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Introduction 

In this part of the proof the element x has the lowest value of all the elements in the square.  

 
 
 
 
 
 
 
 
 

The magic square I will be working with in this proof looks as follows 
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ABSTRACT 

The proof will demonstrate the non-existence of a 3x3 magic square of squares. I 

remember reading a Scientific America article and at the bottom of the article was the 

link to an article which described this problem. To me it seemed bizarre that a problem 

that had such a clear start point and was based on a concept so simple to understand 

could have no proof. I decided then that I would prove that such a square could never 

exist. I was inspired that the problem had been unresolved such it was first asked in 

1984 and that it could be dated back to great mathematicians such as Leonhard Euler. 

Like many people interested in maths I am in awe of much of the the work that 

Leonhard Euler did so to be able to solve a problem whose roots can be traced back to 

him was exciting. People have been working with magic squares for centuries and yet 

nobody has presented a proof showing why a 3x3 magic square comprised entirely of 

square numbers cannot exist. I decided that night that I would provide such a proof. I 

was unaware how complex the problem was and how complex the tools I would need to 

solve the problem were but it was the start of the most wonderful journey that I wish I 

could relive. For hundreds of years people have been constructing magic squares. The 

definition of a magic square which I will refer to extensively throughout this proof states 

the following. The sum of all the elements in the rows, columns and diagonals must be 

equal. Each element must be unique in any square and must be a natural number. 

Therefore when I say something has been proven false through the defintion of a magic 

square this is the definition I am referrring to. Well reading an article in Scientific 

America I came across something that rather astounded me. The article claimed that no 

one had found an example of a 3x3 magic square that contains only magic square 

numbers. Furthermore no onw has proven that such a square cannot exist. This type of 

problem can be traced back all the way to Leonhard Euler who is the first person known 

to construct a 4x4 magic square of squares. I have always been fascinated in 

mathematical mysteries as the world is written in the mathematics to understand 

mathematics is to understand the world. Therefore by proving something in maths I am 

making the world a little more interesting. In the proof that follows I will show why a 

3x3 magic square of squares can never exist. I will do this in 10 parts. The first part will 

be a general proof as to why the lowest element must be the middle or the corner for any 

magic square of squares to exist. I will then show that the lowest element can never 

occupy the middle or the corner of any square without violating the definition of what a 

magic square is.  
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If this is a magic square then the following equations must be true 

 
 
 

Therefore we can write this magic square as follows 

 
As this is a magic square we can write the following equation 

 
 

 
I can therefore re-write the magic square as follows 

 
Through the definition of a magic square of squares the following statement must result in a natural number 

 

 

 
I will now assume that the following statement is written in its most simplified form 

 
When I substitute this value into the above expression I get the following results 

 

 

 

 
Therefore the sum of the differenes between 

 
 

and  

 
Can be expressed as follows 

 
The variabe n must be an even number. As the number of terms being summed on the left hand side must result in an even 

number as any number on the right hand side must be even.  

We can simplify this expression to say the following 

 
This illustrates why n must be even. The sum of the elements on the right hand side of the equation always results in an even number 

so n must be even so that the sum of the elements on the left hand side are also even. Therefore I can say the following 

 
Therefore I can re-write thie equation as follows 

 
 

There m must be even as the elements on the left hand side sum to an even number and therefore the element on the right handside 

must be equal.  

Therefore I can say the following 

 
I can now re-write the equation as follows 

 
 

 
 

Therefore I notice that this is the same as the equation that described 2A – X. I can therefore say the following 
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As  

 
 

 

 

 

 

 
I will substitute this value into the equation  

 
This gives me the following 

 
But both the numerator and denomitor are even and therefore this fraction can be simplified. Therefore the assumption that  

 
is fully simplified was false. Therefore a cannot be rational. Therefore any value for “a” will violate the definition of a magic square 

and therefore I can say the following. If I have the following magic square 

 
The smallest value of any magic square of squares may never occupy position n2. But any magic square will exhibit properties of 

rotational symmetry therefore the smallest value of any magic square may never occupy positions n2, n4, n6 or n8. This completes Part 

1 of the proof. 

Part 2 

For the remainder of the proof I will now be using the following definitions and relations for all the possible positions of any element 

in the magic square. 

 
I do not need to specify that any of these elements need to be square as the rest of the proof will apply to all magic squares.  

I will now prove that X can never occupy position n5.  

Any magic square whose smallest element occupies the position n5 will look as follows. 

 
The remaining elements that have to be placed in this magic square are: A, B, C, D, E, F, G and H. I will now show that this can 

never be a magic square by showing that none of the remaining elements can occupy position n1.  

I will start by placing A in position n1. When I do this the magic square looks as follows. 

 
I will prove that such a square can never exist by showing that H can never occupy any of the remaining positions. I will start by 

proving that H can never occupy position n2, n3, n4 or n7. I will show this by demonstrating that any row or column will always sum to 

a larger value than the sum of the diagonal containing X and A. I will prove this by demonstrating why it is true when H occupies 

position n2. When I place H in position n2. The magic square looks as follows 
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The remaining elements that have to be placed in this square are: B, C, D, E, F and G. I will show that the sum of the elements in 

the row containing H and A will always be larger than the diagonal containing X and A by placing the largest remaining element in 

position n9 and the smallest remaining element in position n3. When I do this the magic square looks as follows 

 
If this is a magic square then the following equation must be true 

 
 

But this cannot be true because of the following 

 
 

Therefore 

 
 

Therefore this cannot be a magic square as the sum of the elements in the row or column that contains H and A will always be larger 

than the sum of the elements in the diagonal which contains A and X.  

The magic square I am now working with looks as follows 

 
I will now prove that H cannot occupy positions n4, n6 or n8. I will prove this by showing that when H occupise any of these postions 

the sum of the elements in the row or column that contains H I will prove this by showing that this is the case when H occupies 

position n6. When H occupies position n6 the magic square looks as follows. 

 
The remaining elements that have to be placed in this magic square are: B, C, D, E, F and G. I will show that the sum of the 

elements in the row that contains H will always be larger than the sum of the elements in the diagonal that contains A and X. I will 

prove this by showing that this is true when I place the lowest remaining element in position n4 and the highest remaining element in 

position n9.  

When I do this the magic square looks as follows 

 
As this is a magic square the following equation must be true 

 
 

But this cannot be true because of the following 

 
 

Therefore 

 
 

Therefore this cannot be a magic square as the sum of the elements in the complete diagonal is lower than the sum of the elements in 

the complete row. Therefore the sum of the elements in the row or column that contains H will always be larger than the sum of the 

elements in the diagonal that contains X and A when H occupies positions n4, n6 or n8. Therefore H cannot occupy poisitions n4, n6 or 

n8.  

The magoc square I am now working with looks as follows 

 
I will now show that H can never occupy position n9. When H occupies position n9 the magic square looks as follows 

 
The remaining elements that have to be placed in this magic square are B, C, D, E, F and G. I will show that none of these 

remaining elements can be placed in positions n3 and n6. I will prove that this is true by showing that when I place the two lowest 

remaining elements in positions n3 and n6 the sum of the elements in this row will always be larger than the sum of the elements in the 

complete diagonal.  

 

When I place the two lowest remaining elements in these positions the magoc square looks as follows 
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As this is a magic square the following equation must be true 

 
 

Therefore this cannot be true because of the following 

 
 

Therefore 

 
 

Therefore this cannot be a magic square as the sum of the elements in the complete diagonal will always be smaller than the sum 

of the elements in the column that contains H. Therefore this cannot be a magic square when h occupies position n9.  

There when X occupies position n5 and A occupies position n1 there can never be a largest element in the magic square. Therefore for 

this to be a magic square all the elements would have to be equal in value. This violates the definition of a magic square. Through the 

rotational symmetry of any magic square we can also now say that when X occupies position n5 then A can never occupy position n1, 

n3, n7 and n9. 

I will now prove that when X occupies position n5 that A can never occupy position n2.  

If this were to happen then the magic square would look as follows 

 
I will now show that this can never be a magic square. I will prove this by showing that none of the remaining elements can occupy 

positions n7 and n9. For this to be a magic square A+X would have to equal the sum of the two elements placed in these positions. The 

remaining elements that have to be placed in this magic square are: B, C, D, E, F, G and H. I will show that the sum of any two of 

these elements is larger than X and A by placing the two smallest remaining elements in these positions.  

When I do this the magic square looks as follows 

 
If this is a magic square the following equation must be true 

 
But this cannot be true because of the following 

 
 

Therefore 

 
Therefore this can never be a magic square as the sum of the elements in the row n7, n8 and n9 will always be larger than the sum 

of the elements that contain X and A. Therefore this can never be a magic square as it violates the definition of a magic square. 

Therefore when X occupies position n5 A cannot occupy position n2. But a square exhibits rotational symmetry so we can say that 

when X occupies position n5 then A can never occupy position n2, n4, n6 or n8. 

Therefore through all that has been shown in this part of the proof we can say that when X occupies position n5 A cannot occupy 

positions n1, n2, n3, n4, n6, n7, n8 or n9. Therefore any magic square where the lowest element occupies position n5 cannot contain a 

second smallest element. Therefore any square would need to have all values that were equal. This would violate the definition of a 

magic square. Therefore X can never occupy position n5. 

Part 3 

In this part of the proof I will show that A can never occupy position n5. I will prove this by showing that when A occupies position n5 

any magic square of squares will not have a smallest element. 

When A occupies position n5 and X occupies position n1 the magic square looks as follows 

 
The remaining elements that have to be placed in this magic square are: B, C, D, E, F, G and H. I will show none of these 

elements can occupy position n9. I will first prove that B, C, D, E, F and G cannot occupy position n9. I will prove this by showing that 

whenever of these elements are placed in position n9 the sum of the elements in the diagonal will always be less than the row, column 

or diagonal that contains H and A. I will prove this by showing it is true when G occupies position n9 and H occupies position n2. 

When H occupies position n2 and G ocupies position n9 the magic square looks as follows 
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The remaining elements that have to be placed in this magic square are: B, C, D, E and F. I will now place the lowest remaining 

element in position n8 to show that any row, column or diagonal that contains H and A will sum to a higher value than the diagonal 

that contains A and X.  

When I place the lowest remaining element in position n8 the magic square looks as follows. 

 
If this is a magic square the following equation must be true 

 
 

But this cannot be true because of the following 

 
 

Therefore 

 
 

Therefore this cannot be a magic square as the sum of the elements in the row that contains H and A is greater than the sum of the 

elements in the diagonal that contain X and A. Therefore B, C, D, E, F and G cannot occupy position n9 as the sum of the elements in 

this diagonal will always be less than the sum of the elements in the row, column or diagonal that contains H and A.  

Therefore H must occupy position n9. This creates the following magic square 

 
The remaining elements that have to be placed in this magic square are: B, C, D, E, F and G. I will show that none of these 

elements can be placed in positions n3 and n6. I will show this by showing that the sum of the elements in the column containing H 

will always be larger than the sum of the elements in the complete diagonal. I will prove this is true by showing that it is true when I 

place the two lowest remaining elements in positions n3 and n6. 

When I do this the magic square looks as follows 

 
As this is a magic square the following equation must be true 

 
 

But this cannot be true because of the following 

 
 

Therefore 

 
 

Therefore this cannot be a magic square as the sum of the elements and at least one column will never be equal this violates the 

definition of a magic square. Therefore a magic square can never be created when A occupies position n5 and X occupies position n1. 

Through the rotational symmetry of a square we can now say the following. 

When A occupies position n5 X cannot occupy position n1, n3, n7 or n9. Through the work in Part 1 of the proof I have proven that 

when A occupies position n5 that X cannot occupy position n2. When the rotational symmetry of a square is applied to this statement 

we can say that when A occupies position n5 X cannot occupy positions n2, n4, n6 or n8. 

When these statements are combined we can conclude that when A occupies position n5 any magic square of squares will not have a 

least element. This means that they will have to be at least one occasion where an element will have to be repeated. Therefore a magic 

square of squares cannot be created when A occupies position n5. 

Part 4 

I will now prove that when either B, C, D, E, F or G occupy position n5 and X occupies position n1 that H cannot occupy positions n2, 

n3, n4, n6, n7 or n8.  

When X occupies position n1 the magic square looks as follows 

 
I will show that neither B, C, D, E, F or G can occupy position n5 using the following fact about magic squares 

 
This equation is derived from the fact that in any magic square the sum of all the elements in all the rows and columns must be 

equal. We know that each of these equals the sum the elements in a row, column or diagonal when n5 is added to these equations. But 

this is added to each equation. Therefore the above equation must be true.  

I will show that the sum of X and any other element placed in postion n9 will always be less than the sum of H and another element 

that is across from H through the middle.  
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In other words if, in the above equation I replace n2, n8, n3, n7, n4 or n6 the sum of the elements in that row, column or diagonal 

must be more than the sum of the elements in the diagonal which contains X. I will do this by placing the highest element other than H 

in position n9, H in position n2 and the lowest remaining element in position n8. 

When this is done the magic square looks as follows 

 
For this to be a magic square the following must be true 

 
But this cannot be true because of the following 

 
 

Therefore 

 
Therefore this cannot be a magic square as it violates the definition of a magic square. This must also be true if H occupies any 

other position other than n9 and n5 well X occupies position n1 as shown through the equation derived at the start of this part of the 

proof.  

Therefore as this is true when X occupies position n1 we can apply the rotational symmetry of a square which means that this proof 

must also be true when X occupies position n1, n3, n7 or n9.  

Therefore for every subsequent part of this proof H will occupy position n9 until the last part of the proof, part 11, where it will 

occupy position n5. Therefore when stipulating other squares I will not state that H occupies position n9 as the reason for this was 

shown in this part of the proof.  

Part 5 

I will now prove that when B occupies position n5 that X cannot occupy position n1 

When I place B in position n5, X in position n1 and H in position n9 I create the following magic square 

 
The remaining elements that have to be placed in this magic square are: A, C, D, E, F adnd G. I will show that none of these 

remaining elements can occupy positions n3 and n6. I will show that this is the case by showing that when the two lowest remaining 

elements occupy these positions the sum of the elements in column H will be larger than the sum of the elements in the complete 

diagonal. 

When I place the two lowest remaining elements in positions n3 and n6 I create the following magic square.  

 
If this is a magic square the following equation must be true 

 
 

But this cannot be true because of the following 

 
 

Therefore 

 
 

Therefore this cannot be a magic square as the sum of the elements and in a diagonal and the sum of the elements in a column are 

not equal. This violates the definition of a magic square. 

Therefore when B occupies position n5 and X occupies position n1 a magic square cannot be created. Through the rotational symmetry 

of a square we can expand this statement to say that when B occupies position n5 in any mangic square X cannot occupy positions n1, 

n3, n7 or n9. From part one we know that in any magic square of squares X cannot occupy poisition n2. This can be expanded using the 

rotational symmetry of a square to say that a magic square of squares cannot be created when X occupies position n2, n4, n6 or n8.  

When these two statements are combined we can say the following. That when B occupies position n5 in a 3x3 magic square of 

squares X cannot occupy any of the other remaining positions. Therefore there cannot be a least element in any magic square of 

squares when B occupies position n5. This means that some elements will have to be repeated which violates the definition of a magic 

square of squares.  

Part 6 

In this part of the proof I will show that when C occupies position n5 that X cannot occupy position n1 without violating the definition 

of a magic square. 

When I place C in position n5, X in position n1 and H in position n9 the magic square looks as follows 
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The remaining elements that have to be placed in this magic square are: A, B, D, E, F and G. I will prove that D, E, F and G can 

only occupy positions n2 and n4. Therefore it is impossible to place 4 elements into only two positions. This will show that it will be 

impossible to create any magic square based on the form above without violating the definition of the magic square. 

I will show that that this must be true by placing D, the lowest of the elements I wish to prove can only occupy positions n2 and n4, 

and show that any row or column that has both D and H will sum to a larger value than the complete diagonal. I will prove this by 

proving that it is true when D occupies position n3.  

When D occupies position n3 the magic square looks as follows 

 
I will now place the lowest of the remaining elements in position n6 to show that if any other remaining element is placed in this 

position the sum of the elements in this column will always be larger than the sum of the elements in the complete diagonal.  

When I place the lowest remaining element in position n6 the magic square looks as follows. 

 
If this is a magic square then the following equation must be true 

 
 

But this cannot be true because of the following 

 
 

Therefore 

 
 

Therefore this can never be a magic square when any element that is equal in size or larger than element D shares the same row or 

column as element H. As when this does occur there will be a violation of the definition of what a magic square is.  

But it is impossible to construct such a square as four elements will have to occupy two positions which is not possible. Therefore this 

cannot be a magic square when C occupies position n5 and X occupies position n1. A square exhibits rotational symmetry. We can 

therefore use this proof and expand the statement to say that when C occupies position n1, n3, n7 or n9.  

Part 1 says that when X occupies position n2 a magic square of squares cannot be created. We can expand that statement to say that no 

magic square of squares can be constructed when X occupies position n2, n4, n6 or n8.  

Combining these two revelations we can conclude that when C occupies position n5 that X cannot occupy any of the other positions. 

Therefore there can not be a lowest element in the magic square. This means that all the elements must be equal in size which violates 

the definition of a magic square. Therefore when C occupies position n5 no magic square of squares can be created.  

Part 7 

In this part of the proof I will prove that when D occupies position n5 that X cannot occupy position n1 without violating the 

definition of a magic square. When D occupies position n5, X occupies position n1 and H occupies position n9 the magic square looks 

as follows 

 
The remaining elements that have to be placed in this magic square are: A, B, C, E, F and G. I will show that A, B, and C have to 

occupy positions n6 and n8. This is of course impossible as three different elements cannot occupy two positions. This will prove that 

the above square can never be used to create a magic square. I will show this by proving that when A, B, or C share a row or column 

with X the sum of the elements in this row or column will be less than the sum of the elements in the complete diagonal. I will prove 

this for A, B and C by proving that it is true for C and must therefore be true for any element that has a smaller value than C.  

When I place C in position n2 the magic square looks as follows 

 
I will now place the largest remaining element in position n3 to show that regardless which remaining element is placed in position n3 

the sum of the elements in that row will always be less than the sum of the elements in the complete diagonal. 

When I place the largest remaining element in position n3 the magic square looks as follows 

 
If this is a magic square then the following equation must be true 

 
 

But this cannot be true because  
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Therefore 

 
 

Therefore this can never be a magic square for the following reason. I cannot place A, B or C in positions n2, n3, n4, or n7 without 

violating the definition of a magic square. I must therefore place these three elements in positions n6 or n8. But this is impossible. 

Therefore this can never be a magic square when D occupies position n5 and X occupies position n1. I can now use the rotational 

symmetry of a squareto expand this statement to say that when D occupies position n5 X cannot occupy position n1, n3, n7 or n9. Using 

part one of the proof we know that a magic square of squares cannot be created when X occupies position n2. This can also be 

expanded to say that when X ocuppies position n2, n4, n6 or n8 a magic square of squares cannot be created. 

When these two statements are combined we can say that when D occupies position n5 in a magic square of squares X cannot 

occupy any of the other positions. Therefore there can be no elements with the lowest value. This forces all elements to have the same 

value which is a violation of the magic square. Therefore this proves that when D occupies position n5 no magic square of squares can 

be created. 

Part 8 

In this part of the proof I will show that when E, F or G occupies poisition n5 X cannot occupy position n1 without violating the 

definition of a magic square of squares.  

When X occupies position n1 and H occupies position n9 the magic square looks as follows.  

 
I will now show that regardless of whether E, F or G occupy position n5 that this cannot possibly be a magic square. I will show 

this by proving that the sum of the elements in the row or column that contain X will always be less that the diagonal that contains H 

and X when A, B, C or D occupy position n2, n3, n4, or n7. I will prove this by showing that this is true when D occupies any one of 

these positions. When D occupies position n2 the magic square looks as follows 

 
The remaining elements that could occupy position n5 are E, F and G. All of these elements are larger than D. So for the row that 

contains D to be able to sum to a value equal to the sum of the elements in the diagonal which contains X and H the element that is 

placed in position n3 must be larger than H.  

But the largest element that could occupy position n3 is G this value is smaller than H. Therefore the sum of the elements in 

that row that contain D and X must be smaller than the sum of the elements in the diagonal that contain X and H. Therefore A, B, C 

and D cannot occupy positions n2, n3, n4 and n7. Therefore four elements must be placed in two squares. This is clearly impossible. 

Therefore this cannot be a magic square when X occupies position n1 and E, F, or G occupy position n5. We also know that a 

square exhibits rotational symmetry so this proof also proves the following. When E, F, or G occupy position n5 X cannot occupy 

positions n1, n3, n7 or n9.  From part one of the proof we know that X cannot occupy position n2. Due to the rotational symmetry of a 

square this can be expanded to say that X cannot occupy positions n2, n4, n6 or n8.  

When these two statements are combined we realise that we have proved the following. When E, F or G occupy position n5 in a 

magic square of squares the smallest element of the square cannot occupy any of the other positions. Therefore this cannot be a magic 

square of squares when E, F or G occupy position n5.  

Part 9 

In this part of the proof I will show that X cannot occupy position n1 when H occupies position n5. When X occupies position n1 

and H occupies position n5 the magic square looks as follows.  

 
The remaining elements that have to be placed in this magic square are: A, B, C, D, E, F and G. I will now prove that element G 

cannot be placed in position n2, n3, n4, n6, n7 or n8. I will prove this by showing that any row, column or diagonal that contains the 

elements G, H and any element larger than X cannot exist in this smagic square without violating the definition of a magic square. I 

will prove that this is true when G occupies position n2 to show that it is true for all the other positions. 

When G occupies position n2 the magic square looks as follows 

 
To show that such a square cannot exist I will place the lowest remaining element in position n8 and the largest remaining element 

in position n9. I will do this to show that any row, column or diagonal that contains G, H and any element other than X will always 

sum to a larger value than the sum of the elements in the diagonal that contain H and X.  When I place the smallest remaining element 

in position n8 and the largest remaining element in position n9 I create the following magic square 

 
If this is a magic square then the following equation must be true 
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But this cannot be true because of the following 

 
 

Therefore 

 
 

Therefore this cannot be a magic square as the sum of the elements in at least one column and one row are not equal. This violates 

the definition of a magic square. This also proves that when G, H and another element other than X are in a row, column or diagonal 

the sum of the elements in this row, column or diagonal will always sum to a larger value than the sum of the elements in the diagonal 

that contain H and X. Therefore This can only ever be a magic square if G occupies position n9.  

When G now occupies position n9 the magic square looks as follows 

 
The remaining elements that have to be placed in this magic square are: A, B, C, D, E and F. I will show that none of these 

elements can occupy position n2 and n3. I will prove this by showing that when the two largest remainibg elements occupy these 

positions the sum of the elemnts in the row containing X will always be smaller than the sum of the elements in the complete 

diagonal. 

When the two largest remainibg elements occupy positions n2 and n3 the magic square looks as follows 

 
If this is a magic square then the following equation must be true 

 
 

But this cannot be true because of the following 

 
 

Therefore 

 
 

Therefore this cannot be a magic square as the sum of the elements in at least one row and one diagonal can never be equal. This 

violates the definition of a magic square.  

As a result this cannot be a magic square when H occupies position n5 and X occupies position n1. Due to the fact that when this 

happens element G cannot exist in this magic square. Due to the rotational symmetries of a magic square this statement can be 

expanded to say the following 

When H occupies position n5 X cannot occupy positions n1, n3, n7 or n9. We also now from part one of the proof that X cannot 

occupy position n2 in a magic square of squares.  Due to the rotational symmetries of a sqaure this statement can be expanded to say 

that in a magic square of squares X cannot occupy positions n2, n4, n6 or n8. 

When these two statements are combined we can conclude that when H occupies position n5 in a magic square of square X cannot 

occupy any of the remaining positions. There therefore cannot be a smallest element in this square. Therefore some elements must be 

repeated which violates the definition of a magic square. Therefore when H occupies position n5 a magic square of squares cannot be 

created.  

Conclusion 

If we take a look at an empty magic square of squares below.  

 
The remaining elements that have to be placed in this magic square of squares are: X, A, B, C, D, E, F, G and H. From part 2-9 of 

the proof it becomes apparent that none of these remaining elements can occupy position n5. This means that there will always be an 

empty position in this magic square. Therefore this can never be a magic square of squares.  


