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Introduction 

Mixed convection flow in a vertical duct maintained at 

different constant temperatures constitutes a bench mark 

configuration. Solar heat storage systems and crystal growth are 

salient engineering examples of convection problems (Ostrach, 

[1], Langlois, [2], and Schwabe, [3]). The majority of existing 

research has been principally devoted to the case of filling the 

entire enclosure in realistic situations. However, the fluid systems 

often times consists of two separate, immiscible liquids. Sparrow 

et al. [4] performed a symmetrically organized experiment in a 

square cavity using a layer of Hexa-Decade overlaying a layer of 

water. Kimura et al. [5] by using a spindle  oil-Ethylene glycol 

combination and a spindle oil-water combination examined the 

effects of the ratio of depths of two layers on the overall Nusselt 

numbers. 

Mixed convective heat transfer in porous media has been a 

subject of continuing interest during past decades. This interest is 

due to the wide range of applicability of heat transfer processes in 

porous media, such as energy storage units, heating pipes and 

catalytic reactors. Fluid flow and heat transfer characteristics at 

the interface region in systems which consists of a fluid-saturated 

porous medium and an adjacent horizontal fluid layer have 

received considerable attention. This is due to the fact that this 

type of problems stems from the wide range of engineering 

applications such as electronic cooling, drying process, thermal 

insulation, crude oil extraction and geothermal engineering. 

A thorough understanding of fluid mechanics and heat 

transfer characteristics in porous media is quite complicated. The 

study of the fluid flow boundary conditions at the interface region 

was one of the first attempts of Beavers and Joseph [6]. A slip in 

the velocity at the interface was detected by them after 

performing a series of experiments. One of the earlier attempts 

regarding this type of boundary condition in porous medium was 

presented by Neale and Nadar [7]. In this study, the authors 

proposed continuity in both the velocity and the velocity gradient 

at the interface by introducing the Brinkman term in the 

momentum equation for the porous side. Vafai and Kim [8] 

considered the shear stress in the fluid and the porous medium to 

be equal at the interface region. Vafai and Thiyagaraja [9] 

considered continuity of shear stress and heat flux at the interface 

for the non-Darcy model. Following the analysis of Vafai and 

Thiyagaraja [9], Malashetty et al. [10, 11], Umavathi et al. [12-

16] and Prathap Kumar et al. [17-18] studied convective heat 

transfer in a composite porous medium. 

Recent technological implications have given rise to 

increased interest in combined free and forced convection flow in 

vertical channels in which the objective is to secure the 

quantitative understanding of the configuration having current 

engineering applications. Al-Hadharami et al. [19], and Param 

and Keyhani [20] studied fully developed buoyancy-assisted 

mixed convection in a vertical annulus by using the Brinkman-

extended Darcy model. Their results indicated that the Brinkman 

term could be neglected for lower Darcy numbers. Murulidhar 

[21] performed a numerical calculation for buoyancy-assisted 

mixed convection in a vertical annulus by using Darcy model. 

Analytical Taylor series solutions have been reported for the 

mixed convection in a vertical channel for isoflux-isothermal wall 

conditions by Barletta et al. [22]. The same approach has been 

applied to the mixed convection channel flow of clear fluids for 

the case of symmetrical isothermal-isothermal wall conditions by 

Barletta et al. [23]. In the past, the laminar forced convection heat 

transfer in the thermal entrance region of a rectangular channel 

has been analyzed either for the temperature boundary conditions 

of the first kind, characterized by prescribed wall temperature 

(Wibulswas, [24], Lyczkowski et al., [25], and Javeri, [26]) or for 

the boundary conditions of the second kind, expressed by the 

prescribed wall heat flux (Hicken, [27], Sparrow and Siegel, 

[28]). Zanchini, [29] analyzed the effects of viscous dissipation 

on mixed convection in a vertical channel with boundary 

conditions of third kind.  Recently Umavathi and Santhosh [30, 

31] and Umavathi et al. [32, 33] studied mixed convection in a 

vertical channel with boundary conditions of third kind. 
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A popular analytic method frequently employed in fluid 

dynamics is the perturbation method (Rashidi and Ganji, [34]). 

Numerical methods such as the Runge-Kutta method and finite 

difference techniques (Bẻg et al., [35]) are based on 

discretization techniques, and they permit computation of only 

approximate solutions for some values of the time and space 

variables. However, both numerical and perturbation methods 

themselves fail to yield a simple method for adjusting or 

controlling the convergence region and rate of a given 

approximate series. To overcome this difficulty, Zhou [36] 

employed the basic ideas of the differential transform method 

(DTM) for ordinary differential equations. The main advantage 

of DTM is that without requiring linearization, discretization, or 

perturbation techniques, it can be applied directly to non-linear 

differential equations Another important advantage is that this 

method is capable of greatly reducing the size of computational 

work while still accurately providing the series solution with fast 

convergence rate. This method is well addressed in Yeh et al., 

[37], Ravi Kanth and Aruna, [38], Abdel-Halim Hassan, [39], 

Rashidi, [40], Yaghoobi and Torabi, [41] and Rashidi et al., [42]. 

In this article, a detailed analytical and semi-analytical 

investigation of the steady mixed convection in a vertical channel 

filled with composite porous medium with boundary conditions 

of third kind is presented. The flow in the porous medium is  the 

non-Darcy model. Both equal and different reference 

temperatures of the external fluid, as well as both equal and 

different Biot numbers are considered. 

Mathematical Formulation 
The geometry under consideration illustrated in Fig. 1 

consists of two infinite parallel plates extending in the X  and Z  

directions. The region 1 2 0h Y    is occupied by a permeable 

fluid with permeability  , density 1 , viscosity  1 , thermal 

conductivity 1k , and thermal expansion coefficient 1 , and the 

region 20 2Y h 
 

is occupied by a purely viscous, 

incompressible fluid of density 2 , viscosity 2 , thermal 

conductivity 2k , and thermal expansion coefficient 2 . The 

fluids are assumed to have constant properties except the density 

in the buoyancy term in the momentum equation 

 1 0 1 1 01 T T        and  2 0 2 2 01 T T       . A fluid 

rises in the channel driven by buoyancy forces. The transport 

properties of both fluids are assumed to be constant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We consider the fluids to be incompressible and the flow is 

steady, laminar, and fully developed. It is assumed that the only 

non-zero component of the velocity q  is the   X-component 

( 1,2)iU i  . Thus, as a consequence of the mass balance 

equation, one obtains 

0iU

X





                                         (1) 

so that iU
 

depends only on Y . The stream wise and the 

transverse momentum balance equations yields 
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The Y -momentum balance equation in both the regions can be 

expressed as 

0
P

Y





                       (4) 

where 0P p gX  (assuming 1 2p p p  ) is the difference 

between the pressure and hydrostatic pressure. On account of Eq. 

4, p
 
depends only on X  so that Eqs. 2 and 3 can be rewritten as 
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From Eqs. 5 and 6 one obtains  
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Both the walls of the channel will be assumed to have a 

negligible thickness and to exchange heat by convection with an 

external fluid. In particular, at 1 2Y h   the external 

convection coefficient will be considered as uniform with the 

value 1q
 

and the fluid in the region 1 2 0h Y  
 

will be 

assumed to have a uniform reference temperature
1qT . At 

2 2Y h
 
the external convection coefficient will be considered 

as uniform with the value 2q and the fluid in the region 

Fig. 1. Physical configuration 
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20 2Y h 
 

will be supposed to have a uniform reference 

temperature
2 1q qT T . Therefore, the boundary conditions on the 

temperature field can be expressed as 

 
1

1

1

1 1 1 1

2

, 2q
h

Y

T
k q T T X h

Y 


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             (13)  
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On account of  Eqs. 8 and 11, Eqs. 13 and 14 can be rewritten as 

  
1
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



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On account of Eqs. 5 and 6 there exist a constant A  such that  

dP
A

dX
                               (17) 

For the problem under examination, the energy balance equation 

in the presence of viscous dissipation can be written as  
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 From Eqs. 9 and 18, Eqs.12 and 19 allow one to obtain 

differential equations for iU
 
namely 
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 The boundary conditions on velocity are no-slip 

conditions, and those induced by boundary conditions on 

temperature. In addition, the continuity of velocity, shear stress, 

temperature and heat flux at the interface between the two layers 

are assumed as:  

   1 1 2 22 2 0U h U h                   (22)  

together with Eqs. 15 and 16, which on account of Eqs. 5 and 6 

can be rewritten as  
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   1 20 0U U  

1 2

1 2

dU dU

dY dY
   at 0Y   

   1 20 0T T  

1 2

1 2

dT dT
k k

dY dY
    at 0Y                                   (24) 

Equations 20-24 determine the velocity distribution. They can be 

written in a dimensionless form by means of the following 

dimensionless parameters: 
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where 2i iD h  is the hydraulic diameter. The reference velocity 

and the reference temperature are given by 
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
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Moreover, the temperature difference T  is given by 

2 1q qT T T  
 
if

1 2q qT T . As a consequence, the dimensionless 

parameter TR  can only take the values 0 or 1. More precisely, the 

temperature difference ratio TR  is equal to 1 for asymmetric 

heating i.e.
1 2q qT T , while 0TR   for symmetric heating 

i.e.
1 2q qT T , respectively. Equation 17 implies that A  can be 

either positive or negative. If 0A  , then 0

iU , Re and   are 

negative, i.e. the flow is downward. On the other hand, if 0A  , 

the flow is upward, so that 0

iU , Re , and  are  positive. Using 

Eqs. 25 and 26, Eqs. 20-24 becomes 
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The boundary and interface conditions becomes  

   1 21 4 1 4 0u u   ,       

   2

1 20 0u mh u ,       
   1 20 0du du

h
dy dy

 ,     

 2 2

21 2

12 2

48 11 nbd u d u
u

nb nbdy dy


 
   

 
 at 0y   

3 3

21 1 2

3 3

1d u du d u

dy nbkhdy dy


 
  

 
                at 0y   



32837                                                J. Prathap Kumar et al./ Elixir Appl. Math. 83 (2015) 32834-32845 

2 32

1 1 1

2 3

1 1 11 4

1 4
48 1

2

T

y

d u du d u R
s

Bi dy Bi Bidy dy





   
         

  
,  

2 3

2 2

2 3

2 21 4

1 4
48 1

2

T

y

d u d u R
sbn

Bi Bidy dy


   
        

  
               (29) 

Basic Idea of Differential transformation method (DTM) 

Suppose  u y  is analytic in a domain D, then it will be 

differentiated continuously with respect to y  in the domain of 

interest. The differential transform of function  u y  is defined 

as  

 

0

1
( )

!

k

k

y

d u y
U k

k dy


 
  

  
               (30) 

where  u y  is the original function and  U k  is the 

transformed function which is called the T-function. 

The differential inverse transform of  U k  is defined as follows: 

   
0

k

k

u y U k y




                (31) 

In real applications, the function  u y  by a finite series of Eq. 

31 can be written as 
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n
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u y U k y
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and Eq. 31 implies that    
1

k

k n

u y U k y


 

   and is neglected as 

it is small. Usually, the values of n are decided by a convergence 

of the series coefficients.  

The fundamental mathematical operations performed by 

differential transform method are listed in Table 1. 

 

Table 1. The Operations for the One-Dimensional 

Differential Transform Method. 

 
Original function Transformed function 

( ) ( ) ( )y x g x h x   ( ) ( ) ( )Y k G k H k   
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Solutions 

Case of Negligible Viscous Dissipation  0Br    

The solution of Eqs. 27 and 28 using boundary and 

interface conditions defined as in   Eq. 29 in the absence of 

viscous dissipation term  0Br   is given by 

Region-I 

   1 1 2 3 4cosh sinhu c c y c y c y                  (33) 

Region-II 
2 3

2 5 6 7 8u c c y c y c y                       (34) 

Using Eq. 29 in Eqs. 5 and 6, the energy balance equations 

becomes 
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1 12

1
48

d u
u

dy
 
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                  (35) 
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d u

bn dy

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  
                   (36) 

Using the expressions obtained in Eqs. 33 and 34 the energy 

balance Eqs. 35 and 36 becomes 
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1
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Case of Negligible Buoyancy Force  0    

The solution of Eqs. 27 and 28 can be obtained when 

buoyancy forces are negligible ( 0  ) and viscous dissipation 

is dominating ( 0Br  ), so that purely forced convection occurs. 

For this case,solutions of Eqs. 27 and 28, using the boundary and 

interface conditions given by Eq. 29, the velocities are given by 
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             (39) 
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The energy balance Eqs. 18 and 19 in non-dimensional form can 

also be written as 

Region-I 
22

2 21 1

12

d du
Br u

dydy




  
       

                          (41) 

Region-II 
22

42 2

2

d du
Br kmh

dydy

  
   

 
                         (42) 

The boundary and interface conditions for temperature are  

 1 1

1 1

11 4

4
1 4 1

2

T

y

d Bi R s
Bi

dy Bi






 
    

 
 

 2 2

2 2

21 4

4
1 4 1

2

T

y

d Bi R s
Bi

dy Bi






 
   

 
 

   1 20 0  ;    
   1 20 01d d

dy kh dy

 
                (43)                      

Using Eqs. 39 and 40, solving Eqs. 41 and 42 we obtain 

 

Region-I 

 

   

   

1 2

3 4

1 1 2

5 6

4 3 2

7 8 9

cosh 2 sinh 2

cosh sinh

cosh sinh

G y G y

G y G y
Br F y F

G y y G y y

G y G y G y

 

 


 

 
 
  

    
  
 
   

          (44) 

Region-II 
2 3 4 5 6

2 10 11 12 13 14 3 4G y G y G y G y G y F y F                    (45) 
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Combined Effects of Buoyancy Forces and Viscous 

Dissipation 

We solve Eqs. 27 and 28 using the perturbation method 

(PM) with a dimensionless parameter  (<<1) defined as  

Br                   (46)  

and does not depend on the reference temperature difference 

T . To this end the solutions are assumed in the form 

         2

0 1 2

0

... n

n

n

u y u y u y u y u y  




                    (47) 

Substituting Eq.47 in Eqs. 27 and 28 and equating the 

coefficients of like powers of   to zero, we obtain the zero and 

first order equations as follows: 

Region-I 

Zeroth-order equations 
4 2

210 10

4 2
0

d u d u

dy dy
                            (48) 

First-order equations 
24 2

2 2 21011 11

104 2

dud u d u
u

dydy dy
 

 
   

 
                 (49) 

Region-II 

Zeroth-order equations 
4

20

4
0

d u

dy
                                   (50) 

First-order equations 
24

4 2021

4

dud u
mnbkh

dydy

 
  

 
                            (51) 

The corresponding boundary and interface conditions given by 

Eq. 29 for the zeroth and first order  reduces to 

Zeroth-order  

   10 201 4 1 4 0u u   ,     

   2

10 200 0u mh u ,  
   10 200 0du du

h
dy dy

  

 2 2

210 20

102 2

48 11 nbd u d u
u

nb nbdy dy


 
   

 
  at   0y   

3 3

210 10 20

3 3

1d u du d u

dy nbkhdy dy


 
  

 
              at   0y   

2 32

10 10 10

2 3

1 1 11 4

1 4
48 1

2

T

y

d u du d u R
s

Bi dy Bi Bidy dy





   
         

  

2 3

20 20

2 3

2 21 4

1 4
48 1

2

T

y

d u d u R
sbn

Bi Bidy dy


   
        

  
            (52) 

First-order  

   11 211 4 1 4 0u u           

   2

11 210 0u mh u ;   
   11 210 0du du

h
dy dy

  

2 2

211 21

112 2

1d u d u
u

nbdy dy


   
    

   
 at   0y      

3 3

211 11 21

3 3

1d u du d u

dy nbkhdy dy


 
  

 
  at   0y  , 

2 32

11 11 11

2 3

1 1 1 4

1
0

y

d u du d u

Bi dy Bidy dy





 
   

 
; 

 
2 3

21 21

2 3

2 1 4

1
0

y

d u d u

Bidy dy


 
  

 
                               (53) 

Solutions of zeroth-order Eqs.48 and 50 using boundary and 

interface conditions as in Eq.52 are 

   10 1 2 3 4cosh sinhu H H y H y H y                 (54) 

2 3

20 5 6 7 8u H H y H y H y                  (55) 

Solutions of first-order Eqs.49 and 51 using boundary and 

interface conditions as in Eq. 53 are 

     

     

   

11 9 10 11 12 10

11 12 13

2 2 4 3 2

14 15 16 17 18

cosh sinh cosh 2

sinh 2 sinh 2 cosh

cosh sinh

u H H y H y H y k y

k y k y y k y y

k y y k y y k y k y k y

  

  

 

    

  

    

    

                                                                                 (56) 

8 7 6 5 4 31

21 5 6 7 8 9

22

3 4

6

2

M
u M y M y M y M y M y y

M
y M y M

     

  

            (57) 

Using velocities given by Eqs. 54-57, the expressions for energy 

balance Eqs. 35 and 36 becomes 

Region-I 

   

   

    

   



   

  

2 2

10 11

12 13

14

1 15

2 2

16 17 18 9 10

10 11

4 3 2 2

16 17 18 1 2

48 4 cosh 2 4 sinh 2

2 cosh 2 sinh

4 sinh 2cosh

1
4 cosh 2sinh

12 6 2

cosh 2 sinh 2

k y k y

k y k y

k y y y

k y y y

k y k y k H H y

k y k y

k y k y k y H H y

    

   

  

   



 



  
 
  
 
  

  

    

 

    
 











    (58)    

Region-II 

 



6 5

2 7 8 5 6

4 3 2

7 8 9 1 2

1
48 2 6 56 42

30 20 2

H H y M y M y
bn

M y M y M y M y M

      


    

           (59) 

Solution with Differential Transform method 

Differential Transformation Method has been applied for 

solving Eqs. 27 and 28. Taking the differential transformation of 

Eqs.27 and 28 with respect to k , and following the process as 

given in Table 1 yields: 

 

    
    

  

2

0

1
( 4) ( 1 2 2

1 2 3 4

1 1 ( 1) ( 1))
r

s

U r r r U r
r r r r

Br r s s U r s U s





    
   

      
 

                                                                         (60) 

    

  1

0

1
( 4)

1 2 3 4

1 1 ( 1) ( 1)
r

s

V r
r r r r

Br A r s s V r s V s


 
   

 
       
 


  (61) 

 

The differential transform of the initial conditions are as follows 

 

       3 4

1 20 ; 1 ; 2 ; 3
2! 3!

c c
U c U c U U    ;   1

2
0

c
V

mh
 ,  
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  21
c

V
h

 ;  
 2

3 1 48( 1)
2 ;

2

c c nb nb
V

  
   

  
 2

4 2
3

6

c c nbkh
U


                                                         (62) 

where  U r  and  V r  are the transformed versions of  1u y  

and  2u y  respectively. 

 

Using the conditions as given in Eq.62, one can evaluate the 

unknowns 1c , 2c , 3c , and 4c . By using the DTM and the 

transformed boundary conditions, above equations that finally 

leads to the solution of a system of algebraic equations. 

 

A Nusselt number can be defined at each boundary, as follows           

  

 
1

1

2 1
1 4

(1 )

1 4 ( 1 4) (1 )T T
y

dh
Nu

dyR R



 





     

 

 
2

2

2 1
1 4

(1 1 )

1 4 ( 1 4) (1 )T T
y

dh
Nu

dyR R



 





     

            (63) 

Result and discussion 

Mixed convection flow and heat transfer in a vertical 

channel containing fluid and porous layers is investigated with 

boundary conditions of third kind. The flow is modeled with 

Darcy-Lapwood-Brinkman equation. The viscous and Darcy 

dissipation terms are included in the energy equation. The 

analytical solutions are found using regular Perturbation method 

with the product of mixed convection parameter  ReGr   and 

Brinkman number Br as perturbation parameter. Since the 

analytical solutions are valid only for small values of the 

perturbation parameter  1  , the governing equations are 

solved using Differential Transform Method which is a semi 

analytical method valid for all values of  . 

The flow field in the case of asymmetric heating  1TR   

and symmetric heating  0TR  for equal and unequal Biot 

numbers are obtained and shown graphically in Figures 2-12 in 

the absence of viscous dissipation. The velocity is evaluated and 

is shown in Fig. 2 for different values of porous parameter   for 

equal Biot numbers. It is seen that velocity profiles for 400   

shows a flow reversal near the cold wall at 1 4y   . It is also 

observed from Fig. 2 that as the porous parameter  increases 

velocity decreases for all values of  . 
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1
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2
 = 10, Br = 0

Fig. 2. Plots of u versus y for different values of  and .

  = 4

  = 8

u

y

 
In the absence of mixed convection parameter   the non-

dimensional temperature field   is evaluated for different values 

of Brinkman number Br and are shown in Figs.3a,b for equal and 

unequal Biot numbers respectively. It is seen from Figs. 3a,b that 

in the absence of mixed convection parameter   and viscous 

dissipation  0Br  , the temperature field is linear indicating 

that the heat transfer is purely by conduction. Although the 

conduction region holds for 0Br  , the temperature is almost 

linear in the middle of the channel for 0Br  also indicating that 

the convection dominates in the boundary region. As Brinkman 

number Br increases the temperature field increases for both 

equal and unequal Biot numbers. Further these two figures also 

reveal that for any value of Brinkman number the temperature 

decreases as the porous parameter  increases for both equal and 

unequal Biot numbers. The nature of profiles in the absence of 

viscous dissipation (Fig. 2) and mixed convection parameter   

(Figs. 3a, b) are the similar result obtained by Umavathi and 

Santhosh [30, 31] for one fluid model. 
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Fig. 3a. Plots of  versus y for different values of Br
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Fig. 3b. Plots of  versus y for different values of Br

  = 4

  = 8

m = k = h = 1

Bi
1
 = 1, Bi

2
 = 10

R
T
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 = 0

 The effect of porous parameter  on the flow for 

upward  0   and for downward  0  flow for equal Biot 

numbers is shown in Figs. 4a, b. As the porous parameter   

increases the fluid velocity decreases both in the porous region 

and also in clear viscous fluid region. This is because of the fact 

that for large porous parameter , the frictional drag resistance 

against the convection is very large and as a result the velocity is 

very small in the porous region. The velocity also decreases in 

clear viscous fluid region as   increases, which is due to the 

dragging effect from the porous region to clear viscous region at 

the interface. There is no much effect of porous parameter   on 

the temperature as seen in Fig.4b. The effect of porous parameter 
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  on the flow was the similar result obtained by Umavathi and 

Santhosh [30, 31] for one fluid model. 
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0.0

0.5

1.0

1.5

2.0

8

8

6

6

 = 4

Region-IIRegion-I

m = n = b = k = h = 1

Bi
1
 = Bi

2
 = 10

R
T
 = 1

 = 0.1

 = 4

Fig. 4a. Plots of u versus y for different values of 
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Figures 5a and 5b shows the variation of non-dimensional 

velocity u and temperature   profiles for 500, 4    and 

for different values of   for equal Biot numbers. For upward 

flow  0   the velocity and temperature fields are increasing 

functions of  and for downward flow  0   velocity field is a 

decreasing function of  , where as temperature is an  increasing 

functions of  . The effect of  on velocity field is stronger while 

that on the temperature field is weaker. One can also reveal from 

the Fig. 5a that flow reversal occurs at the left wall for upward 

flow and at the right wall for downward flow. This is because the 

increase in perturbation parameter  implies the enhancement of 

viscous dissipation which results in higher values of temperature 

which in turn enhances the buoyancy force. Therefore increase in 

the buoyancy force increases the fluid flow for 0  and 

decreases the fluid flow for 0  . Figures 5a and 5b also reveal 

that the PM and DTM solutions are close for 0  and differ 

substantially as  increases. The effect of  and   show the 

similar result observed by Prathap Kumar et al. [17] for 

isothermal boundary conditions and also by Umavathi and 

Santhosh [30, 31] for one fluid model for boundary conditions of 

third kind. 

 The effect of viscosity ratio parameter m  on the flow for 

equal Biot numbers is depicted graphically in Figs. 6a and 6b 

for 500  . As the viscosity ratio m increases the velocity 

increases in the porous region and decreases in the viscous 

region. This nature can be interpreted as follows. The viscosity 

ratio m  is taken as the ratio of viscosity of the porous region to 

the viscosity of the clear fluid region. Increase in the value of m  

for values of 1m   implies the viscosity of porous medium is 

less than the viscosity of clear fluid region and hence the velocity 

decreases in the clear fluid region as m  increases. Further the 

magnitude of velocity in Region-II is less than the magnitude of 

velocity in Region-I. The jump at the interface is due to the 

interface condition imposed at the interface. Further one can also 

observe that as the porous parameter  increases the velocity 

decreases in both the regions. However its effect is not 

significant on temperature field. 
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Fig. 5a. Plots of u versus y for different values of 
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 The effect of width ratio parameter h  on the velocity and 

temperature fields is shown in Figs. 7a and 7b respectively. As 

the parameter h increases both the velocity and temperature 

fields decreases. The width ratio h is taken as the ratio of clear 

fluid layer to porous fluid layer. As the parameter h  increases 

implies that increase in the width of the clear fluid layer 

compared to that of  porous fluid layer, the weaker the flow field. 

It can also be seen from the Figs. 7a and 7b that the magnitude of 

velocity and temperature is less in the porous fluid layer 

compared to the viscous fluid layer. Further one can also explore 

from these figures that as the porous parameter increases the 

velocity decreases both in the porous and viscous fluid layer. 

However the effect of   on temperature is not significant. 
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Fig. 6b. Plots of  versus y for different values of m
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Fig. 7a. Plots of u versus y for different values of h

 
The effect of conductivity ratio  1 2k k k on the velocity and 

temperature fields is shown in the Figs. 8a and 8b respectively 

for equal Biot numbers. As the conductivity ratio k  increases 

both the velocity and temperature fields decreases. That is to say 

that larger the thermal conductivity of the clear fluid layer 

compared to the porous fluid layer, the smaller the velocity and 

temperature field. Figures 8a and 8b also reflects that as the 

porous parameter   increases velocity decreases in both the 

regions and is invariant on temperature field. The effect of 

,m h and k on the flow was the similar result obtained by Prathap 

Kumar et al. [17] for isothermal boundary conditions. 
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Figures 9a and 9b are the dimensionless velocity u and 

temperature   for different values of   and  considering 

different values for Biot numbers at the left and right walls. It is 

noticed that there is no flow reversal for large values of mixed 

convection parameter   for unequal Biot numbers when 

compared with equal Biot numbers for both upward  0   and 

for downward  0   flow. Further it is also observed from Fig. 

9b that temperature increases more at the cold wall when 

compared with the hot wall. That is to say that temperature 

increases more at the wall which has smaller external convection 

coefficient. Comparing the flow nature for equal Biot numbers 

(Figs. 5a,b) and for unequal Biot numbers (Figs. 9a,b) reveals 

that effect of  on u  and   becomes stronger if either 1Bi or 

2Bi  becomes stronger. The effect of porous parameter   on u  

and   for unequal Biot numbers is depicted in Figs. 10a,b. Here 

also as the porous parameter  increases velocity decreases in 

both the regions for both buoyancy assisting  0   and 

buoyancy opposing  0   flow and temperature remains 

invariant. The effect of ,   and   for unequal Biot numbers on 

the velocity and temperature field was the similar result observed 

by Umavathi and Santhosh [30] for one fluid model. 
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Figures 11a,b and 12a,b shows the velocity and   for 

symmetric wall heating condition for equal and unequal Biot 

numbers. It is observed from these figures that both u  and   

are increasing functions of  . These Figures also reveal that the 

temperature profiles are symmetric for equal Biot numbers and is 

more significant in the case of upward flow than in the case of 

downward flow. Further one can also come to the conclusion that 

the effect of  on u  and   become stronger if either 1Bi or 2Bi  

becomes smaller for symmetric heating  also (similar nature was 

also observed for asymmetric heating). The effect of 
1Bi and 2Bi  

for asymmetric and symmetric heating on the flow show the 

similar nature obtained by Umavathi and Santhosh [30] for one 

fluid model. 

Figures 9a,b, 11a,b and 12a,b suggest that the solutions 

obtained by PM and DTM agree very well for small values of   

and the difference becomes very large as  increases for both 

assisting and opposing flow.  
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The rate of heat transfer at both the walls for variation of    

is shown in Fig.13. The Nusselt numbers at the cold wall is a 

decreasing function of mixed convection parameter  for 

upward flow and increasing function of  for downward flow. 

The rate of heat transfer is more for smaller values of  at the 

left wall. The Nusselt number is an increasing function of mixed 

convection parameter  for downward flow at the hot wall and 

decreasing function of  for upward flow. The flow nature of 

Nusselt number on    is the similar result obtained by 

Umavathi and Santhosh [30,31] for one fluid model. 
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Tables 2-4 are the velocity and temperature solutions 

obtained by PM and DTM for symmetric and asymmetric wall 

heating conditions varying the perturbation parameter   for 

equal and unequal Biot numbers.  In Table 2, it is seen that in the 

absence of perturbation parameter, the PM and DTM solutions 

are equal for both the velocity and temperature fields.  When the 

perturbation parameter   is increased  2  , it is seen that the 

PM and DTM solutions do not agree.  Similar nature is also 

observed in Table3 and 4 for PM and DTM solutions.  Table 2 

and 3 are the solutions of velocity and temperature for 

asymmetric wall heating conditions for equal and uneqal Biot 

numbers respectively.  Table 2 and 3 also reveals that the 

percentage of error is large at the interface for velocity when 

compared with the error at the boundaries.  Further the 

percentage of error between PM and DTM is large for unequal 

Biot numbers when compared with eqal Biot numbers.  Table 4 

display the solutions of symmetric wall heating conditions for 

equal Biot numbers.  The percentage of error is less for 

symmetric wall heating conditions for equal Biot numbers when 

compared with asymmetric wall heat conditions. 

Table 2. Values of Velocity and Temperature for 500   

and  1, 4TR    

y  

0  , 1 2 10Bi Bi   2  , 1 2 10Bi Bi   

PM DTM 
% 

Error 
PM DTM 

% 

Error 

Velocity  

-0.25 0.00000 0.00000 0.00 0.00000 0.00000 0.00 

-0.15 0.14181 0.14181 0.00 0.25104 0.27456 2.35 

-0.05 0.90598 0.90598 0.00 1.08579 1.12404 3.82 

0.00 1.33271 1.33271 0.00 1.53026 1.57208 4.18 

0.05 1.66331 1.66331 0.00 1.86211 1.90410 4.20 

0.15 1.60737 1.60737 0.00 1.74692 1.77639 2.95 

0.25 0.00000 0.00000 0.00 0.00000 0.00000 0.00 

 Temperature 

-0.25 -0.35714 -0.35714 0.00 -0.35147 -0.35019 0.13 

-0.15 -0.21429 -0.21429 0.00 -0.20306 -0.20052 0.25 

-0.05 -0.07143 -0.07143 0.00 -0.05600 -0.05272 0.33 

0.00 0.00000 0.00000 0.00 0.01633 0.01973 0.34 

0.05 0.07143 0.07143 0.00 0.08793 0.09135 0.34 

0.15 0.21429 0.21429 0.00 0.23058 0.23404 0.35 

0.25 0.35714 0.35714 0.00 0.36922 0.37171 0.25 

Table 3. Values of Velocity and Temperature for 500   

and  1, 4TR    

y  

0  , 
1 21, 10Bi Bi   2  , 

1 21, 10Bi Bi   

PM DTM 
% 

Error 
PM DTM 

% 

Error 

Velocity 

-0.25 0.00000 0.00000 0.00 0.00000 0.00000 0.00 

-0.15 0.49088 0.49088 0.00 0.55630 0.56788 1.16 

-0.05 1.04996 1.04996 0.00 1.14759 1.16459 1.70 

0.00 1.28498 1.28498 0.00 1.38810 1.40592 1.78 

0.05 1.42424 1.42424 0.00 1.52459 1.54182 1.72 

0.15 1.18649 1.18649 0.00 1.25303 1.26431 1.13 

0.25 0.00000 0.00000 0.00 0.00000 0.00000 0.00 

 Temperature 

-0.25 -0.15625 -0.15625 0.00 -0.14814 -0.14660 0.15 

-0.15 -0.09375 -0.09375 0.00 -0.08504 -0.08345 0.16 

-0.05 -0.03125 -0.03125 0.00 -0.02264 -0.02113 0.15 

0.00 0.00000 0.00000 0.00 0.00823 0.00965 0.14 

0.05 0.03125 0.03125 0.00 0.03897 0.04028 0.13 

0.15 0.09375 0.09375 0.00 0.10038 0.10146 0.11 

0.25 0.15625 0.15625 0.00 0.16054 0.16120 0.07 

Table 4 Values of Velocity and Temperature for  

0, 4TR    

y  
0  , 

1 2 10Bi Bi   2  , 
1 2 10Bi Bi   

PM DTM % Error PM DTM 
% 

Error 

 Velocity 

-0.25 0.00000 0.00000 0.00 0.00000 0.00000 0.00 

-0.15 0.76238 0.76238 0.00 0.81554 0.82474 0.92 

-0.05 1.16194 1.16194 0.00 1.24466 1.25897 1.43 

0.00 1.24786 1.24786 0.00 1.33665 1.35201 1.54 

0.05 1.23829 1.23829 0.00 1.32593 1.34108 1.52 

0.15 0.85915 0.85915 0.00 0.91858 0.92884 1.03 

0.25 0.00000 0.00000 0.00 0.00000 0.00000 0.00 

 Temperature 

-0.25 0.00000 0.00000 0.00 0.00397 0.00465 0.07 

-0.15 0.00000 0.00000 0.00 0.00650 0.00762 0.11 

-0.05 0.00000 0.00000 0.00 0.00725 0.00850 0.13 

0.00 0.00000 0.00000 0.00 0.00718 0.00843 0.13 

0.05 0.00000 0.00000 0.00 0.00699 0.00819 0.12 

0.15 0.00000 0.00000 0.00 0.00638 0.00748 0.11 

0.25 0.00000 0.00000 0.00 0.00408 0.00478 0.07 
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Conclusions 

The analytical (PM) and semi-analytical (DTM) solutions 

were found for the problem of steady laminar mixed convective 

flow in a vertical channel filled with porous and fluid layers 

using boundary conditions of third kind.  The following 

conclusions were drawn. 

1. The flow at each position was an increasing function of   for 

upward flow and decreasing function of   for downward flow. 

2. The porous parameter suppresses the flow for symmetric and 

asymmetric wall heating conditions for all the governing 

parameters. 

3. Flow reversal was observed for asymmetric wall heating for 

equal Biot numbers and there is no flow reversal for unequal Biot 

numbers. 

4. The viscosity ratio increases the flow in porous region and 

decreases in viscous region for equal Biot numbers.  The width 

ratio and conductivity ratio suppress the flow in both the regions 

for equal Biot numbers.  Similar result was also observed by 

Prathap Kumar et al. (2009) for isothermal boundary conditions. 

5. The Nusselt number at the cold wall was increasing function 

of   and decreasing function of  .  The Nusselt number at the 

hot wall was decreasing function of   and increasing function 

of  . 

6. The percentage of error between PM and DTM agree very 

well for small values of perturbation parameter. 

7. Fixing equal values for viscosity, width and conductivity for 

fluids in both the regions we get back the results of Umavathi 

and Santosh (2012a,b) for one fluid model. 
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