Available online at www.elixirpublishers.com (Elixir International Journal)

Discrete Mathematics

Elixir Dis. Math. 83 (2015) 32778-32781

One Point Determining and Two Point Distinguishing Graphs Elachini V. La1¹, Palleeluveedu R. Sujith² and Karakkattu S. Parvathy³

Elachini V. La1¹, Palleeluveedu R. Sujith² and Karakkattu S. Parvathy³ ¹Department of Higher Secondary, Govt. HSS Kuttippuram, Kerala, India – 679571. ²Department of Higher Secondary, Paruthur HSS Pallippuram, Kerala, India – 679335. ³Department of Mathematics, St. Mary's College, Thrissur, Kerala, India – 680020.

ARTICLE INFO

Article history: Received: 27 December 2014; Received in revised form: 25 May 2015; Accepted: 30 May 2015;

Keywords

One point determining graphs, Two point distinguishing graphs.

ABSTRACT

A point determining graph is defined to be a graph in which distinct non adjacent points have distinct neighborhoods. If in addition any two distinct points have distinct closed neighborhoods, it is called point distinguishing graph. A graph **G** is said to be one point determining, if for any two distinct vertices v_1 and v_2 $N(v_1)$ and $N(v_2)$ have at most one vertex in common. A graph **G** is said to be two point distinguishing if for any two distinct vertices v_1 and v_2 , the closed neighborhood $N[v_1]$ and $N[v_2]$, have at most two vertices in common. Here we focus on some properties of one point determining and two point distinguish- ing graphs.

© 2015 Elixir All rights reserved.

Introduction

By a graph G = (V, E), we mean a finite, undirected, connected graph with no loop or multiple edges. For basic graph theoretic terminology, we refer to [1, 2, 3]. The point determining graphs were introduced by D.P.Summner [4] and point distinguishing graphs were defined by R.C Entringer and L.D Gassman [5]. For, a vertex 'a' $\in V G$), the open neighborhood of a, denoted by N(a), is the set of all vertices in G that are adjacent to 'a'. A graph G is said to be point determining if for any two distinct non-adjacent vertices 'a' and 'b' of G, $N(a) \neq N(b)$. The closed neighborhood of a vertex 'p', denoted by N[p] is defined to be $N(p) \cup \{p\}$. A graph G is point distinguishing if $N[p] \neq N[q]$ whenever $p \neq q$.

One point determining graphs

Definition 1: A graph **G** is said to be *one point determining*, if for any two distinct vertices v_1 and v_2 , $N(v_1)$ and $N(v_2)$ have at most one vertex in common.

Example 1: Consider the path graph of order 3 shown in Figure 1. $N(v_1) = \{v_2\} = N(v_3)$

Theorem 1. A graph **G** is one-point determining if and only if **G** is **C**₄ free.

Proof: If *G* contains a 4 – cycle, $v_1v_2v_3v_4v_1$ then $v_1, v_3 \in N(v_2)$ and $N(v_4)$. Hence the condition is sufficient.

If **G** is not one-point determining, then there exists v_1 and v_2 such that $N(v_1)$ and $N(v_2)$ contains at least two vertices in common, say, **u** and **v**. Then v_1 is adjacent to both **u** and **v**. Also, v_2 is adjacent to both **u** and **v**. Thus $v_1 u v_2 v v_1$ form a 4 – cycle. Hence the condition is necessary.

Theorem 2. Let G be a one-point determining. G is point determining if and only

if the following hold: If
$$u, v \in V(G)$$
, $d(u) = d(v) = 1$, then $N(u) \neq N(v)$.

Proof: Let G be a one-point determining. Then, for any two distinct vertices u and v, N(u) and N(v) have at most one vertex in common. If G is point determining, then for any two distinct vertices u and v, $N(u) \neq N(v)$. So the condition is necessary.

Conversely, let us assume that, d(u) = d(v) = 1, with $N(u) \neq N(v)$. Thus pendent vertices have distinct neighborhoods in G. We have to prove that G is point determining If $d(u) \neq d(v)$, then $N(u) \neq N(v)$. But, if d(u) = d(v) with d(u) > 1 and d(v) > 1, then $N(u) \neq N(v)$. Otherwise, G is not one-point determining, which is a contradiction. Hence the condition is sufficient. Theorem 3. Let G be a bipartite cubic planar graph. Then G is not one-point determining.

Proof: Let G be a bipartite cubic planar graph. Since G is cubic, every vertex is of degree three and hence there exists vertices u_1 and u_2 such that $N(u_1)$ and $N(u_2)$ have three vertices of which two of them is common, say v_1 and v_2 . Then u_1 is adjacent to both v_1 and v_2 . Also u_2 is adjacent to both v_1 and v_2 . Thus $u_1v_1u_2v_2u_1$ form a 4 – cycle. Hence, by Theorem1, G is not one-point determining.

Theorem 4: If **G** is one-point determining, then $\mathbf{G} + \mathbf{u}\mathbf{v}$ is also one-point determining if and only if there doesn't exist an edge $\mathbf{u}'\mathbf{v}'$ such that

 $u' \in N(u)$ and $v' \in N(v)$.

Tele: E-mail addresses: lamathematics@gmail.com

32778

^{© 2015} Elixir All rights reserved

Proof: Given G is one-point determining and suppose G + uv is also one-point determining Then $N(u) \cap N(v) = \emptyset$. For, if $N(u) \cap N(v) \neq \emptyset$, then there exist at least one vertex $w_i \in N(u) \cap N(v)$ But w_i is adjacent to w_j for some $i \neq j$. Then uvw_jw_iu form a 4 – cycle and this shows that G + uv is not one-point determining.

Conversely, **G** is one-point determining. Then for any two distinct vertices v_1 and v_2 the neighborhoods $N(v_1)$ and $N(v_2)$ have at most one vertex in common. Suppose there doesn't exist an edge u'v' such that $u' \in N(u)$ and $v' \in N(v)$ Then G + uv is one-point determining. For, if not, there exist u and v such that N(u) and N(v) contains at least two vertices in common, say, u' and v'. Then u is adjacent to both u' and v and v is adjacent to both u' and $v' \in N(u)$ form a 4 – cycle. Hence, $u' \in N(u)$ and $v' \in N(v)$ – a contradiction. Therefore G + uv is also one-point determining.

Definition 2. Let G = (V, E), be a graph and let U be a subset of V. A subgraph H of G is said to be *normal edge induced* by U if H is maximal subgraph of G that contains U and all edges of G that are incident on a vertex in U.

Example 2. Consider the path graph of order 6 shown in figure 2 (*top*).

Let $U = \{v_2, v_4\}$. Then the subgraph *H* shown in figure 2 (*bottom*) is normal edge induced by U.

Figure 2. Example of a normal edge induced subgraph

Example 3. Consider the graph **G** shown in Figure 3 (*left*). Let $U = \{v_1, v_2\}$. Then the subgraph **H** shown in Figure 3 (*right*) is normal edge induced by U.

Figure 3. Normal edge induced subgraph

Nucleus of a One Point Determining Graph

Definition 3. Let G be a one-point determining graph. Then, the set $G^{01} = \{v: G/v \text{ is one point determining}\}$ is called the nucleus of a one point determining graph G.

Example 4. Consider the path graph of order 4 shown in Figure 3

Figure 4. For this graph the nucleus is $G^{01} = \{v_1, v_2, v_3, v_4\} = V(G)$

Example 5. Consider the complete graph K_3 shown in Figure 4

Figure 5. K_3 The nucleus is $K_3^{01} = \{v_1, v_2, v_3\} = (V(K_3)$ Example 6. Consider the petersen graph, G, shown in Figure 5.

Figure 6. *G*Then for this graph the nucleus is $G^{01} = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\} = V(G)$ Remark: If *G* is a tree (or a path) then $G^{01} = V(G)$. But $G^{01} = V(G)$ does not imply that *G* is a tree.

Theorem 5: Let **G** be a one point determining graph with $G^{01} = V(G)$ and every normal edge induced subgraph **H**, with $\sum d_{H^{(v)}} \ge \sum d_{G^{(v)}} - 1$, *H* is a tree. Then **G** is a tree.

Proof: Suppose G is one-point determining and not a tree. Then there is a cycle, except C_4 , in G. If H is a normal edge induced subgraph of G with $\sum d_{H^{(v)}} \ge \sum d_{G^{(v)}} - 1$ and $G^{01} = V(G)$ must shows that there is a cycle in H also. Thus H is not a tree. This contradiction shows that G is a tree.

Remark: A graph G is said to be one-point distinguishing graph, if for any two distinct vertices v_1 and v_2 , the closed neighborhoods $N[v_1]$ and $N[v_2]$ have at most one vertex in common. Only trivial graphs are in this type. And so, there is no relevance to one-point distinguishing graph

Two-point distinguishing graphs

Definition 4: A graph G is said to be *two-point distinguishing graph*, if for any two distinct vertices v_1 and v_2 , the closed neighborhoods $N[v_1]$ and $N[v_2]$, have at most two vertices in common.

Example 7: Consider the path graph of order 5 shown in figure 5

Figure 7. Example of a two point distinguishing graph

Example 8: Consider the following cycle graph C_3 , C_4 and C_6 shown in figure 6

Figure 8

In C_3 , $N[v_1] = N[v_2] = N[v_3] = \{v_1, v_2, v_3\}$. Hence, C_3 is not two-point distinguishing graph. In C_4 , $N[v_1] = \{v_1, v_2, v_4\}$, $N[v_2] = \{v_1, v_2, v_3\}$, $N[v_3] = \{v_2, v_3, v_4\}$ and $N[v_4] = \{v_1, v_3, v_4\}$. Hence, C_4 is two-point distinguishing graph. In C_6 , $N[v_1] = \{v_1, v_2, v_3\}$, $N[v_2] = \{v_1, v_2, v_3\}$, $N[v_3] = \{v_2, v_3, v_4\}$, $N[v_4] = \{v_3, v_4, v_5\}$, $N[v_5] = \{v_4, v_5, v_6\}$, $N[v_6] = \{v_1, v_5, v_6\}$. Hence, C_6 is two-point distinguishing graph.

Theorem 6: A graph G is two-point distinguishing graph if and only if G doesn't contain either C₃ or K 2, 3

Proof: Let *G* contains C_3 with v_1, v_2, v_3 as vertices. Then $N[v_1] \cap N[v_2] = \{v_1, v_2, v_3\}$ so that *G* is not two-point distinguishing graph. Also, if *G* contains $K_{2,3}$ with $V(K_{2,3}) = \{u_1, u_2, v_1, v_2, v_3\}$ then, $N[u_1] \cap N[u_2] = \{v_1, v_2, v_3\}$ so that *G* is not two-point distinguishing graph. Hence the condition is sufficient. Conversely, if *G* is not a two-point distinguishing graph, then there exists u and v such that N[u] and N[v] have more than two vertices in common. In that case *G* contains a C_3 or $K_{2,3}$. Thus, the condition is necessary.

Observations

Observation 1: All trees are one-point determining graph.

If a tree T is not one-point determining graph, then there exists vertices u_1 and u_2 such that $N(u_1)$ and $N(u_2)$ contains at least two vertices in common say v_1 and v_2 . Thus, the vertices $u_1v_1u_2v_2$ u_1 form a cycle in T – contradiction.

Observation 2: The only complete graphs that are both point determining graph. and one-point determining graph are K_2 and K_3

For K_2 and K_3 , let $V(K_2) = \{u_1, u_2\}$ and $V(K_3) = \{v_1, v_2, v_3\}$, $N(u_1) = \{u_2\}$ and $N(u_2) = \{u_1\}$. Also, $N(v_1) = \{v_2, v_3\}$, $N(v_2) = \{v_1, v_3\}$ and $N(v_3) = \{v_1, v_2\}$. Hence K_2 and K_3 are both point determining graph and one-point determining graph.

Observation 3: The complete bipartite graph $K_{m,n}$ is one-point determining graph, only when m = 1 or n = 1. Suppose m and n > 1. Then there is a C_4 in $K_{m,n}$ and hence by theorem 1, the result follows.

Observation 4: The complete graph K_n , is one-point determining graph, only when $n \le 3$. For the complete graph K_n , $n \ge 4$, there exists a C_4 , by theorem 1 and by observation 2, show that K_n , $n \ge 4$ are not one-point determining graph

Observation 5: All cycle graphs C_n , except C_4 are one-point determining graph. In the cycle C_n , $n \neq 4$, there exists distinct vertices v_i and v_j , $1 \le i \le n$, $1 \le j \le n$ such that $N(v_i)$ and $N(v_j)$ contains at most one vertex in common. Therefore, all cycle graphs C_n , except C_4 are one-point determining graph.

Observation 6: C_4 is the only graph that is not point determining graph and not one-point determining graph.

Observation 7: All path graphs P_{n_i} are one-point determining graph. For a path P_n there exists distinct vertices v_i and $v_{j,1} \le i \le n, 1 \le j \le n$ such that $N(v_i)$ and $N(v_j)$ contains one vertex in common. Hence P_{n_i} is one-point determining graph.

Observation 8: The path which is one-point determining graph and not point determining graph is P_3 only. For P_3 , let $V(P_3) = \{v_1, v_2, v_3\}$. Then $N(v_1) = \{v_2\} = N(v_3)$ and by observation 7, the result follows.

Observation 9: All one-point determining graph graphs are point determining graph except P_3 . In point determining graph, distinct vertices have all distinct open neighborhoods. At the same time in one-point determining graph, distinct vertices have at most one open neighborhood. Since one-point determining graph is stronger condition than point determining graph, and by observation 8, the result follows.

Observation 10: For any *n*, P_n^{01} contains all vertices of P_n , that is $|P_n^{01}| = n$. Also, for a tree *T* of order *n*, $|T^{01}| = n$. Since all path graphs are one-point determining graph, $|P_n^{01}| = n$ and the result follows for tree also.

Observation 11: All trees are two-point distinguishing graph. If a tree T is not two-point distinguishing graph, then there exists vertices v_1 and v_2 such that $N(v_1)$ and $N(v_2)$ contains at least three vertices in common say u, v and w. Thus, the vertices $v_1 u v_2 w v_1$ form a cycle in T – contradiction.

Observation 12: The complete graphs K_n is two-point distinguishing graph, only when $n \le 2$. For the complete graph K_n , $n \ge 3$, $N(v_i) = \{v_1, v_2, v_3, ..., v_n\}$ where, $V(K_n) = \{v_1, v_2, v_3, ..., v_n\}$, i = 1, 2, ..., n. Thus K_n is two-point distinguishing graph only when $n \le 2$.

Observation 13: The complete bipartite graphs $K_{m,n}$ are two-point distinguishing graph only when m or $n \leq 2$. Suppose, m and $n \geq 3$. Then there exists a $K_{2,3}$ in $K_{m,n}$ and hence by theorem 6, the result follows.

Observation 14: All cycle graphs C_{n_i} except C_{3_i} are two-point distinguishing graph. In the cycle C_{n_i} $n \neq 3$, there exists distinct vertices u_i and $u_{j_i} 1 \le i \le n, 1 \le j \le n$ such that $N(u_i)$ and $N(u_j)$ contains at most two vertices in common. Hence, all cycle graphs C_{n_i} except C_{3_i} are two-point distinguishing graph.

Observation 15: The cycle which is not point distinguishing graph and not two-point distinguishing graph is C_3 only.

Observation 16: All path graphs P_{n_i} are two-point distinguishing graph. For a path P_n there exists distinct vertices u_i and $u_{j,1} \le i \le n, 1 \le j \le n$ such that $N(u_i)$ and $N(u_j)$ contains at most two vertices in common. Thus P_{n_i} is two-point distinguishing graph.

Observation 17: If **G** is an one-point determining graph containing an isolated vertex v, then $v \in G^{01}$

Observation 18: Wheels are not one-point determining, while wheels except $W_{1,4}$ are point determining. Since every wheel $W_{1,n}$ $n \ge 3$, contains a C_4 , by theorem 1, wheels are not one-point determining. For, the wheel $W_{1,4}$, $V(W_{1,4}) = \{v_0, v_1, v_2, v_3, v_4\}$, there exists vertices v_1 and v_3 such that $N(v_1) = \{v_0, v_2, v_4\} = N(v_3)$ shows that $W_{1,4}$ is not point determining. But in $W_{1,n}$, $n \ne 4$, distinct vertices have distinct open neighborhoods.

Observation 19: For any positive integer *n*, there exists a one-point determining, with $|G^{01}| = n$. Let *G* be a one-point determining with n(G) = n. Deleting each vertex v once, the resulting graph, $\{G/v\}$ is also 1PDt. Thus $|G^{01}| = n$.

Observation 20: $|G^{01}| = V(G)$ for any one-point determining. But in point determining, $|G^{01}| \neq V(G)$ [6] By result 19, the first part follows. For the later part consider the graph P_4 . It is point determining. but $|P_4^{01}| \neq V(P_4)$.

Observation 21: If G is one-point determining, G + x is not one-point determining, unless G is not point determining. If G is one-point determining and G + x is not one-point determining, then G + x contains a C_4 and G does not contain a C_4 must implies that distinct vertices of G have distinct open neighborhoods. Thus G is point determining.

Observation 22: Wheels are not two-point distinguishing graph, but $W_{1,3}$ is the only wheel graph that is not two-point distinguishing.

Every wheel $W_{1,n}$, $n \ge 3$, contains a C_3 , by theorem 6, wheels are not two-point distinguishing graph. For, the wheel graph $W_{1,3}$, $V(W_{1,3}) = \{v_0, v_1, v_2, v_3\}, N[v_0] = N[v_1] = N[v_2] = N[v_3] = \{v_0, v_1, v_2, v_3\}.$

References

[1] R.Balakrishnan & K.Ranganathan; A text book of Graph Theory, Springer (2000) Publication.

[2] J.A Boundy & U.S.R Murthy; Graph Theory with Application, Macmillan (1976) Publication.

- [3] F. Harray; Graphy Theory, Addison-Wesley (1969) publication.
- [4] D.P Sumner; Point determining in graphs, Discrete Math.5 (1973) 179-187.
- [5] R.C Entringer & L.D Gassman; Line-Critical Point determining and point distinguishing graphs, Discrete_Math.10 (1974) 43-55.
- [6] D P Sumner; The Nucleus of Point determining graph, Discrete_Math.14 (1976) 91-97.