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Introduction 

In natural ecosystem, regulatory mechanisms for evolution of biological species are provided by predator-prey interactions. Not 

only the disease in the system affects the dynamics of prey predator population, but the prey predator interactions also affect the 

dynamics of disease [1, 5, 8, 11, 14]. Some previous works on infectious diseases in animal populations had paid attention to the 

changes in the regulation of natural populations due to disease-induced mortality or disease-reduced reproduction [14, 15, 16]. The 

effect of parasites on biodiversity and ecosystem are the main fields to be studied in conservation biology [9, 13].   Many Authors 

proposed and studied different prey-predator models in presence of disease. Chattopadhyay and Arino [10] coined the name eco-

epidemiology for the study of such systems. Researchers are now considering the importance of parasites not only on individual hosts 

but also on their population dynamics and community structure. In most of the eco-epidemiological models, studied so far, disease in 

only prey species has been studied [1, 2, 3, 6].  In continuity with the work on models where the infection floats in prey population 

only, Lafferty and Morris [12] observed that the prey killifish on getting infected tends to come closer to the sea surface which makes 

them easily available for the predation by birds. They observed that predation rate of infected prey is 31 times more than that of the 

susceptible prey.  Few studies [4, 7] considered the spread of disease in predator species.  

In the present paper, a predator-prey model in which only predator population is invaded by a disease is proposed and analyzed. 

The disease is spreading from infected predator to susceptible predator. The predator species are compartmentalized into susceptible 

and infected classes. The disease does not cause immunity in the predator species. Consequently, an SIS model is considered for the 

predator. Due to infection in infected predator, its catching ability will be reduced as compared to susceptible predator. So, differential 

predation rates of both susceptible and infected predator have been considered and effect of it on the dynamics of the system is 

investigated. The effect of recovery on the system dynamics is also observed. 

Basic Assumptions and Mathematical Model 

In present paper, a prey predator model is considered in which only the predator species is infected with some disease. Due to 

disease predator species is divided into two units say susceptible and infected ones. Let ( )y t  and ( )z t  are densities of susceptible 

and infected predator respectively at any time t. Hence the total population P  of predator is given by 

                                               ( ) ( ) ( )P t y t z t   

Density of prey population at any time t is ' ( )x t ' and is growing logistically with intrinsic growth rate r. Carrying capacity of 

system is considered to be k for prey. Law of mass action is considered for disease transmission in predator’s species and disease is 

spreading at rate c. Mortality rates of susceptible and infected predators are taken as 1 and 2   ( 2 1  ). The susceptible and 

infected predators are predating the prey with differential predation rate 1  and 2  respectively
2 1

)(  . l is the conversion rate of 

prey into young ones of predators. The infected prey population recovers with recovery rate   . 

Based on the above assumptions, the following eco- epidemiological model is formed. 

               

 2 2

1 2

1 1

where (0) 0 (0) 0, (0) 0

1 xy xz

xy y

l xz z cyz z x y z

dx x
rx

dt k

dy
l cyz z

dt
dz

dt
  

 

  

 
 
 

     

   

   



                      (1)      

Predator-Prey System with Infection in Predator Only 
Kulbhushan Agnihotri

1
 and Nishant Juneja

2
 

1
Shaheed Bhagat Singh College of Engineering and Technology, Ferozepur (Punjab), India. 

2
Dev Samaj College for Women, Ferozepur (Punjab), India. 

 

 

 

 

 
 

 

 
 

ABSTRACT 

A three dimensional eco-epidemiological model consisting of prey, susceptible predator, 

infected predator species, is proposed and analyzed in the present work. From infected 

predator, the disease is transmitted to the susceptible predator species.  Differential 

predation rate is considered due to disease in predator as the infection reduces the predation 

ability of infected predator. The recovery of infected predator from disease is incorporated; 

therefore, an SIS model is taken for predator species. The dynamics of the system is 

analyzed mathematically and conditions for existence and stability of disease free 

equilibrium point has been found out. Also conditions for disease to be endemic in predator 

species are obtained. Numerical simulations have been carried out to justify the results 

obtained. 
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Mathematical analysis 

The system can have following different equilibrium 

(a) A trivial equilibrium point  0 0,0,0E , where all the predator and prey populations extinct. 

(b) A predator free equilibrium point  1 ,0,0E k , where prey approaches to its carrying capacity in absence of predator. 

(c) A disease free equilibrium (DFE)  2 2 2, ,0 ,E x y where   

   1 1 1

2 2

1 1 1

,
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   

 
, which exist provided  1

1 lk


                   (2) 

 (d) An endemic positive equilibrium  , ,E x y z    , where 
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and y
is the positive root of the equation 2 0Ay By C                                                                  (4) 

where 
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The equation (4) has a positive root for y
 under the following conditions 

(i)    If B < 0, C < 0, 

                      i.e 2

2
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 then the equation (4) has one positive value of  y. 

 

(ii)  If B>0, C<0,  

           i.e 
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(iii)  If C>0, 
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then equation (4) has two positive roots.  

 

From above, we conclude that if 
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further if
 2 22

2

1 1 2

min , and
r klcr

y
kl kl cr kl

   


  


  

  
 

                     (8) 

then there exist two non zero equilibrium points.         

 Theorem 1: If 
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then (1)  has two non zero equilibrium points.  

 

Stability Analysis 

The variational matrix for the system (2.1) is given by 

   
1 2

1 1 1

2 2 2

X x x

l y l x cz cy

l z cz l x cy
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Where  

1 21
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X r y z
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  

       
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Now we will check the stability of all the four equilibrium points  

Theorem 2: The trivial equilibrium point 
0E  0,0,0  is always unstable. 

Proof: - The Eigen values for 
0E  0,0,0  are given by 1 2 1 3 2, ,r            

 Clearly
2 3, 0   , but 

1 0.   So 
0E  0,0,0  is a saddle point. 

Biological Meaning: - The predator and prey population will not extinct forever. 

 

Theorem 3: The predator free equilibrium point  1 ,0,0 ,E k  is locally asymptotically stable if  

1 1 lk                                                                                 (9) 

Proof: - The Eigen values for the equilibrium 1E are given by 

                          
1 2 1 1 3 2 2, ,r l k l k               

  Clearly
1 0  , 

  Now 
2 30, 0    iff 

1 1 2 2lk and lk        

i.e. 2
1 1 1min ,lk lk

lk

 
  
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Hence the result. 

Biological Meaning: - If the capture coefficient '
1 ' of the susceptible predator and conversion rate of prey into young ones of 

predators (l) are sufficiently low  such that equation (9) is satisfied, then the predator population will extinct from the environment. 

 

Theorem 4: The disease free equilibrium point (DFE)  2 2 2, ,0 ,E x y  if exist, is locally asymptotically stable provided 
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Proof:-The Characteristic roots corresponding to the equilibrium 2E  are given by the equation                                       
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Here 
1 2 2 2 2l x cy        and 

2 3,   are roots of second factor having the entire coefficients positive. So 
2 3,   are clearly 

negative. For
1 0  ,   

2 2 2 2l x cy               

  i.e 
2 1 1

2 2

1 1 1

crcr

lk

  
 

  
    .  

Hence the proof. 

Biological Meaning: - It is clear from equation (10) that reduced value of capture coefficient of infected predator species will enhance 

the stability of disease free equilibrium point. 

       

Theorem 5:- The non zero equilibrium point  , ,E x y z    , if exist, is locally asymptotically stable provided 

                                  0cy    .                                                                           (11) 

Proof: - The characteristic equation at E  is given as  

                                      3 2

1 2 3 0A A A       

where 
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So 
1 2 3 0A A A  if  0cy     

 Now all 1 2 3 1 2 3, , , andA A A A A A  will be positive if 0cy    . 

So by Routh-Hurwitz stability criterion, all the eigen values of the characteristic equation have negative real  

part if 

                                       0cy     

Hence the Proof. 

Biological Meaning: - If the capture coefficient of the infected predator is so adjusted such that the equation (3) is satisfied, and the 

recovery rate is sufficiently low such that the equation (11) is satisfied, then all the three populations will survive in the system 

together. 

 

Numerical Simulations 

Numerical simulations have been carried out to investigate the dynamics of the proposed 3-D model (1). Computer simulations 

have been performed using MATLAB, for different set of parameters. 

Consider the following set of parametric values: 

                  
1 2

1 2

1, 100, 0.48, 0.45, 0.5,

0.49, 0.5, 0.01, 0.05

r k c

l

 

  

    

   
       (12) 

The system (1) has equilibrium point  1 100,0,0E  for the data set (12). It is locally asymptotically stable by Theorem (3), as the 

computed value of 
1  is sufficiently low such that the equation (9) is satisfied. The solution trajectories in phase plane with different 

initial values and time series plot for the predator free equilibrium point  1 100,0,0E  is shown in following Fig. 1.1. 
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Figure 1.1 (a) 
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Figure 1.1 (b) 
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Figure 1.1 (c) 
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Fig.  1.1.   Behavior of the model equation (1) for the stability of predator free point. Fig 1.1(a), (b) and (c) depict     

          respectively, the time evolution of prey, susceptible predator and infected predator populations and 1.1(d) depicts the 

phase space 

 

Now consider the another set of parametric values 

        
1 2

1 2

1, 100, 0.7, 0.45, 0.5,

0.49, 0.5, 0.01, 0.05

r k c

l

 

  

    

   
        (13)  

  



  Kulbhushan Agnihotri and Nishant Juneja/ Elixir Appl. Math. 83 (2015) 32909-32917 
 

32914 

For these parametric values, the equilibrium point  1 100,0,0E for system (1) becomes unstable as the capture coefficient of 

susceptible predator species,
1 , is sufficiently high that condition (9) is violated and it gives rise to existence of  2 69.9,0.43,0E  as 

condition (2) is satisfied. Also  2 69.9,0.43,0E is locally asymptotically stable as the recovery rate of the infected predator   so 

increased that the condition (10) is satisfied. The solution trajectories in phase plane with different initial values and time series plot 

for the disease free equilibrium point is shown in Fig-1.2. 
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Figure 1.2 (a) 
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Figure 1.2 (b) 
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Figure 1.2 (c) 
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Fig 1.2.  Behavior of the model equation (1) for the stability of disease free point. Fig 1.2 (a), (b) and (c) depict respectively, the 

time evolution of prey, susceptible predator and infected predator populations and 1.2 (d) depicts the phase space 

 

Further, we take equal rate of predation/ catching ability coefficient for both the susceptible and infected predator. For this 

purpose, following set of data is considered 

1 2

1 2

1, 100, 0.4, 0.4, 0.5,

0.49, 0.5, 0.01, 0.05

r k c

l

 

  

    

   
         (14) 

Here the equilibrium point  2 69.9,0.43,0E  becomes unstable by Theorem (4) as condition (10) is not satisfied, but the predator 

free equilibrium point  1 100,0,0E  becomes stable as the conditions (9) is satisfied So different predation rates of susceptible and 

infected predators are helpful in making the system disease free  and both the prey and susceptible predator population coexist where 

as when the predation rates are equal, then predator population extinct from the system.  
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Fig.  1.3. Phase diagram showing the impact of equal predation rates. 

Now consider another set of parametric values 

1 2

1 2

1, 100, 0.65, 0.55, 0.5,

0.49, 0.5, 0.01, 0.05

r k c

l

 

  

    

   
        (15) 

For these set of values, all the three populations coexist and the disease becomes endemic in the system. The system (1) has 

equilibrium point  79.74,0.222,0.1047E
 as the conditions (3), (7) and (8) are satisfied. The reduced value of recovery rate of the 

infected predator is helpful in making this equilibrium point locally stable. The solution trajectories in phase plane with different 

initial values and variation of all the three population with time is shown in Fig-1.4 
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Figure 1.4 (a) 
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Figure 1.4 (b) 
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Figure 1.4 (c) 
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Fig 1.4. Behavior of the model equation (1) for the stability of predator free point  , ,E x y z    . Fig 1.4 (a), (b) and (c) depict 

respectively, the time evolution of prey, susceptible predator and infected predator populations and 1.4(d) depicts the phase 

space 
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Discussion and Conclusion 

In present paper, a prey predator model is considered in which only predator species is infected with some disease. Due to 

disease, predator species is divided into two compartments namely susceptible and infected ones. An SIS model is taken for the 

predator species. Differential catching ability of both the susceptible and infected predator is considered. Conditions for the existence 

and stability of disease free prey-predator system and persistence of all the three species are obtained. It is observed that the predator 

and prey species will not extinct forever. Further it is found that if the capture coefficient '
1 ' of the susceptible predator and 

conversion rate ‘l’ of prey into predator’s young ones is sufficiently low such that equation (9) is satisfied, then the predator 

population will extinct from the environment. The impact of different catching ability of both the susceptible and infected predator on 

the stability of disease free system has been observed. It is seen from equation (10) that reduced value of capture coefficient of 

infected predator species will enhance the stability of disease free equilibrium point. This fact was verified with the help of data set 

(13) for which disease free equilibrium point becomes stable when the capture coefficient of infected predator/reduced predation rate 

'
2 ' of predator was taken whereas when same rate of predation was taken for both susceptible and infected predator in data set (14) 

then the disease free equilibrium point becomes unstable and non- zero equilibrium point becomes stable. The effect of recovery of 

predator species on the dynamics of the system is also observed and it is viewed that if the recovery is sufficiently high that the 

equation (10) is satisfied, then the disease free equilibrium point becomes locally stable.  Also if the capture coefficient of the infected 

predator is so adjusted such that the condition (3) is satisfied, and the recovery rate is sufficiently low such that the condition (11) is 

satisfied, then all the three populations will survive in the system together which is favorable for ecological diversity. 
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