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Introduction 

Uniform non-amenability 

Let A be a finite subset of a group G, and let S be a finite generating set for G. By the boundary of the subset A with respect to the 

finite generating set S ⊂ G we mean the set 

                                
Definition 1. By the Folner constant of the group G with respect to the generating set S we mean the number 

            
      

   
 

Where the infimom is taken over all finite nonempty subsets  ⊂   (see [8]). 

As is known, a group is amenable if and only if             for some (and hence for every) finite generating set S (see [8], [12] 

– [13]). Recall that a group G is said to be amenable if G admits a finitely additive measure µ defined on the           of all 

subsets of G and such that                                               ⊂     As was proved by von Neumann [14], the 

class of amenable groups is closed with respect to the operations of passage to subgroups, quotient groups, inductive limits, and 

extensions. On The other hand, every group containing a free subgroup of rank 2 is non-amenable. 

In 1977, Adyan conjectured that the m-generated free periodic groups        of odd period n≥665 are non-amenable for       

(see [15]). Later he confirmed this conjecture in [9]. In [9], Adyan found a sufficient condition for the non-amenability of groups for 

which the word problem admits a Dehn algorithm solution (finitely presented groups of this kind are said to be hyperbolic (see [17, 

Theorem 1])). Further, for the relatively free groups        of the Burnside variety, where       and n is odd,     , a system 

of defining relations is indicated which satisfies both the Dehn condition and the sufficient Non-amenability condition mentioned 

above. 

Thus, the first example of non-amenable group that satisfy a non-trivial identity relation was indicated by S. I. Adian. The well-

known theorem of Adian (see [2], Theorem 5) asserts that the free Burnside group 

        ⟨                                      
     

      
    ⟩ is non-amenable for any odd number 

                  . The group      ) does not contain absolutely free groups, since it satisfies the identity    = 1. 

Definition 2. ((see [8] and [12]). The number                       where the infimum is taken over all finite generating sets S in 

G, is referred to as a Folner constant of G. A finitely generated group is said to be uniformly non-amenable if           . 

Some classes of uniformly nonamenable groups are known. For instance, every non-elementary hyperbolic group and every large 

group are uniformly non-amenable [8]. On the other hand, there are non-amenable groups which are not uniformly non-amenable (see 

[8], [22]). D. Osin [4] proved the uniform non-amenability of the groups                  and for odd         . This result was 

obtained earlier in [8]; however, the proof in [22] used a conjecture expressed in [10] and still unproved. In the paper [5] V.Atabekyan 

proved that for any odd integer n≥1003, every finitely generated noncyclic subgroup H of a free Burnside group B(m,n) is a uniformly 

non-amenable group. In the next paper [23] has been prove the conjecture expressed in [10]. 

Unitarizability 

Let G be a group, H be a Hilbert space. A representation             is called unitarizable, if there exists an invertible operator 

T such that the operator is a unitary operator for any element g  G . The group G is called unitarizable, if every uniformly bounded 

representation             is unitarizable. J. Dixmier in [17] and M.M. Day in [18] proved that every amenable group is
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unitarizable. The question of whether the Converse holds has been open since then. The first example of non-unitarizable group is 

Constructed in [19], where it is shown the non-unitarizability of the group      ). 

It is known, that if all the countable subgroups of a given group G are unitarizable, then the group G is unitarizable itself, and if a 

group is unitarizable, then all its subgroups and factor groups are unitarizable (see for example [20]). Therefore, from existence of 

non-unitarizable group it follows that the absolutely free group    of countable rank is non-unitarizable, and therefore any group that 

contains a subgroup isomorphic to the free group   of rank 2 is non-unitarizable. N. Monod and N. Ozawa in joint paper [25] when 

studying the problem of whether or not the unitarizability of a group implies its amenability (see [17]), obtained an interesting 

criterion according to which the non-amenability of a given group G is equivalent to non-unitarizability of group        for all 

infinite Abelian groups A, where        is wreath product of groups A and G. Bearing on the mentioned criterion and on Adian’s 

Theorem about non-amenability of groups                     . Ozawa proved (see [25], Theorem 2) that the free Burnside 

groups B(m,n) are non-unitarizable for all composite odd numbers n =      , where    ≥665 and    . V.Atabekyan in paper [21] 

has strengthened this result. He proved, that for any composite odd number n =      , where    ≥ 665 and      , any non-cyclic 

subgroup of free Burnside group B(m,n) is non-unitarizable. This result of paper [21] indicates the new examples of non-unitarizable 

periodic groups different from Burnside groups. 

Actually, comparing it with result by A.Yu. Olshanskii [6] (for o            ) and the result by V. Atabekyan [11] (for 

             ), we obtain that any proper normal subgroup of group B(m,n) is not isomorphic to any free Burnside group and at the 

same time is non-unitarizable group. According to [6] (see corollary 0.11), if all the countable subgroups of a given group G are 

unitarizable, then the group G is unitarizable itself. The infinite cyclic group is amenable and, therefore, is unitarizable (see [17], [18]). 

Hence, any absolutely free group of       appearing as non-unitarizable contains countable unitarizable subgroup. Another result 

of the paper [21], states that for every composite odd number n =      , where    ≥ 665 an       , any infinite subgroup of group 

       is non-unitarizable, and any finite subgroup is unitarizable. Thus, for subgroups of free Burnside groups the unitarizability is 

equivalent to amenability. In this chapter we prove that there exist finitely generated non-unitarizable periodic groups of restricted 

period, that are different from free Burnside groups and their non-cyclic subgroups. According to the result of Dixmier-Day, non-

unitarizable groups are non-amenable. Constructed below non-unitarizable groups are not only non-amenable, but also uniformly non-

amenable. 

The construction of pairwise non-isomorphic 

Non-unitarizable groups 

The well-known theorem by S.I. Adian (see [1]) states, that for       and odd         the group        is infinite. As it is 

shown in the work [18], for arbitrary odd          there are continuum many simple 2-generated non-isomorphic groups {Γi}i I of 

the given period n ≥ 1003. Let n =      , be arbitrary composite odd number, where    ≥ 665. Then n≥1003. Let’s form a direct 

product    =           of the group B(2,n) with each group            . Lemma 1. The groups                (i   I) are 

pairwise non-isomorphic non- unitarizable groups. Proof. Consider any two groups    = B (2,n)×   and    = B(2,n)×  , where   ,    
{  }i I are non-isomorphic 2-generated groups of period n, and show that groups    and    are non-isomorphic. Proving by 

contradiction suppose, that ϕ :   →    is some isomorphism. It is obvious, that groups        and Γi are contained in    as 

subgroups (i = 1,2). Consider the image           of subgroup        via isomorphism ϕ . Since the image of normal subgroup via 

isomorphism is a normal subgroup, then           is normal subgroup in   . Let us show, that the intersection of subgroup 

          with normal subgroup  ,  of the group    is trivial. Actually, since the subgroup   , is simple group, then any normal 

subgroup containing a non-trivial element of subgroup   , contains all the elements of that group. Therefore, if                
                ⊳                                         

Lemma 2. (see Theorem 1 of paper [7]) Let        be a free periodic group of arbitrary rank m with period n. Then for all odd 

numbers n ≥ 1003 the normalizer of any nontrivial subgroup N of the group B(m,n) coincides with N if the subgroup N is free in the 

variety of all n-periodic groups. Since the subgroup   , is a normal subgroup of the group            then by Lemma 2, the normal 

subgroup   , is not free n-periodic group. 

Lemma 3. (see Theorem 0.1, [3]) For every odd number         , every non-cyclic subgroup of the group        contains a 

subgroup isomorphic to the group         By Lemma 3, subgroup   , contains free periodic subgroup H of rank 2. But this is 

impossible since only the non-cyclic subgroup H of the group   , is the group.  , Thus,           ∩   =  . It is clear that the 

following isomorphisms are true: 

                                                                                        , then the group 

  , can be embedded into the group   /ϕ(B(2,n))   . But this is again contradiction since the groups    and   are non-isomorphic 

infinite groups and any proper subgroup of the group    is finite. The contradiction proves that groups   and    are non-isomorphic. 

Since our constructed groups          ) ×    (i   I) contain non-unitarizable subgroup      , then they are non-unitarizable either. 

The upper bound of the lengths of generators of free periodic groups 

Lemma 4. Let          be an arbitrary odd number. Then every noncyclic subgroup       of        contains a noncyclic 

subgroup of the form U[A,C]    such that C is an elementary period of some rank α and            = [  ,      ], where A and B 

are minimized elementary periods of some ranks γ   β     , d = 191, and the lengths of the words UA    and UC    with 

respect to the generators X and Y satisfy the inequalities |             <   n              <   n. 

Proof. Let ∆             be an arbitrary noncyclic subgroup of         It follows from VI.2.4 in [1] and VI.1.2 in [1] that 

X=                                 for some words T and Z and some minimized elementary periods F and E of some 

ranks σ and ρ respectively. Without loss of generality, we may assume that σ   ρ and, by VI.2.4 and IV.1.13 in [1], we may also 

assume that Z     ∩     for some ξ   ρ. Let             , and let   be an integer such that       and       . Choosing a 

number s         we obtain               . Therefore,     = T         = T       and 

          
   

 
     because n≥1003. Thus, for the word       , we have    = T       and |        < n|X       = n. In a 
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similar way, we can find an element     X,         and numbers t and l such that       T =        Z, 186 <tl<
   

 
    and 

|         < n. By Theorem VI.3.1 in [1], [  ,  ] ≠1. By Lemmas 2, 7.2, and 2.8 in [9], the com- mutator [  ,    ] = 

T                Z]T is conjugate in        to some minimized elementary period D of some rank δ   ρ + 1. Let    [  ,  ] T = 

  
  D   where      ∩    for some λ   δ. In this case, applying Lemmas 3.2, 7.2, and 2.8 of [9] again, we see that the 

commutator    ,         
  = T    ,    1       

  is conjugate in      ) to some minimized elementary period B of some rank µ   

δ + 1. Assume that       ,         
  T =  

   B  .  

Thus, the subgroup ∆            contains the elements 

[  ,  ] =    
  D   

  and   ,         
   =  

   B   
   

We can assume that   
      

  2     ∩    , where ν   µ. By Lemma 3.2 in [9], we can find a reduced form C of the 

commutator £   ,   
       . By Lemma 7.2 in [9],  is an elementary period of some rank τ   µ + 1. By 3.6 in [9], 

C=w      
        

            where w  Θ(D,   ).  

Consider the elementary periods A wD   and C =       
        

  . By definition A = w   
  [  ,  ]T   

      and 

C = w   
          

             
    T  

   . Thus, if U  T  
     , then UA    ∆, UC    ∆ and               

               < n[X, Y]      = 4n, (3.1) |UC          = | [  ,    
  ,    , [  ,    

           < n(8d + 2d(8d + 2)). (3.2) It remains to note 

that n(8d + 2d(8d + 2)) <   n. This proves the Lemma 4. 

Lemma5. (Proposition [3]) Let n ≥ 1003 be an arbitrary odd number. Then every noncyclic subgroup  X,Y  B(2,n) contains a 

noncyclic subgroup of the form U[A,C]   such that the commutator [  ,  
    Z] is equal in the group B(2,n,α−1) to an elementary 

period C of rank α, where A is an elementary period of rank γ, B is an elementary period of rank β, Z      , γ ≤ β ≤ α − 1, d = 191, n 

≥ 1003 is an arbitrary odd number, and the words    and    enter some words in the sets      and    , respectively. In this case, 

the words u =     A       ···        , v =     A       ···        form a basis of a free Burnside subgroup of rank 2 in 

        Moreover, |u        v        < (57n  . Proof. Since the subgroups  u, v         and  Uu   ,Uv           are isomorphic, it fol- 

lows from Proposition 1 of paper [26] that the elements Uu   , Uv   form a basis of a free Burnside subgroup of rank 2 in B(2,n). 

Obviously, Uu    = (UC       (UA   )· · · (UA       (UC       , Uu  = (UC       (UA   )· · · 

(UA       (UC       . By Lemma 1, we have Uu   , Uv     X,Y       . Using inequalities (3.1) and (3.2), we obtain 

|Uu          <
          

 
+ 200  (8d + 2d(8d + 2)) |Uv          <

          

 
+ 300   (8d + 2d(8d + 2)) Note that |Uu      ≤|Uu          , 

|Uv      ≤|Uv          , because {X,Y}⊆S. It remains to note that 2  (n−1) + 300   (8d + 2d(8d + 2)) < (57n  . This completes the 

proof of lemma. 

Some estimates of the Folner’s constant  

In this section we will prove of some inequality about Folner’sconstant, that will be used to prove the main result of this chapter. 

Lemma 6. Let G be a finitely generated group, S a finite generating system, and g  G. Let    = S∪g. Then Fo  (G) ≥Fo   
 . Proof. 

The Cayley graph of G with respect to    is the same as the one with respect to S, but at each vertex v there is an extra edge labelled g 

leaving v and an extra edge labelled g arriving at v. Consider a non-empty finite subset A. Obviously, adding edges to a Cayley graph 

cannot move a boundary point of A to the interior. The only thing that can happen is that an interior point now becomes a boundary 

point if its corresponding edge g or g−1 has its other endpoint outside A. So the boundary with respect to    is at least as large as the 

boundary with respect to S. 

Lemma 7. Let G be a group, and let S = {  ,...,  } be a finite generating set of G. Let m≤n, and let H be the subgroup of G generated 

by the set   ={  ,...,  }. Then, Fo  (G)  Fo    . 

Proof. Let A be a non-empty finite subset of G, and choose   ,...,   elements of G in such a way that   H∩  H =   if i  j, and 

A∩  H   . Namely, the   are representatives of the cosets of H which intersect A. Let          . The Cayley graph of H with 

respect to Y sits inside the Cayley graph of G with respect to X. Considering only the edges labelled in Y, the cosets for H form 

disjoint parallel copies of the Cayley graph of H. Note that Ai is a finite subgraph of the component corresponding to the cosetyiH. 

Clearly, by the definition of the Folner constant, we have 

        

    
 

       
      

   
     

        

Now, using the argument of the Lemma 6, it is clear that the boundary for A using only elements of Y is smaller than the X-boundary 

of A. Then, 
     

   
≥ 

       

   
=

∑        

∑      
≥Fo  H. 

The following lemma is proved in [8]. Lemma 8. (see Theorem 7.1 in [8]). Let G be a finitely generated group with the set of 

generators S =   ,...,   and let H be a subgroup of G with the set of generators   =  ,...,  . Denote by L the maximal length of the 

elements  ...   with respect to the generators S =   ,...,   Then Fo  (G)≥
 

      
       

Proof. Let A be a non-empty finite subset of G. As in Lemma 7, we consider A as a finite union of intersections    of A with right 

cosets of H, and we write    
  =⋃    

   , viewing each    as existing inside a copy of the Cayley graph of H with respect to  . We 

have Fo   H ≤ 
       

   
even if A is not a subset of H.  

By definition, every element τ        can be joined with a point outside  , and so outside A, by multiplication by some  , which 

we think of as a path labelled    in the generators S. If τ  ∂  , then this path begins at τ. If τ  ∂  , then the path must necessarily pass 

through a vertex in ∂  , which is not the final vertex of the path, just before leaving A. Consider a vertex ν  ∂   it may be that ν 

     . Otherwise, there are at most l(  )−1 ≤ L−1 ways in which a path labelled    may pass through ν in such a way that ν is neither 
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the initial nor the final vertex. Thus a vertex ν  ∂  corresponds to at most 1 +∑                
    ≤ (1 + Kl)      different 

vertices in     (and each vertex in     has at least one corresponding vertex in    ). It follows that 

|     |≤(1 +(∑                
     

 ≤ (1 + Kl)      

Since the previous inequality is valid for any non-empty finite subset of G, we deduce the 

Result 

Lemma 9. (See Theorem 4.1 [8]) Let G be a finitely generated group and let X be a finite generating system for G. Let N be a 

normal subgroup of G, π the canonical homomorphism of G onto                  . Then,                     

and hence,                  
Lemma 10. Let G be a finitely generated group with the set of generators S, let π : G→   

be an isomorphism of groups, and let    = π(S). Then Fo  (G) = Fo   (G0). 

Proof. The proof is follows of Lemma 9. 

The main results 

In this section we prove the following main Theorem. Theorem 1. Suppose n =      is arbitrary composite odd number, where 

   ≥ 665. There are continuum many non-isomorphic 4-generated groups    that satisfy the identity    = 1, each one of which is non-

unitarizable and at the same time uniformly non- 

amenable, the Folner’s constant for which satisfies the inequality 

F       
                

         
 

where         B(2,n)) is the Folner’s constant of the group B(2,n) with respect to the generating set {a, b}. 

Proof. According to Lemma 1 the family of groups {   = B(2,n)×       consist of continuum 4-generated pairwise non-isomorphic 

non-unitarizable groups. In order to proof of Theorem 1 it suffices to prove that each group    (i  I ) is uniformly non-amenable, the 

Folner’s constant for which satisfies the inequality 

F       
                

         
 

where         B(2,n)) is the Folner’s constant of the group B(2,n) with respect to the generating set {a, b}. Lemma 11. (see Corollary 

1 of the paper [5])For any odd number n≥1003 the group B(2,n) is uniformly non-amenable. 

Lemma 12. For any odd number n ≥ 1003 the group B(2,n) is uniformly non- amenable, the Folner’s constant for which satisfy the 

inequality F            
 

         
 , 

where b is the Folner’s constant of the group       . 

Proof. By Lemma 9, if a group has a uniformly non-amenable homomorphic image, then the group is uniformly non-amenable itself 

(see [8], Theorem 4.1). 

The factor-group of group    by the normal closure of subgroup    is isomorphic to group         Thus, by Lemma 11 the 

groups    (i   I) are uniformly non-amenable either, since they have a uniformly non-amenable factor-group. 

To prove Lemma 12, suppose that S is an arbitrary finite set of generating elements of a noncyclic subgroup              By 

Lemma 5, there are elements        such that {u, v}is a basis of a free Burnside subgroup of rank 2 and the lengths of the elements 

u and v with respect to the generating set S satisfy the inequalities |u  < (57n   and |v  < (57n  , where the number (57n   does not 

depend on the choice of the set S. By Lemma 3.8, we have 

FO      
 

         
                       

By Lemma 10, the number                           does not depend on the choice of the pair of free generators u and v. Since, by 

another theorem of Adyan (Theorem 5 in [2]), the group        is non-amenable, it follows that C > 0. Thus, FO      
 

         
 

  for any set of generators S of the noncyclic subgroup H, which implies the inequalities                     
 

         
   

Thus, the proof of Theorem1 immediately follows by Lemmas 1 and 12. Corollary 1. For arbitrary composite odd number n = 

    , where   ≥ 665, the group B(4,n) has continuum non-isomorphic factor-groups, each one of which is non-unitarizable and 

uniformly non-amenable. 

Proof. It is sufficient to notice that in each group   , constructed during the proof of Theorem 1, the identity    = 1 holds. Add that it 

is yet another example of non-unitarizable periodic group was constructed by D. Osin in the paper [24], but the group constructed by 

him do not have bounded exponent, i.e. the orders of the elements constructed by him group increase unboundedly  
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