One Point Determining and Two Point Distinguishing Graphs

Elachini V. La1 ${ }^{1}$, Palleeluveedu R. Sujith ${ }^{2}$ and Karakkattu S. Parvathy ${ }^{3}$
${ }^{1}$ Department of Higher Secondary, Govt. HSS Kuttippuram, Kerala, India - 679571.
${ }^{2}$ Department of Higher Secondary, Paruthur HSS Pallippuram, Kerala, India - 679335.
${ }^{3}$ Department of Mathematics, St. Mary's College, Thrissur, Kerala, India - 680020.

ARTICLE INFO

Article history:

Received: 27 December 2014;
Received in revised form:
25 May 2015;
Accepted: 30 May 2015;

Keywords

One point determining graphs,
Two point distinguishing graphs.

Abstract

A point determining graph is defined to be a graph in which distinct non adjacent points have distinct neighborhoods. If in addition any two distinct points have distinct closed neighborhoods, it is called point distinguishing graph. A graph \mathbf{G} is said to be one point determining, if for any two distinct vertices $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}} \mathbf{N}\left(\mathbf{v}_{\mathbf{1}}\right)$ and $\mathbf{N}\left(\mathbf{v}_{\mathbf{2}}\right)$ have at most one vertex in common. A graph \mathbf{G} is said to be two point distinguishing if for any two distinct vertices $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$, the closed neighborhood $\mathbf{N}\left[\mathbf{v}_{\mathbf{1}}\right]$ and $\mathbf{N}\left[\mathbf{v}_{\mathbf{2}}\right]$, have at most two vertices in common. Here we focus on some properties of one point determining and two point distinguish- ing graphs.

© 2015 Elixir All rights reserved.

Introduction

By a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$, we mean a finite, undirected, connected graph with no loop or multiple edges. For basic graph theoretic terminology, we refer to [1, 2, 3]. The point determining graphs were introduced by D.P.Summner [4] and point distinguishing graphs were defined by R.C Entringer and L.D Gassman [5]. For, a vertex ' \boldsymbol{a} ' $\boldsymbol{C} \boldsymbol{V} \boldsymbol{G}$), the open neighborhood of \boldsymbol{a}, denoted by $\boldsymbol{N}(\boldsymbol{a})$, is the set of all vertices in \boldsymbol{G} that are adjacent to ' \boldsymbol{a} '. A graph \boldsymbol{G} is said to be point determining if for any two distinct non-adjacent vertices ' \boldsymbol{a} ' and ' \boldsymbol{b} ' of $\boldsymbol{G}, \boldsymbol{N}(\boldsymbol{a}) \neq \boldsymbol{N}(\boldsymbol{b})$. The closed neighborhood of a vertex ' \boldsymbol{p} ', denoted by $\boldsymbol{N}[\boldsymbol{p}]$ is defined to be $\boldsymbol{N}(\boldsymbol{p}) \mathbf{U}\{\boldsymbol{p}\}$. A graph \boldsymbol{G} is point distinguishing if $\boldsymbol{N}[\boldsymbol{p}] \neq \boldsymbol{N}[\boldsymbol{q}]$ whenever $\boldsymbol{p} \neq \boldsymbol{q}$.

One point determining graphs

Definition 1: A graph \boldsymbol{G} is said to be one point determining, if for any two
distinct vertices $\boldsymbol{v}_{\mathbf{1}}$ and $\boldsymbol{v}_{\mathbf{2}}, \boldsymbol{N}\left(\boldsymbol{v}_{\mathbf{1}}\right)$ and $\boldsymbol{N}\left(\boldsymbol{v}_{\mathbf{2}}\right)$ have at most one vertex in common.
Example 1: Consider the path graph of order 3 shown in Figure 1.
$N\left(v_{1}\right)=\left\{\boldsymbol{v}_{2}\right\}=N\left(v_{3}\right)$

Figure 1. Example of a one point determining graph
Theorem 1. A graph \boldsymbol{G} is one-point determining if and only if \boldsymbol{G} is $\boldsymbol{C}_{\mathbf{4}}$ free.
Proof: If G contains a 4 - cycle, $\boldsymbol{v}_{1} \boldsymbol{v}_{2} \boldsymbol{v}_{3} \boldsymbol{v}_{4} \boldsymbol{v}_{1}$ then $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{3}} \in \boldsymbol{N}\left(\boldsymbol{v}_{2}\right)$ and $\boldsymbol{N}\left(\boldsymbol{v}_{4}\right)$. Hence the condition is sufficient.
If \boldsymbol{G} is not one-point determining, then there exists $\boldsymbol{v}_{\mathbf{1}}$ and $\boldsymbol{v}_{\mathbf{2}}$ such that $\boldsymbol{N}\left(\boldsymbol{v}_{\mathbf{1}}\right)$ and $\boldsymbol{N}\left(\boldsymbol{v}_{\mathbf{2}}\right)$ contains at least two vertices in common, say, \boldsymbol{u} and \boldsymbol{v}. Then $\boldsymbol{v}_{\mathbf{1}}$ is adjacent to both \boldsymbol{u} and \boldsymbol{v}. Also, \boldsymbol{v}_{2} is adjacent to both \boldsymbol{u} and \boldsymbol{v}. Thus $\boldsymbol{v}_{\mathbf{1}} \boldsymbol{u} \boldsymbol{v}_{\mathbf{2}} \boldsymbol{v} \boldsymbol{v}_{\mathbf{1}}$ form a 4 - cycle. Hence the condition is necessary.
Theorem 2. Let \boldsymbol{G} be a one-point determining. \boldsymbol{G} is point determining if and only
if the following hold: If $\boldsymbol{u}, \boldsymbol{v} \boldsymbol{C} \boldsymbol{V}(\boldsymbol{G}), \boldsymbol{d}(\boldsymbol{u})=\boldsymbol{d}(\boldsymbol{v})=\mathbf{1}$, then $\boldsymbol{N}(\boldsymbol{u}) \neq \boldsymbol{N}(\boldsymbol{v})$.
Proof: Let \boldsymbol{G} be a one-point determining. Then, for any two distinct vertices \boldsymbol{u} and $\boldsymbol{v}, \boldsymbol{N}(\boldsymbol{u})$ and $\boldsymbol{N}(\boldsymbol{v})$ have at most one vertex in common. If \boldsymbol{G} is point determining, then for any two distinct vertices \boldsymbol{u} and $\boldsymbol{v}, \boldsymbol{N}(\boldsymbol{u}) \neq \boldsymbol{N}(\boldsymbol{v})$. So the condition is necessary.

Conversely, let us assume that, $\boldsymbol{d}(\boldsymbol{u})=\boldsymbol{d}(\boldsymbol{v})=\mathbf{1}$, with $\boldsymbol{N}(\boldsymbol{u}) \neq \boldsymbol{N}(\boldsymbol{v})$. Thus pendent vertices have distinct neighborhoods in \boldsymbol{G}. We have to prove that G is point determining If $d(u) \neq \boldsymbol{d}(\boldsymbol{v})$, then $\boldsymbol{N}(\boldsymbol{u}) \neq \boldsymbol{N}(\boldsymbol{v})$.But, if $\boldsymbol{d}(\boldsymbol{u})=\boldsymbol{d}(\boldsymbol{v})$ with $\boldsymbol{d}(\boldsymbol{u})>\mathbf{1}$ and $\boldsymbol{d}(\boldsymbol{v})>$ $\mathbf{1}$, then $\boldsymbol{N}(\boldsymbol{u}) \neq \boldsymbol{N}(\boldsymbol{v})$. Otherwise, \boldsymbol{G} is not one-point determining, which is a contradiction. Hence the condition is sufficient.
Theorem 3. Let \boldsymbol{G} be a bipartite cubic planar graph. Then \boldsymbol{G} is not one-point determining.
Proof: Let \boldsymbol{G} be a bipartite cubic planar graph. Since \boldsymbol{G} is cubic, every vertex is of degree three and hence there exists vertices $\boldsymbol{u}_{\mathbf{1}}$ and \boldsymbol{u}_{2} such that $\boldsymbol{N}\left(\boldsymbol{u}_{1}\right)$ and $\boldsymbol{N}\left(\boldsymbol{u}_{2}\right)$ have three vertices of which two of them is common, say $\boldsymbol{v}_{\mathbf{1}}$ and \boldsymbol{v}_{2}. Then \boldsymbol{u}_{1} is adjacent to both $\boldsymbol{v}_{\boldsymbol{1}}$ and \boldsymbol{v}_{2}. Also $\boldsymbol{u}_{\mathbf{2}}$ is adjacent to both \boldsymbol{v}_{1} and \boldsymbol{v}_{2}. Thus $\boldsymbol{u}_{\mathbf{1}} \boldsymbol{v}_{\mathbf{1}} \boldsymbol{u}_{\mathbf{2}} \boldsymbol{v}_{2} \boldsymbol{u}_{\boldsymbol{1}}$ form a 4 - cycle. Hence, by Theorem1, G is not one-point determining.
Theorem 4: If \boldsymbol{G} is one-point determining, then $\boldsymbol{G}+\boldsymbol{u v}$ is also one-point determining if and only if there doesn't exist an edge $\boldsymbol{u}^{\prime} \boldsymbol{v}^{\prime}$ such that
$u^{\prime} \in N(u)$ and $\boldsymbol{v}^{\prime} \in N(v)$.

E-mail addresses: lamathematics@gmail.com

Proof: Given \boldsymbol{G} is one-point determining and suppose $\boldsymbol{G}+\boldsymbol{u} \boldsymbol{v}$ is also one-point determining Then $\boldsymbol{N}(\boldsymbol{u}) \cap \boldsymbol{N}(\boldsymbol{v})=\varnothing$. For, if $\boldsymbol{N}(\boldsymbol{u}) \cap \boldsymbol{N}(\boldsymbol{v}) \neq \emptyset$, then there exist at least one vertex $\boldsymbol{w}_{\boldsymbol{i}} \in \boldsymbol{N}(\boldsymbol{u}) \cap \boldsymbol{N}(\boldsymbol{v})$ But $\boldsymbol{w}_{\boldsymbol{i}}$ is adjacent to $\boldsymbol{w}_{\boldsymbol{j}}$ for some $\boldsymbol{i} \neq \boldsymbol{j}$. Then $\boldsymbol{u} \boldsymbol{v} \boldsymbol{w}_{\boldsymbol{j}} \boldsymbol{w}_{\boldsymbol{i}} \boldsymbol{u}$ form a 4 - cycle and this shows that $\boldsymbol{G}+\boldsymbol{u} \boldsymbol{v}$ is not one-point determining.

Conversely, \boldsymbol{G} is one-point determining. Then for any two distinct vertices \boldsymbol{v}_{1} and $\boldsymbol{v}_{\mathbf{2}}$ the neighborhoods $\boldsymbol{N}\left(\boldsymbol{v}_{\mathbf{1}}\right)$ and $\boldsymbol{N}\left(\boldsymbol{v}_{2}\right)$ have at most one vertex in common. Suppose there doesn't exist an edge $\boldsymbol{u}^{\prime} \boldsymbol{v}^{\prime}$ such that $\boldsymbol{u}^{\prime} \in \boldsymbol{N}(\boldsymbol{u})$ and $\boldsymbol{v}^{\prime} \in \boldsymbol{N}(\boldsymbol{v})$ Then $\boldsymbol{G}+\boldsymbol{u} \boldsymbol{v}$ is one-point determining. For, if not, there exist \boldsymbol{u} and \boldsymbol{v} such that $\boldsymbol{N}(\boldsymbol{u})$ and $\boldsymbol{N}(\boldsymbol{v})$ contains at least two vertices in common, say, \boldsymbol{u}^{\prime} and \boldsymbol{v}^{\prime}. Then \boldsymbol{u} is adjacent to both \boldsymbol{u}^{\prime} and \boldsymbol{v}^{\prime} and \boldsymbol{v} is adjacent to both \boldsymbol{u}^{\prime} and \boldsymbol{v}^{\prime}. Thus $\boldsymbol{u} \boldsymbol{u}^{\prime} \boldsymbol{v} \boldsymbol{v}^{\prime} \boldsymbol{u}$ form a 4 - cycle. Hence, $\boldsymbol{u}^{\prime} \in \boldsymbol{N}(\boldsymbol{u})$ and $\boldsymbol{v}^{\prime} \in$ $\boldsymbol{N}(\boldsymbol{v})$ - a contradiction. Therefore $\boldsymbol{G}+\boldsymbol{u} \boldsymbol{v}$ is also one-point determining.
Definition 2. Let $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$, be a graph and let \boldsymbol{U} be a subset of \boldsymbol{V}. A subgraph \boldsymbol{H} of \boldsymbol{G} is said to be normal edge induced by \boldsymbol{U} if \boldsymbol{H} is maximal subgraph of \boldsymbol{G} that contains \boldsymbol{U} and all edges of \boldsymbol{G} that are incident on a vertex in \boldsymbol{U}.
Example 2. Consider the path graph of order 6 shown in figure 2 (top).
Let $\boldsymbol{U}=\left\{\boldsymbol{v}_{2}, \boldsymbol{v}_{4}\right\}$. Then the subgraph \boldsymbol{H} shown in figure 2 (bottom) is normal edge induced by U.

Figure 2. Example of a normal edge induced subgraph
Example 3. Consider the graph \boldsymbol{G} shown in Figure 3 (left). Let $\boldsymbol{U}=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}\right\}$. Then the subgraph \boldsymbol{H} shown in Figure 3 (right) is normal edge induced by U.

Figure 3. Normal edge induced subgraph

Nucleus of a One Point Determining Graph

Definition 3. Let \boldsymbol{G} be a one-point determining graph. Then, the set $\boldsymbol{G}^{\mathbf{0 1}}=\{\boldsymbol{v}: \boldsymbol{G} / \boldsymbol{v}$ is one point determining $\}$ is called the nucleus of a one point determining graph \mathbf{G}.
Example 4. Consider the path graph of order 4 shown in Figure 3

Figure 4. For this graph the nucleus is $\boldsymbol{G}^{\mathbf{0 1}}=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{\mathbf{4}}\right\}=\boldsymbol{V}(\boldsymbol{G})$
Example 5. Consider the complete graph $\boldsymbol{K}_{\mathbf{3}}$ shown in Figure 4

Figure 5. $\boldsymbol{K}_{\mathbf{3}}$ The nucleus is $\boldsymbol{K}_{\mathbf{3}}{ }^{\mathbf{0 1}}=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \boldsymbol{v}_{\mathbf{3}}\right\}=\left(\boldsymbol{V}\left(\boldsymbol{K}_{\mathbf{3}}\right)\right.$
Example 6. Consider the petersen graph, \boldsymbol{G}, shown in Figure 5.

Figure 6. \boldsymbol{G} Then for this graph the nucleus is $\boldsymbol{G}^{\mathbf{0 1}}=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \boldsymbol{v}_{\mathbf{3}}, \boldsymbol{v}_{4}, \boldsymbol{v}_{5}, \boldsymbol{v}_{6}, \boldsymbol{v}_{7}, \boldsymbol{v}_{\mathbf{8}}, \boldsymbol{v}_{\mathbf{9}}, \boldsymbol{v}_{\mathbf{1 0}}\right\}=\boldsymbol{V}(\boldsymbol{G})$
Remark: If \boldsymbol{G} is a tree (or a path) then $\boldsymbol{G}^{\mathbf{0 1}}=\boldsymbol{V}(\boldsymbol{G})$. But $\boldsymbol{G}^{\mathbf{0 1}}=\boldsymbol{V}(\boldsymbol{G})$ doesnot imply that \boldsymbol{G} is a tree.
Theorem 5: Let \boldsymbol{G} be a one point determining graph with $\boldsymbol{G}^{\mathbf{0 1}}=\boldsymbol{V}(\boldsymbol{G})$ and every normal edge induced subgraph \mathbf{H}, with $\sum \boldsymbol{d}_{\boldsymbol{H}^{(v)}} \geq$ $\sum \boldsymbol{d}_{\boldsymbol{G}^{(v)}}-\mathbf{1}, H$ is a tree. Then \mathbf{G} is a tree.
Proof: Suppose \boldsymbol{G} is one-point determining and not a tree. Then there is a cycle, except $\boldsymbol{C}_{\boldsymbol{4}}$, in G. If \boldsymbol{H} is a normal edge induced subgraph of \boldsymbol{G} with $\sum \boldsymbol{d}_{\boldsymbol{H}^{(v)}} \geq \sum \boldsymbol{d}_{\boldsymbol{G}^{(v)}}-\mathbf{1}$ and $\boldsymbol{G}^{\mathbf{0 1}}=\boldsymbol{V}(\boldsymbol{G})$ must shows that there is a cycle in \boldsymbol{H} also. Thus \boldsymbol{H} is not a tree. This contradiction shows that \boldsymbol{G} is a tree.
Remark: A graph \boldsymbol{G} is said to be one-point distinguishing graph, if for any two distinct vertices $\boldsymbol{v}_{\mathbf{1}}$ and $\boldsymbol{v}_{\mathbf{2}}$, the closed neighborhoods $\boldsymbol{N}\left[\boldsymbol{v}_{1}\right]$ and $\boldsymbol{N}\left[\boldsymbol{v}_{2}\right]$ have at most one vertex in common. Only trivial graphs are in this type. And so, there is no relevance to one-point distinguishing graph

Two-point distinguishing graphs

Definition 4: A graph \boldsymbol{G} is said to be two-point distinguishing graph, if for any two distinct vertices $\boldsymbol{v}_{\mathbf{1}}$ and $\boldsymbol{v}_{\mathbf{2}}$, the closed neighborhoods $N\left[\boldsymbol{v}_{1}\right]$ and $N\left[v_{2}\right]$, have at most two vertices in common.
Example 7: Consider the path graph of order 5 shown in figure 5

Figure 7. Example of a two point distinguishing graph
Example 8: Consider the following cycle graph $\boldsymbol{C}_{\mathbf{3}}, \boldsymbol{C}_{\mathbf{4}}$ and $\boldsymbol{C}_{\mathbf{6}}$ shown in figure 6

Figure 8
In $\boldsymbol{C}_{3}, \boldsymbol{N}\left[\boldsymbol{v}_{1}\right]=\boldsymbol{N}\left[\boldsymbol{v}_{2}\right]=\boldsymbol{N}\left[\boldsymbol{v}_{3}\right]=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$. Hence, \boldsymbol{C}_{3} is not two-point distinguishing graph. In $\boldsymbol{C}_{4}, \boldsymbol{N}\left[\boldsymbol{v}_{1}\right]=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{4}\right\}$, $N\left[v_{2}\right]=\left\{v_{1}, v_{2}, v_{3}\right\}, N\left[v_{3}\right]=\left\{v_{2}, v_{3}, v_{4}\right\}$ and $\quad N\left[v_{4}\right]=\left\{v_{1}, v_{3}, v_{4}\right\}$. Hence, \boldsymbol{C}_{4} is two-point distinguishing graph. In $C_{6}, N\left[v_{1}\right]=\left\{v_{1}, v_{2}, v_{6}\right\}, N\left[v_{2}\right]=\left\{v_{1}, v_{2}, v_{3}\right\}, N\left[v_{3}\right]=\left\{v_{2}, v_{3}, \quad v_{4}\right\}, \quad N\left[v_{4}\right]=\left\{v_{3}, v_{4}, v_{5}\right\}, N\left[v_{5}\right]=\left\{v_{4}, v_{5}, v_{6}\right\}, N\left[v_{6}\right]=$ $\left\{v_{1}, v_{5}, v_{6}\right\}$. Hence, \boldsymbol{C}_{6} is two-point distinguishing graph
Theorem 6: A graph \mathbf{G} is two-point distinguishing graph if and only if \mathbf{G} doesn't contain either $\mathbf{C}_{\mathbf{3}}$ or $\mathrm{K}_{2}, 3$
Proof: Let G contains C_{3} with $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ as vertices. Then $N\left[\boldsymbol{v}_{1}\right] \cap N\left[\boldsymbol{v}_{2}\right]=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ so that G is not two-point distinguishing graph. Also, if \boldsymbol{G} contains $\boldsymbol{K}_{2,3}$ with $\boldsymbol{V}\left(\boldsymbol{K}_{2,3}\right)=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ then, $\boldsymbol{N}\left[\boldsymbol{u}_{1}\right] \cap \boldsymbol{N}\left[\boldsymbol{u}_{2}\right]=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ so that \boldsymbol{G} is not two-point distingu- ishing graph. Hence the condition is sufficient. Conversely, if \boldsymbol{G} is not a two-point distinguishing graph, then there exists \boldsymbol{u} and \boldsymbol{v} such that $\boldsymbol{N}[\boldsymbol{u}]$ and $\boldsymbol{N}[\boldsymbol{v}]$ have more than two vertices in common. In that case \boldsymbol{G} contains a $\boldsymbol{C}_{\mathbf{3}}$ or $\boldsymbol{K}_{2,3}$.Thus, the condition is necessary.

Observations

Observation 1: All trees are one-point determining graph.
If a tree \boldsymbol{T} is not one-point determining graph, then there exists vertices $\boldsymbol{u}_{\mathbf{1}}$ and $\boldsymbol{u}_{\mathbf{2}}$ such that $\boldsymbol{N}\left(\boldsymbol{u}_{1}\right)$ and $\boldsymbol{N}\left(\boldsymbol{u}_{\mathbf{2}}\right)$ contains at least two vertices in common say \boldsymbol{v}_{1} and \boldsymbol{v}_{2}. Thus, the vertices $\boldsymbol{u}_{\boldsymbol{1}} \boldsymbol{v}_{\boldsymbol{1}} \boldsymbol{u}_{2} \boldsymbol{v}_{2} \boldsymbol{u}_{\mathbf{1}}$ form a cycle in \boldsymbol{T} - contradiction.

Observation 2: The only complete graphs that are both point determining graph. and one-point determining graph are $\boldsymbol{K}_{\mathbf{2}}$ and $\boldsymbol{K}_{\mathbf{3}}$
For \boldsymbol{K}_{2} and \boldsymbol{K}_{3}, let $\boldsymbol{V}\left(\boldsymbol{K}_{2}\right)=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}$ and $\boldsymbol{V}\left(\boldsymbol{K}_{3}\right)=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}, \boldsymbol{N}\left(\boldsymbol{u}_{1}\right)=\left\{\boldsymbol{u}_{2}\right\}$ and $\boldsymbol{N}\left(\boldsymbol{u}_{\mathbf{2}}\right)=\left\{\boldsymbol{u}_{1}\right\}$. Also, $\boldsymbol{N}\left(\boldsymbol{v}_{1}\right)=$ $\left\{\boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}, \boldsymbol{N}\left(\boldsymbol{v}_{2}\right)=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{3}\right\}$ and $\boldsymbol{N}\left(\boldsymbol{v}_{3}\right)=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$. Hence \boldsymbol{K}_{2} and \boldsymbol{K}_{3} are both point determining graph and one-point determining graph.
Observation 3: The complete bipartite graph $\boldsymbol{K}_{\boldsymbol{m}, \boldsymbol{n}}$ is one-point determining graph, only when $\boldsymbol{m}=\mathbf{1}$ or $\boldsymbol{n}=\mathbf{1}$. Suppose \boldsymbol{m} and $\boldsymbol{n}>\mathbf{1}$. Then there is a $\boldsymbol{C}_{\mathbf{4}}$ in $\boldsymbol{K}_{\boldsymbol{m}, \boldsymbol{n}}$ and hence by theorem 1, the result follows.
Observation 4: The complete graph $\boldsymbol{K}_{\boldsymbol{n}}$, is one-point determining graph, only when $n \leq 3$. For the complete graph $\boldsymbol{K}_{\boldsymbol{n}}, \boldsymbol{n} \geq \mathbf{4}$, there exists a $\boldsymbol{C}_{\mathbf{4}}$, by theorem 1 and by observation 2 , show that $\boldsymbol{K}_{\boldsymbol{n}}, \boldsymbol{n} \geq \mathbf{4}$ are not one-point determining graph
Observation 5: All cycle graphs $\boldsymbol{C}_{\boldsymbol{n}}$, except $\boldsymbol{C}_{\mathbf{4}}$, are one-point determining graph. In the cycle $\boldsymbol{C}_{\boldsymbol{n}}, \boldsymbol{n} \neq \boldsymbol{4}$, there exists distinct vertices $\boldsymbol{v}_{\boldsymbol{i}}$ and $\boldsymbol{v}_{\boldsymbol{j}, \mathbf{1}} \leq \boldsymbol{i} \leq \boldsymbol{n}, \mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}$ such that $\boldsymbol{N}\left(\boldsymbol{v}_{\boldsymbol{i}}\right)$ and $\boldsymbol{N}\left(\boldsymbol{v}_{\boldsymbol{j}}\right)$ contains at most one vertex in common. Therefore, all cycle graphs $\boldsymbol{C}_{\boldsymbol{n}}$, except \boldsymbol{C}_{4}, are one-point determining graph.
Observation 6: $\boldsymbol{C}_{\boldsymbol{4}}$ is the only graph that is not point determining graph and not one-point determining graph.
Observation 7: All path graphs $\boldsymbol{P}_{\boldsymbol{n}}$, are one-point determining graph. For a path $\boldsymbol{P}_{\boldsymbol{n}}$ there exists distinct vertices $\boldsymbol{v}_{\boldsymbol{i}}$ and $\boldsymbol{v}_{\boldsymbol{j}}, \mathbf{1} \leq \boldsymbol{i} \leq$ $\boldsymbol{n}, \mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}$ such that $\boldsymbol{N}\left(\boldsymbol{v}_{\boldsymbol{i}}\right)$ and $\boldsymbol{N}\left(\boldsymbol{v}_{\boldsymbol{j}}\right)$ contains one vertex in common. Hence $\boldsymbol{P}_{\boldsymbol{n}}$, is one-point determining graph.
Observation 8: The path which is one-point determining graph and not point determining graph is $\boldsymbol{P}_{\mathbf{3}}$ only. For $\boldsymbol{P}_{\mathbf{3}}$, let $\boldsymbol{V}\left(\boldsymbol{P}_{\mathbf{3}}\right)=$ $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$. Then $\boldsymbol{N}\left(\boldsymbol{v}_{1}\right)=\left\{\boldsymbol{v}_{2}\right\}=\boldsymbol{N}\left(\boldsymbol{v}_{3}\right)$ and by observation 7, the result follows.
Observation 9: All one-point determining graph graphs are point determining graph except $\boldsymbol{P}_{\mathbf{3}}$. In point determining graph, distinct vertices have all distinct open neighborhoods. At the same time in one-point determining graph, distinct vertices have at most one open neighborhood. Since one-point determining graph is stronger condition than point determining graph, and by observation 8 , the result follows.
Observation 10: For any $n, \boldsymbol{P}_{\boldsymbol{n}}{ }^{\mathbf{0 1}}$ contains all vertices of $\boldsymbol{P}_{\boldsymbol{n}}$, that is $\left|\boldsymbol{P}_{\boldsymbol{n}}{ }^{\mathbf{0 1}}\right|=\boldsymbol{n}$. Also, for a tree \boldsymbol{T} of order $n,\left|\boldsymbol{T}^{\mathbf{0 1}}\right|=\boldsymbol{n}$. Since all path graphs are one-point determining graph, $\left|\boldsymbol{P}_{\boldsymbol{n}}{ }^{\mathbf{0 1}}\right|=\boldsymbol{n}$ and the result follows for tree also.
Observation 11: All trees are two-point distinguishing graph. If a tree \boldsymbol{T} is not two-point distinguishing graph, then there exists vertices $\boldsymbol{v}_{\mathbf{1}}$ and $\boldsymbol{v}_{\mathbf{2}}$ such that $\boldsymbol{N}\left(\boldsymbol{v}_{\mathbf{1}}\right)$ and $\boldsymbol{N}\left(\boldsymbol{v}_{2}\right)$ contains at least three vertices in common say $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{w}. Thus, the vertices $\boldsymbol{v}_{1} \boldsymbol{u} \boldsymbol{v}_{2} \boldsymbol{w} \boldsymbol{v}_{1}$ form a cycle in \boldsymbol{T} - contradiction.
Observation 12: The complete graphs $\boldsymbol{K}_{\boldsymbol{n}}$ is two-point distinguishing graph, only when $n \leq 2$. For the complete graph $\boldsymbol{K}_{\boldsymbol{n}}, n \geq 3$, $\boldsymbol{N}\left(\boldsymbol{v}_{\boldsymbol{i}}\right)=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}\right\}$ where, $\boldsymbol{V}\left(\boldsymbol{K}_{\boldsymbol{n}}\right)=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}\right\}, i=1,2, \ldots, n$. Thus $\boldsymbol{K}_{\boldsymbol{n}}$ is two-point distinguishing graph only when $\boldsymbol{n} \leq 2$.
Observation 13: The complete bipartite graphs $\boldsymbol{K}_{\boldsymbol{m}, \boldsymbol{n}}$ are two-point distinguishing graph only when \boldsymbol{m} or $\boldsymbol{n} \leq 2$. Suppose, m and n ≥ 3. Then there exists a $\boldsymbol{K}_{2,3}$ in $\boldsymbol{K}_{\boldsymbol{m}, \boldsymbol{n}}$ and hence by theorem 6, the result follows.
Observation 14: All cycle graphs $\boldsymbol{C}_{\boldsymbol{n}}$, except $\boldsymbol{C}_{\mathbf{3}}$, are two-point distinguishing graph. In the cycle $\boldsymbol{C}_{\boldsymbol{n}}, n \neq 3$, there exists distinct vertices $\boldsymbol{u}_{\boldsymbol{i}}$ and $\boldsymbol{u}_{\boldsymbol{j}}, \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}, \mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}$ such that $\boldsymbol{N}\left(\boldsymbol{u}_{\boldsymbol{i}}\right)$ and $\boldsymbol{N}\left(\boldsymbol{u}_{\boldsymbol{j}}\right)$ contains at most two vertices in common. Hence, all cycle graphs $\boldsymbol{C}_{\boldsymbol{n}}$, except \boldsymbol{C}_{3}, are two-point distinguishing graph.
Observation 15: The cycle which is not point distinguishing graph and not two-point distinguishing graph is $\boldsymbol{C}_{\mathbf{3}}$ only.
Observation 16: All path graphs $\boldsymbol{P}_{\boldsymbol{n}}$, are two-point distinguishing graph. For a path $\boldsymbol{P}_{\boldsymbol{n}}$ there exists distinct vertices $\boldsymbol{u}_{\boldsymbol{i}}$ and $\boldsymbol{u}_{\boldsymbol{j}} \mathbf{1} \leq$ $\boldsymbol{i} \leq \boldsymbol{n}, \mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}$ such that $\boldsymbol{N}\left(\boldsymbol{u}_{\boldsymbol{i}}\right)$ and $\boldsymbol{N}\left(\boldsymbol{u}_{\boldsymbol{j}}\right)$ contains at most two vertices in common. Thus $\boldsymbol{P}_{\boldsymbol{n}}$, is two-point distinguishing graph.
Observation 17: If \boldsymbol{G} is an one-point determining graph containing an isolated vertex \boldsymbol{v}, then $v \in \boldsymbol{G}^{\mathbf{0 1}}$
Observation 18: Wheels are not one-point determining, while wheels except $\boldsymbol{W}_{1,4}$ are point determining. Since every wheel $\boldsymbol{W}_{1, n} n$ ≥ 3, contains a $\boldsymbol{C}_{\mathbf{4}}$, by theorem 1 , wheels are not one-point determining. For, the wheel $\boldsymbol{W}_{\mathbf{1}, 4}, \boldsymbol{V}\left(\boldsymbol{W}_{\mathbf{1}, 4}\right)=\left\{\boldsymbol{v}_{\mathbf{0}}, \boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}\right\}$, there exists vertices $\boldsymbol{v}_{\boldsymbol{1}}$ and $\boldsymbol{v}_{\mathbf{3}}$ such that $\boldsymbol{N}\left(\boldsymbol{v}_{\mathbf{1}}\right)=\left\{\boldsymbol{v}_{\mathbf{0}}, \boldsymbol{v}_{2}, \boldsymbol{v}_{\mathbf{4}}\right\}=\boldsymbol{N}\left(\boldsymbol{v}_{3}\right)$ shows that $\boldsymbol{W}_{\mathbf{1}, 4}$ is not point determining. But in $\boldsymbol{W}_{\mathbf{1}, \boldsymbol{n}}, n \neq \mathbf{4}$, distinct vertices have distinct open neighborhoods.
Observation 19: For any positive integer n, there exists a one-point determining, with $\left|\boldsymbol{G}^{\mathbf{0 1}}\right|=n$. Let \boldsymbol{G} be a one-point determining with $\boldsymbol{n}(\boldsymbol{G})=\boldsymbol{n}$.. Deleting each vertex \boldsymbol{v} once, the resulting graph, $\{\boldsymbol{G} / \boldsymbol{v}\}$ is also 1PDt. Thus $\left|\boldsymbol{G}^{\mathbf{0 1}}\right|=\boldsymbol{n}$.
Observation 20: $\left|\boldsymbol{G}^{\mathbf{0 1}}\right|=\boldsymbol{V}(\boldsymbol{G})$ for any one-point determining. But in point determining, $\left|\boldsymbol{G}^{\mathbf{0 1}}\right| \neq \boldsymbol{V}(\boldsymbol{G})[\mathbf{6}]$ By result 19, the first part follows. For the later part consider the graph $\boldsymbol{P}_{\mathbf{4}}$. It is point determining. but $\left|\boldsymbol{P}_{4}{ }^{\mathbf{0 1}}\right| \neq \boldsymbol{V}\left(\boldsymbol{P}_{4}\right)$.
Observation 21: If \boldsymbol{G} is one-point determining, $\boldsymbol{G}+\boldsymbol{x}$ is not one-point determining, unless \boldsymbol{G} is not point determining. If \boldsymbol{G} is onepoint determining and $\boldsymbol{G}+\boldsymbol{x}$ is not one-point determining, then $\boldsymbol{G}+\boldsymbol{x}$ contains a $\boldsymbol{C}_{\boldsymbol{4}}$ and \boldsymbol{G} does not contain a $\boldsymbol{C}_{\mathbf{4}}$ must implies that distinct vertices of \boldsymbol{G} have distinct open neighborhoods. Thus \boldsymbol{G} is point determining.
Observation 22: Wheels are not two-point distinguishing graph, but $\boldsymbol{W}_{\mathbf{1 , 3}}$ is the only wheel graph that is not two-point distinguishing.
Every wheel $\boldsymbol{W}_{\mathbf{1}, \boldsymbol{n}}, n \geq 3$, contains a $\boldsymbol{C}_{\mathbf{3}}$, by theorem 6, wheels are not two-point distinguishing graph. For, the wheel graph $\boldsymbol{W}_{\mathbf{1}, 3}$, $V\left(W_{1,3}\right)=\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}, N\left[v_{0}\right]=N\left[v_{1}\right]=N\left[v_{2}\right]=N\left[v_{3}\right]=\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}$.

References

[1] R.Balakrishnan \& K.Ranganathan; A text book of Graph Theory, Springer (2000) Publication.
[2] J.A Boundy \& U.S.R Murthy; Graph Theory with Application, Macmillan (1976) Publication.
[3] F. Harray; Graphy Theory, Addison-Wesley (1969) publication.
[4] D.P Sumner; Point determining in graphs, Discrete Math. 5 (1973) 179-187.
[5] R.C Entringer \& L.D Gassman; Line-Critical Point determining and point distinguishing graphs, Discrete_Math. 10 (1974) 43-55.
[6] D P Sumner; The Nucleus of Point determining graph, Discrete_Math. 14 (1976) 91-97.

