4.7307 3.6164 1.5289 1.9799 11.4412 

CA5 -7.7990 -1.6218 6.1771 7.7990 1.6207 4.7099 3.0891 0.3237 -4.7099 3.5905 1.5247 1.9697 11.3894 

CA6 -7.8235 -1.5647 6.2588 7.8235 1.5658 4.6946 3.1288 0.3196 -4.6946 3.5220 1.5004 1.9562 11.3454 

CA7 -7.8017 -1.5565 6.2452 7.8022 1.5571 4.6796 3.1226 0.3202 -4.6796 3.5066 1.4986 1.9495 11.3088 

CA8 -7.5704 -1.8069 5.7635 7.5696 1.8055 4.6875 2.8820 0.3470 -4.6875 3.8121 1.6265 2.0066 11.3816 

CA9 -7.4670 -1.5456 5.9213 7.4659 1.5443 4.5051 2.9608 0.3377 -4.5051 3.4274 1.5216 1.8831 10.8933 

CA10 -8.2561 -1.1456 7.1105 8.2561 1.1467 4.7014 3.5547 0.2813 -4.7014 3.1090 1.3226 1.9623 11.3651 

CA11 -8.3976 -1.1048 7.2928 8.3982 1.1056 4.7519 3.6463 0.2743 -4.7519 3.0964 1.3032 1.9908 11.4946 

THF 

CA1 -8.2126 -0.9470 7.2656 8.2123 0.9475 4.5799 3.6324 0.2753 -4.5799 2.8873 1.2609 1.9398 11.0996 

CA2 -8.1554 -1.4014 6.7540 8.1565 1.4022 4.7794 3.3771 0.2961 -4.7794 3.3819 1.4152 1.9797 11.5384 

CA3 -8.1636 -1.3633 6.8003 8.1628 1.3622 4.7625 3.4003 0.2941 -4.7625 3.3352 1.4006 1.9730 11.4980 

CA4 -7.8479 -1.5239 6.3241 7.8466 1.5236 4.6851 3.1615 0.3163 -4.6851 3.4715 1.4819 1.9479 11.3181 

CA5 -7.8289 -1.5212 6.3077 7.8297 1.5206 4.6752 3.1546 0.3170 -4.6752 3.4644 1.4820 1.9438 11.2941 

CA6 -7.8588 -1.4858 6.3731 7.8596 1.4863 4.6730 3.1867 0.3138 -4.6730 3.4263 1.4664 1.9400 11.2859 

CA7 -7.8425 -1.4858 6.3567 7.8422 1.4860 4.6641 3.1781 0.3147 -4.6641 3.4225 1.4676 1.9365 11.2647 

CA8 -7.7690 -1.0830 6.6860 7.7701 1.0828 4.4264 3.3437 0.2991 -4.4264 2.9299 1.3238 1.8472 10.7000 

CA9 -7.7772 -1.0585 6.7186 7.7775 1.0594 4.4184 3.3590 0.2977 -4.4184 2.9059 1.3154 1.8466 10.6834 

CA10 -8.3813 -1.1211 7.2602 8.3821 1.1211 4.7516 3.6305 0.2754 -4.7516 3.1095 1.3088 1.9884 11.4916 

CA11 -8.4031 -1.1048 7.2983 8.4031 1.1056 4.7543 3.6487 0.2741 -4.7543 3.0975 1.3030 1.9919 11.5006 

Ethanol 

CA1 -8.1963 -0.9225 7.2738 8.1968 0.9225 4.5596 3.6372 0.2749 -4.5596 2.8580 1.2536 1.9356 11.0548 

CA2 -8.1690 -1.3878 6.7812 8.1701 1.3881 4.7791 3.3910 0.2949 -4.7791 3.3677 1.4093 1.9796 11.5378 

CA3 -8.1826 -1.3443 6.8384 8.1832 1.3448 4.7640 3.4192 0.2925 -4.7640 3.3189 1.3933 1.9741 11.5021 

CA4 -8.2207 -1.5075 6.7132 8.2197 1.5075 4.8636 3.3561 0.2980 -4.8636 3.5242 1.4492 2.0166 11.7438 

CA5 -7.8398 -1.5075 6.3322 7.8406 1.5075 4.6741 3.1665 0.3158 -4.6741 3.4497 1.4761 1.9421 11.2903 

CA6 -7.8697 -1.4749 6.3948 7.8683 1.4738 4.6711 3.1973 0.3128 -4.6711 3.4121 1.4610 1.9383 11.2805 

CA7 -7.8561 -1.4776 6.3785 7.8556 1.4771 4.6663 3.1892 0.3136 -4.6663 3.4137 1.4631 1.9367 11.2693 

CA8 -7.8507 -1.0912 6.7595 7.8496 1.0901 4.4698 3.3797 0.2959 -4.4698 2.9558 1.3225 1.8657 10.8054 

CA9 -7.8534 -1.0749 6.7785 7.8528 1.0741 4.4634 3.3894 0.2950 -4.4634 2.9389 1.3169 1.8649 10.7918 

CA10 -8.3949 -1.1184 7.2765 8.3941 1.1184 4.7562 3.6378 0.2749 -4.7562 3.1093 1.3074 1.9908 11.5033 

CA11 -8.4085 -1.1102 7.2983 8.4080 1.1094 4.7587 3.6493 0.2740 -4.7587 3.1027 1.3040 1.9933 11.5107 

DMF 

CA1 -8.1935 -0.9170 7.2765 8.1933 0.9165 4.5549 3.6384 0.2748 -4.5549 2.8511 1.2519 1.9346 11.0444 

CA2 -8.1690 -1.3851 6.7840 8.1677 1.3851 4.7764 3.3913 0.2949 -4.7764 3.3636 1.4084 1.9785 11.5313 

CA3 -8.1881 -1.3416 6.8465 8.1873 1.3410 4.7641 3.4231 0.2921 -4.7641 3.3152 1.3917 1.9742 11.5025 

CA4 -7.8588 -1.5048 6.3540 7.8575 1.5043 4.6809 3.1766 0.3148 -4.6809 3.4488 1.4736 1.9445 11.3062 

CA5 -7.8425 -1.5048 6.3377 7.8428 1.5051 4.6739 3.1688 0.3156 -4.6739 3.4470 1.4750 1.9419 11.2897 

CA6 -7.8697 -1.4722 6.3975 7.8703 1.4711 4.6707 3.1996 0.3125 -4.6707 3.4091 1.4598 1.9380 11.2793 

CA7 -7.8588 -1.4749 6.3839 7.8583 1.4754 4.6669 3.1914 0.3133 -4.6669 3.4122 1.4623 1.9368 11.2705 

CA8 -7.8670 -1.0912 6.7758 7.8681 1.0917 4.4799 3.3882 0.2951 -4.4799 2.9617 1.3222 1.8700 10.8298 

CA9 -7.8697 -1.0776 6.7921 7.8700 1.0773 4.4737 3.3963 0.2944 -4.4737 2.9464 1.3172 1.8690 10.8163 

CA10 -8.3949 -1.1184 7.2765 8.3952 1.1179 4.7565 3.6387 0.2748 -4.7565 3.1089 1.3072 1.9910 11.5041 

CA11 -8.4085 -1.1102 7.2983 8.4088 1.1100 4.7594 3.6494 0.2740 -4.7594 3.1035 1.3042 1.9935 11.5123 

Water 

CA1 -8.1908 -0.9116 7.2792 8.1900 0.9121 4.5511 3.6389 0.2748 -4.5511 2.8459 1.2507 1.9338 11.0359 

CA2 -8.1690 -1.3878 6.7812 8.1696 1.3881 4.7788 3.3908 0.2949 -4.7788 3.3676 1.4094 1.9795 11.5372 

CA3 -8.1881 -1.3388 6.8493 8.1892 1.3394 4.7643 3.4249 0.2920 -4.7643 3.3137 1.3911 1.9743 11.5029 

CA4 -7.8588 -1.5021 6.3567 7.8583 1.5026 4.6805 3.1778 0.3147 -4.6805 3.4468 1.4729 1.9442 11.3051 

CA5 -7.8452 -1.5048 6.3404 7.8439 1.5040 4.6739 3.1699 0.3155 -4.6739 3.4458 1.4745 1.9418 11.2896 

CA6 -7.8724 -1.4694 6.4030 7.8713 1.4697 4.6705 3.2008 0.3124 -4.6705 3.4076 1.4592 1.9378 11.2789 

CA7 -7.8588 -1.4749 6.3839 7.8599 1.4746 4.6673 3.1926 0.3132 -4.6673 3.4115 1.4619 1.9369 11.2714 

CA8 -7.8779 -1.0939 6.7840 7.8765 1.0928 4.4847 3.3918 0.2948 -4.4847 2.9648 1.3222 1.8720 10.8413 

CA9 -7.8779 -1.0803 6.7976 7.8781 1.0800 4.4791 3.3991 0.2942 -4.4791 2.9512 1.3177 1.8711 10.8293 

CA10 -8.3949 -1.1184 7.2765 8.3957 1.1176 4.7567 3.6391 0.2748 -4.7567 3.1087 1.3071 1.9911 11.5045 

CA11 -8.4058 -1.1075 7.2983 8.4069 1.1086 4.7577 3.6491 0.2740 -4.7577 3.1016 1.3038 1.9930 11.5085 
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Step 4. Return to Step 2 or stop if the final two clusters have 

been fused into the final, single cluster. 

The wide range of agglomerative methods available differ 

principally in the implementation of Step 3 and the calculation 

of the distance between two clusters. The different between-

group distance measures can be defined in terms of the general 

formula 

 

 

(3) 

where ,i jd
, is the distance between objects i and j and 

( , )k i jd
is the distance between group k and a new group (i,j) 

formed by the fusion of groups i and j. The values of coefficients 

α , β, and γ are chosen to select the specific between-group 

metric to be used. 

The complete dendrogram is shown in Figure 3 for table.1 

in different solvents by using the hierarchical clustering 

technique. The horizontal lines represent the methods and 

vertical lines the similarity values between pairs of methods, a 

method and a group of methods and among groups of methods. 

From Fig.3, the HCA results are very similar to those obtained 

with the PCA results. 
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Table 2. Results of principal components analysis on the global descriptors data 
Eigenvalues 

Gas phase 

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC 10 PC 11 PC 12 PC 13 

Variance 9.3282 3.5010 0.1705 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 

% Variance 71.8 26.9 13.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cumulative 71.8 98.7 100 100 100 100 100 100 100 100 100 100 100 

THF solvent 

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC 10 PC 11 PC 12 PC 13 

Variance 7.2636 5.7186 0.0175 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 

% Variance 55.9 44.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cumulative 55.9 99.9 100 100 100 100 100 100 100 100 100 100 100 

Ethanol solvent 

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC 10 PC 11 PC 12 PC 13 

Variance 7.1224 5.8589 0.0178 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

% Variance 54.8 45.1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cumulative 54.8 99.9 100 100 100 100 100 100 100 100 100 100 100 

DMF solvent 

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC 10 PC 11 PC 12 PC 13 

Variance 7.5657 5.4086 0.0254 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

% Variance 58.2 41.6 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cumulative 58.2 99.8 100 100 100 100 100 100 100 100 100 100 100 

Water 

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC 10 PC 11 PC 12 PC 13 

Variance 7.5953 5.3778 0.0265 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 

% Variance 58.4 41.4 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.0 -0.0 -0.0 

Cumulative 58.4 99.8 100 100 100 100 100 100 100 100 100 100 100 
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Fig 3. Dendrogram obtained for the global descriptors for 

cyanuric acid tautomers in different solvents. 

Conclusion 

Molecular geometries of tautomeric forms of Cyanuric acid 

were fully optimized by using the Gaussian quantum chemistry 

software package Gaussian 09 w at DFT/B3LYP level of theory, 

using the 6-311++G (d,p) basis set. we were calculated the 

HOMO and LUMO energies in order to determine, the 

usefulness of global reactivity descriptors namely, the 

electrophilicity, Chemical hardness (ɳ), chemical potential (µ), 

polarizability (α) electrophilicity index (ω), softness (S), 

nucleofugality, and electrofugality, values for the prediction of 

the reactivity of the cyanuric acid tautomers. The global and 

reactivity descriptors of cyanuric acid tautomers were analyzed 

using Principal component analysis (PCA) and hierarchical 

cluster analysis (HCA) in different solvents. Three tautomers, 

CA1, CA10 and CA11 constitute unique group, well 

distinguished from the rest. The CA8, CA4 and CA5 valves 

constitute a cluster of four tautomer types and CA2 and CA3 

constitute a cluster of two tautomer types finally, there is a 

group of two tautomers CA7 and CA6 constitute a cluster in gas 

phase. The tautomers constitute groups are similar in three 

solvents namely THF, DMF and water, but in ethanol solvent 

show different groups. The HCA results are very similar to those 

obtained with the PCA results. 
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