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Introduction 

Climate change is a change in the statistical distribution 

of weather patterns when that change lasts for an extended 

period of time (i.e., decades to millions of years). It refers to any 

change in climate over time, whether due to natural variability or 

as a result of human activity [1]. Global surface temperature has 

risen by 0.74°C during the twentieth century and the warming 

trend has accelerated in the last 50 years [1]. The past two 

decades were the warmest [2]. The discussions are more or less 

supported by the outputs from Global Climate Models (GCMs) 

under different emission scenarios that are usually used in 

impact assessments. The GCMs are mathematical models which 

have been developed to simulate the present climate and 

implemented to predict future climatic change under various 

Green House Gas (GHG) concentrations. These models are also 

regarded as principal tools for accounting the complex set of 

processes which will produce future climate change. Based on 

the simulation results of GCMs there is evidence that 

anthropogenic emissions of GHGs have altered the large scale 

patterns of temperature over the twentieth century. Among other 

outputs from GCMs, precipitation and temperature data are the 

most frequently used variables to force impact models (e.g., 

hydrological models). Beside this, both precipitation and 

temperature are the most dynamic atmospheric characteristics 

affected by the GHG emissions. For instance, the Fourth 

Assessment Report of Intergovernmental Panel on Climate 

Change (IPCC AR4) has reported with a very high confidence 

that the impacts of climate change on freshwater systems and 

their management are mainly due to the observed and projected 

increases in temperature, sea level and precipitation variability. 

Accordingly, global mean surface temperatures have reported to 

be increased by0.74°C±0.18°C over the last 100 years (1906-

2005) and recently the year 2010 is reported as one of the top 

three warmest years since 1850 and  and rainfall has decreased 

over much of the Northern hemisphere sub-tropical regions by 

about 0.3% per Decade during the 20th century [1]. While 

temperature is predicted to increase everywhere over land and 

during all seasons of the year with different increments, 

precipitation is expected to increase in some river basins, but to 

decrease in the others. GCMs perform reasonably well in 

simulating climatic variables at larger spatial scale of (3.75°lat. 

× 3.75°long.). GCMs thus demonstrate significant skill at the 

continental and hemispheric spatial scales, and incorporate a 

large proportion of the complexity of the global system, they are 

inherently unable to represent local sub grid scale features and 

dynamics [3] and [4]. This mismatch in system representation is 

due to the difference in resolution and referred to as the scale 

issues. The conflict between GCM performance at regional 

spatial scales and the needs of regional scale impact assessment 

is largely related to model resolution in such a way that the 

GCM accuracy decreases at increasingly finer spatial scales and 

that the needs of impact researchers conversely increase with 

higher resolution. As a means of bridging this gap, downscaling 

is commonly used to assess the impact of climate change on 

water resources at basin scale. The basic assumption of 

downscaling is that the large scale atmospheric characteristics 

highly influence the local scale weather, but that in general the 

reverse effects from local scales upon global scales are 

negligible and thus can be disregarded. 

Downscaling is the general name for a procedure to take 

information known at large scales to make prediction at local 

scales. It can be achieved in two ways such as statistical 

downscaling and dynamic downscaling. 

Statistical downscaling is a two-step process consisting of 

(a) the development of statistical relationships between local 

climate variables (e.g., surface air temperature and precipitation) 

and large-scale predictors (e.g., pressure fields), and (b) the 

application of such relationships to the output of Global climate 

model (GCM) experiments to simulate local climate 

characteristics in the future. Dynamic downscaling involves the 

nesting of a higher resolution regional climate model (RCM) 

within a coarser resolution GCM. 

The dynamic downscaling is performed by Regional 

Climate Models (RCMs) or Limited Area Models (LAMs) at 

0.5°×0.5° or even higher Resolutions that parameterizes the 

atmospheric processes. The noteworthy limitations of dynamic 

downscaling, which restricts its use in climate change impact 

studies, is its complicated design and being computationally as 
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demanding as GCMs. RCMs are also inflexible in the sense that 

expanding the region or moving to a slightly different region 

requires redoing the entire experiment. Various studies have 

been carried out to derive predictor-preictand relationship. 

Kazmi,etal.(2014) employed Statistical Downscaling Model 

(SDSM) for downscaling of daily minimum and maximum 

temperature data of 44 national stations of Pakistan region for 

base time (1961–1990) and then the future scenarios generated 

up to 2099 [5]. Generally, the southern half of the country is 

considered vulnerable in terms of increasing temperatures, but 

the results of this study projects that in future, the northern belt 

in particular would have a possible threat of increasing tendency 

in air temperature. 

Ojha, etal. (2010) used multiple linear regression (MLR) 

and artificial neural networks (ANN) models for downscaling of 

precipitation for lake catchment in arid region in India [6]. The 

results of downscaling models show that precipitation is 

projected to increase in future for A2 and A1B scenarios, 

whereas it is least for B1 and COMMIT scenarios using 

predictors. 

Haylock,et al.(2006) used six statistical and two dynamical 

downscaling models for downscaling heavy precipitation over 

the united kingdom [7]. Models based on non-linear artificial 

neural networks (ANNs) were found to be the best at modeling 

the inter-annual variability of the indices; however, their strong 

negative biases implied a tendency to underestimate extremes.  

In the present study the multiple linear regression technique was 

employed to relate the GCM predictors with the predictands 

such as the locally observed precipitation and temperature at 

four meteorological observatories namely Srinagar, Pahalgam, 

Qazigund, and Gulmarg of Jhelum river basin which is located 

in the state of Jammu and Kashmir, India. The predictors as 

obtained from Canadian third generation Climate model 

(CGCM3) were: mslpas (mean sea level pressure), tempas 

(mean temperature at 2m), humas (specific humidity at 2m), 

relative humidity (rhum), zonal velocity component (u), 

meridional velocity component (v).  

Multiple Linear Regression (MLR) 

Multiple regression has three primary uses :(a) 

Understanding which input variables have the greatest effect on 

the output. (b) Knowing the direction of the effect of the input 

variables on output variable (c) Using the model to predict 

future values of the output variable when only the input 

variables are known. 

Multiple linear regression model of the general form represented 

by “Eq. (1)” was used in the data analysis for the present study. 

  (1) 

Where, y is the dependent (or response, output) variable, xi is 

independent (or predictor, input) variable and Ɛ is the error term 

The intercept  and the regression coefficients  were 

obtained using Minitab software.  

Statistical Downscaling 
Statistical downscaling methodologies can be broadly 

classified into three categories [8] : weather generators, weather 

typing and transfer function. 

Weather generators are statistical models of observed 

sequences of weather variables that replicate the statistical 

attributes of a local climate variable (such as the mean and 

variance) but not the observed sequence of events There are two 

basic types of daily weather generators, based on the approach to 

model daily precipitation occurrence: the Markov chain 

approach and the spell-length approach [9]. Weather typing 

approaches involve grouping of local, meteorological variables 

in relation to prevailing patterns of atmospheric circulation [10]. 

Future regional or local climate scenarios are constructed either 

by resampling from the observed data (variable) distribution 

(conditioned on the circulation pattern produced by a GCM), or 

by first generating synthetic sequences of weather pattern and 

then resampling from the generated data. The mean or frequency 

distribution of the local climate is then derived by weighing the 

local climate states with the relative frequencies of the weather 

groups or classes. 

Transfer-function [3] downscaling methods rely on 

empirical relationships between local scale climate variables 

(predictands) and the variables containing the large scale climate 

information in the form of GCM outputs (predictors). Individual 

downscaling schemes differ according to the choice of 

mathematical transfer function, predictor variables or statistical 

fitting procedure. To date, linear and nonlinear regression, 

Artificial Neural network (ANN), canonical correlation, etc. 

have been used to derive predictor–predictand relationship. 

The statistical downscaling techniques involve developing 

quantitative relationships between large scale atmospheric 

variables (the predictors) and local surface variables (the 

predictands). Thus, in this method, the predictand predictor 

relationship can be given by “Eq. (2)” 

R=F(X)  (2) 

Where R is predict and (local climate variable that is being 

downscaled), X stands for predictor (i.e., set of large scale 

climate variables) and F represents a deterministic or stochastic 

function that relates the two. The F function is typically 

established by training and validating historical ground 

observation or reanalysis of the data. Thus, the success of the 

downscaling method is dependent on the relationship used and 

choice of predictor variables, whose performance can be 

evaluated through quantification of error in mean and explained 

variances. Moreover, the predictability and skill of downscaling 

is reported to vary seasonally, regionally and between different 

periods of record, as well as the variable considered. Common to 

both statistical and dynamical downscaling methods, The key 

assumptions of these methods include (1) the predictands are 

functions of synoptic forcing and the predictors are variables of 

relevance that are realistically modeled by the GCM (2) the 

transfer function remains valid under changing climate 

conditions ; and (3) the predictors fully represent the climate 

change signal. 

In the present study, the GCM predictors of tempas, rhum, u 

and v were used as dependent variables for temperature and 

those of mslpas, tempas, u and humas for precipitation. The 

choice of   selection of same  predictor variables for temperature 

and precipitation has also been reported in [11] and [12].     

Study Area 

River Jhelum is a major tributary of river Chenab which 

itself is a tributary of river Indus .The study area comprises of 

the Jhelum basin located in the state of Jammu and Kashmir, 

India. The catchment of the Jhelum River lies between 33°25' N 

to 34°40' N latitude and 73°55' E to 75°35'E longitude. The total 

geographical area of Jhelum basin upto Indo-Pakistan border is 

about 17622 Sq.Kms with the main channel length of 165 Kms. 

The average elevation of Jhelum basin is about 1830 metres 

above mean sea level. River Jhelum rises from Verinag Spring 

situated at the foot of the Pir Panjal mountains in the south-

eastern part of the   Kashmir valley in India. It flows through 

Srinagar city and the Wular lake before entering Pakistan. It 

ends in a confluence with the Chenab. It covers almost all the 

physiographic divisions of the Kashmir Valley and is drained by 

the most important tributaries of river Jhelum. Srinagar city 
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which is the largest urban centre in the valley is settled on both 

the sides of River Jhelum and is experiencing a fast spatial 

growth. Fig.1 shows the location map of Kashmir Valley 

whereas Fig.2 shows the catchment map of  Jhelum river basin. 

 
Figure 1. Location map of study area 

     
Figure 2. Catchment map of Jhelum river basin 

Data Analysis 

 Monthly  precipitation and temperature data (1970– 2004) 

for four  National Meteorological Observatory (NMO) stations  

namely Srinagar, Qazigund, Pahalgam, and Gulmarg for the 

period 1970 to 2004 were obtained from India Meteorological 

Department (IMD), Pune.  

The predictor data of the GCMs ; mslpas (mean sea level 

pressure), tempas (mean temperature at 2m), humas (specific 

humidity at 2m),relative humidity(rhum), zonal velocity(u), 

meridional velocity(v) were obtained from Canadian third 

generation Climate Model (CGCM3) for A1B scenario for the 

grid location of  32°58'42" N to 35°08'02" N  (latitude) and 

73°23'32" E to 75°35'57" E (longitude). The above mentioned 

predictor data were downscaled using MLR technique. For 

multiple linear regression (MLR) analysis the data set for the 

period 1970 -2000 was used for calibration and that of 2001-

2004 was used for validation purposes. 

The average of the mean monthly temperature and monthly 

precipitation totals recorded at the four meteorological stations 

were assumed to represent the basin wide averages.  The MLR 

analysis was carried out to find the dependence relationship 

between temperature and precipitation and the appropriate GCM 

predictors. 

Results and Discussions 

The MLR model was applied on the spatially averaged 

mean monthly temperature and monthly rainfall of Jhelum river 

basin. The historical precipitation data for the period 1970 to 

2000 was used for calibrating the regression model, whereas the 

data for the period 2001-2004 was used for validating the model. 

The regression statistics for temperature and precipitation are 

given in table 1. Prediction accuracy of temperature was higher 

than that of rainfall for A1B scenario. Fig.3 shows the validation 

of temperature model and Fig.4 shows the validation of 

precipitation model over the period 2001 to 2004.   

From  Fig.3 it is clear that the observed and predicted values 

of temperature varied in the same direction throughout the 

validation period.  Furthermore, the future mean monthly 

temperatures of the Jhelum basin for the period 2001-2100 were 

predicted by MLR model and are shown in Fig.5.1 to Fig. 5.12. 

It was observed that the mean monthly temperature over the 21st 

century based on MLR predictions, depict an increasing trend 

except for the months of October and November. The variation 

of average annual temperature for Jhelum river basin was also 

determined using MLR model and is shown in Fig.6. The 

average annual temperature also shows an increasing trend and 

by the end of 21
st
 century it is predicted to increase by 2.37°C. 

Similarly, the future mean monthly precipitation of the 

Jhelum basin for the period 2001-2100 were predicted by MLR 

model and are shown in Fig.7.1 to Fig.7.12. It was observed that 

the mean monthly precipitation of Jhelum basin is expected to 

decrease continuously over the 21st century. This decrease in 

monthly total precipitation is more pronounced for the months of 

January, March, and May. The total annual precipitation of 

Jhelum basin during the period 2001-2100 was also predicted 

using MLR model. Fig.8 represents the variation of this annual 

precipitation over a 100 year period of 2001-2100 and shows 

that annual precipitation is expected to decrease by about 

38.56% by the end of 21st century. 

 
Figure 3. Validation of mean monthly temperature of 

Jhelum river basin for the period 2001-2004 using MLR 
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 Figure 4. Validation of monthly total precipitation of 

Jhelum river basin for the period 2001-2004 using MLR 

 
Figure 5.Variation of mean monthly temperature of 

Jhelum river basin for January during 2001-2100 

 
Figure 6. Variation of mean monthly temperature of 

Jhelum river basin for February during 2001-2100 

 
Figure 7. Variation of mean monthly temperature of 

Jhelum river basin for March during 2001-2100 

 
Figure 8. Variation of mean monthly temperature of 

Jhelum river basin for April during 2001-2100 

 
Figure 9.Variation of mean monthly temperature of 

Jhelum river basin for May during 2001-2100 

 
Figure 10.Variation of mean monthly temperature of 

Jhelum river basin for June during 2001-2100 

 
Figure 11.Variation of mean monthly temperature of 

Jhelum river basin for July during 2001-2100 

 
Figure 12. Variation of mean monthly temperature of 

Jhelum river basin for August during 2001-2100 
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Figure 13.Variation of mean monthly temperature of 

Jhelum river basin for September during 2001-2100 

 
Figure 14.Variation of mean monthly temperature of 

Jhelum river basin for October during 2001-2100 

 
Figure 15.Variation of mean monthly temperature of 

Jhelum river basin for November during 2001-2100 

 
Figure 16. Variation of mean monthly temperature of 

Jhelum river basin for January during 2001-2100 

 
Figure 17.Variation of MLR predicted average annual 

temperature of Jhelum river basin during 21st century 

 
Figure 18. Variation of monthly precipitation of 

Jhelum river basin for January during 2001-2100 

 
Figure 19. Variation of  monthly precipitation of 

Jhelum river basin for February during 2001-2100 

 
Figure 20. Variation of  monthly precipitation of 

Jhelum river basin for March during 2001-2100 

 
Figure 21. Variation of monthly precipitation of Jhelum 

river basin for April during 2001-2100 

 
Figure 22. Variation of monthly precipitation of Jhelum 

river basin for May during 2001-2100
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Figure 23.Variation of monthly precipitation of Jhelum river 

basin for June during 2001-2100 

 
Figure 24. Variation of monthly precipitation of 

Jhelum river basin for July during 2001-2100 

 
Figure 25.Variation of monthly precipitation of 

Jhelum river basin for August during 2001-2100 

 
Figure 26.Variation of monthly precipitation of 

Jhelum river basin for September during 2001-2100 

 
Figure 27.Variation of monthly precipitation of 

Jhelum river basin for October during 2001-2100 

 
Figure 28. Variation of monthly precipitation of Jhelum 

river basin during 2001-2100

Table 1. Regression statistics of MLR model 

Variable 

 

Std. error of 

estimate 

Std. deviation of 

residuals 
Multiple Correlation 

Coeff. 
Coeff. of multiple Determination 

Temperature 1.91°C 2.00 °C 0.97 0.93 

Precipitation 32.06 mm 33.56 mm 0.73 0.40 

 
Table 2. Variation of temperature and precipitation over 21

st
 century from 2001-2100 

Month Increase in mean 

monthly Temp°C 

over 21st century 

%age Decrease in 

monthly Precipitation 

over 21st century 

January 6.33 62.51 

February 0.87 42.74 

March 3.00 64.27 

April 3.53 31.63 

May 5.86 68.50 

June 3.33 25.53 

July 5.72 42.48 

August 1.85 28.57 

September 2.34 25.06 

October -5.10 26.97 

November -1.96 23.20 

December 1.76 37.28 
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Figure 29.Variation of monthly precipitation 

of Jhelum river basin during 2001-2100 

 
Figure 30.Variation of MLR predicted total annual 

Precipitation of Jhelum river basin during 21st century 

The summary of the expected variation in mean monthly 

temperatures and monthly precipitation amounts for Jhelum 

river basin over the 21
st
 century are given in table 2. 

Conclusion 

From the analysis of results the following conclusions were 

drawn: 

1) The MLR model predicts an increase in mean monthly 

temperature of Jhelum river basin over the 21st century except 

for the months of October and November. 

2) The monthly total precipitation of Jhelum river basin was 

found to decrease by MLR model. However, the MLR model 

predicted a pronounced decrease in the January, March and May 

months. 

3) The MLR model predicts that the total annual precipitation of 

the valley is expected to decrease substantially by about 36.53% 

and average annual temperature is expected to increase by 

21.15% by the end of 21st century. 

4) The MLR model predicts that the total annual precipitation of 

the valley is expected to decrease substantially by about 

38.563% and average annual temperature is expected to increase 

by 2.37°C by the end of 21st century. 
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