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Introduction 

Thermal radiation in fluid dynamics has become a significant branch of the engineering sciences and is an essential aspect of 

various scenarios in mechanical, aerospace, chemical, environmental, solar power and hazards engineering. For some industrial 

applications such as glass production, furnace design and in space technology applications such as cosmic flight, aerodynamics rocket, 

propulsion systems, plasma physics and spacecraft re-entry aerothermodynamics which operate at higher temperature, radiation effects 

can be significant.  

The study of heat generation/absorption in moving fluids is important as it changes the temperature distribution and the particle 

deposition rate particularly in nuclear reactor cores, fire and combustion modeling, electronic chips and semi conductor wafers. Heat 

generation is also important in the context of exothermic or endothermic chemical reaction. 

The idea of using a convective boundary condition was recently introduced by Aziz [1] to study the classical boundary layer flow 

over a flat plate. Makinde et al. [8] reported a local similarity solution for the effect of buoyancy forces on thermal boundary layer 

over a flat plate with a convective boundary condition. Their result also revealed that the buoyancy effects tend to reduce the thermal 

boundary layer thickness. Very recently Makinde [7] reported a similarity solution for natural convection from a moving vertical plate 

with internal heat generation and a convective boundary condition. 

England and Emery [17] studied thermal radiation effects of an optically thin gray gas bounded by a stationary vertical plate. 

Radiation effects on mixed convection along an isothermal vertical plate were studied by Hossain and Takhar [3,4]. Raptis and 

Perdikis [2] studied the effects of thermal radiation and free convection flow past a moving vertical plate and the governing equations 

were solved analytically. Das et al. [16] analyzed radiation effects on flow past an impulsively started infinite isothermal vertical plate. 

Datta and Mishra [5,6] , Mishra and Tripathy [9,13,14], Tripathy et al. [10-12] have studied boundary layer two-phase flow over a 

flat plate. But they have not considered the effect of internal heat generation/absorption and radiation on the boundary layer 

characteristics in their study. Though the radiative thermal regime in two-phase flow drawn much attention recently due to ample 

applications, such as gasification of oil shale, waste heat storage in aquifers and so forth. To be specific, in the case of gasification, 

large temperature gradient exists in the vicinity of the combustion regime making radiation effect dominate. However, literature is 

rather scanty on the radiative dusty fluid flow.   

No consulted effort has been made to study the effect radiation and internal heat generation / absorption on the two-phase flow 

and heat transfer over a semi infinite flat plate. In the present analysis, we have considered the terms related to the heat added to the 

system to slip-energy flux in the energy equation of particle phase, Soo[15]. The momentum equation for particulate phase in normal 

direction, heat due to conduction, viscous dissipation, radiation and  internal heat generation /absorption in the energy equation of both 

the phase have been considered for better understanding of the boundary layer characteristics. The effect of radiation and internal heat 

generation/absorption on skin friction, heat transfer and other boundary layer characteristics have been studied by employing finite 

difference technique using non – uniform grid.  

Mathematical Formulation and Solution 

Consider a steady, two- dimensional laminar boundary layer of an incompressible viscous two-phase flow over a flat plate. The 

dust particles are assumed to be spherical in shape and uniform in size. The radiative heat flux and internal heat generation are 
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included in the energy equation of both the phases. Radiation heat flux  is approximated by Rosseland approximation. Under these 

above assumptions, the governing equations of the flow and energy fields are given by  

                                                                               (1) 

                                                                                                                    (2)    

                     (3) 

                         (4) 

                                        (5) 

      

        (6)     

              

            (7) 

Where  and  are the velocity components of the fluid and particle phases along the  and  directions 

respectively and  are the temperature of fluid and particle phase respectively.   and  are the 

density, coefficient of viscosity and thermal conductivity of the fluid and particle phase respectively.   are the velocity and 

thermal equilibrium time of the particle cloud i.e. the time required by the particle cloud to adjust its velocity and temperature relative 

to the fluid respectively.  are the specific heat of fluid and suspended particulate matter(SPM) respectively.   

are the radiative heat flux of the fluid and particle phase in  direction respectively.   is the finite volume fraction,  is the 

material density of the particle. 

Again,  , and         

Where   are the heat source when  or heat sink when . 

Considering the carrier fluid as incompressible,  and  are constant and if the temperature variation is small;  and  may be 

taken as constant. Here the term   may be replaced by , in the particle phase -momentum equation 

which arises due to the particle random motion in direct correspondence with similar terms for fluid phase and the term 

 in energy equation for particle phase may be replaced by . As the free stream velocity  is independent 

of ,  .  

Using Rosseland approximation, the radiation heat flux for the fluid phase (Brewster[3]) is given by  

               (8) 

Where  and  are Stephan Boltzman constant and mean absorption coefficient respectively. 

Here the temperature difference within the flow is assumed to be sufficiently small so that  may be expressed as a linear function 

of temperature , using a truncated taylor series about the free stream temperature  to yield  

              (9) 

Substituting equation (9) in equation (8), we obtain 

              (10) 

Similarly, the radiation heat flux for the particle phase  is given by 

              (11) 
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Boundary conditions 

 Due to the no-slip condition at the wall, the wall boundary conditions of the carrier fluid phase are given by 

,                          (12) 

On the other hand, the particles may be in slip motion at the wall. Assuming that the particle mass is concentrated at the centre of the 

particle; particles cannot exist in the region within the distance from the wall smaller than the radius of the particle. Therefore, the 

velocity, temperature and particle density for the particulate phase at the wall may be approximated as follows: 

, ,                               (13) 

and at the edge of the boundary layer,  is the free stream velocity of the fluid and assuming both the phases are in the same velocity. 

 is the particle density of the particle and  is the temperature of the ambient fluid at the edge of boundary layer. 

i.e.  ,  ,     = ,                           (14) 

In the light of above assumptions, and introducing the non-dimensional quantities like  

  ,    ,    ,  ,            

  ,  ,    ,   ,        (15) 

and after dropping stars , we get the governing equations as 

               (16) 

              (17) 

           (18) 

                                  (19)                          

         (20) 

          (21)                  

  (22) 

Subject to the boundary conditions  

         (23) 

,     = 0,             (24) 

Where  

  is the diffusion parameter 

 is the Prandtl number 

, is the Eckret number 

, is the radiation parameter. 

  , is the internal heat generation/absorption parameter for fluid phase  

  , is the internal heat generation/absorption parameter for particle phase  

and  is the Reynolds number. 

Method of Solution 

 To develop a computational algorithm with non-uniform-grid, finite difference expressions are introduced for the various terms in 

equations (16) to (22) as, 

                                    (25) 

                                    (26) 
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                              (27) 

and                                           (28)    

Each of the equations (17) to (22) reduces to  a form 

,     Where                        (29) 

Where W stands for either . 

Here a general three point representation of     on a non – uniform grid that produces the smallest truncation error is used.  

At the wall  and at . Equations (29) are repeated at  interior nodes forming a 

tri-diagonal system of equations and can be solved using the Thomas algorithm for    

 

The continuity equation (16) is integrated across the boundary layer to give  using  

         (30) 

 The solution for the velocity and temperature distribution for both phases in the boundary layer is obtained by solving equations (29) 

sequentially at each downstream location  . 

The scheme described above is coded in the FORTRAN language. Since   are represented a three level formula (25) to (28), 

two levels of data for are required as initial conditions. The initial  

profiles are prescribed from the standard solutions available for the boundary layer flow over a flat plate.  

In the program the initial profiles are obtained using the Lagrange interpolation and produces  at 

each downstream step and also calculates  , displace thickness and  Nusselt number . 

The important physical parameter of the present investigation and the boundary layer flow is the skin friction coefficient  is 

defined as, 

           (31) 

and the wall heat transfer rate i.e. the Nusselt number  is defined as 

            (32) 

The velocity, density and temperature on the wall of the plate are given by  

           (33) 

         (34) 

        (35) 

Result and Discussion 

A detailed analysis of the problem under consideration must include the study of the velocity field, temperature field, the wall 

shear parameter, the wall heat transfer parameter and the influence of the dimensionless parameters, entering into the problem.  

We choose the following values of the various parameters involved. 

   ; 

 ; ;   

; ;   

From the numerical computations, dimensionless velocity and temperature profiles are found for different values of the various 

physical parameters occurring in the problem. Fig. 1 to 4 depicts the effect of size of the particles on the velocity and temperature 

profiles. It is observed from Fig. 1 and 2 that the velocity of the fluid phase as well as particles phase increases with the increase of 

size of particle. It is noticed from, Fig. 3 and 4 that the temperature of the fluid phase increases where as the temperature of  the 

particle phase decreases with the increase of size of particles. 
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Figs. 5 to 8 display the velocity and temperature profiles for different values of material density of the particles . From Fig. 5 

and 6, it can be observed that there is no significant change in fluid phase velocity but the particle phase velocity increases as  

increases. Similarly, from Fig. 7 & 8, it can be seen that there is no effect of  on temperature profile but the particle phase 

temperature decreases with increase of .  

Figs. 9 & 10 illustrates the temperature profiles for different values of the Prandtl number . The numerical results shows 

that, the effect increasing value of Prandtl number results in a increase of fluid phase temperature, which results in increase of the 

thermal boundary layer thickness.   Similarly, from Fig. 10, it can be observed that the particle phase temperature increases with the 

increase of Prandtl number . 

The effect of radiation parameter  on the temperature profiles are shown in the Fig. 11 & 12. It is seen that the fluid phase 

temperature as well as particle phase temperature decreases as the radiation parameter  increase. This result qualitatively agrees 

with the expectations, since the effect of radiation is to decrease the rate of energy transfer to the fluid, thereby decreasing the 

temperature of the fluid as well as the particles. 

Fig. 13 and 14 depicts the temperature profiles for different values of the heat generation parameter .  It is noticed 

that an increase in the heat generation parameter results in an increase in temperature of fluid phase and also particle phase within the 

boundary layer.  

Table-1 shows the variation of Skin friction coefficient  and Nusselt Number  for different sizes of the particles. It is 

observed that  as well as  decreases as the size of the particle increases. This shows Skin friction coefficient and local heat 

transfer decreases with the increase of size of particle. 

Table-2 shows the variation of skin friction  and Nusselt Number  with various material density of particles, . 

The presence of particles with high material density reduces the Skin friction as well as local heat transfer.  

From Table-3 it can be observed that the local heat transfer rate for water with Prandtl Number 7.0 is very high in comparison to 

air with Prandtl Number 0.71 and electrolyte with Prandtl Number 1.0. 

Table-4 shows the effect of radiation on local heat transfer rate . It can be observed that the local heat transfer rate increases 

with the increase of radiation parameter . 

Fig. 15 shows the variation of  on internal heat generation parameter  and . This shows that  decreases with the 

increases of internal heat generation / absorption. 
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Fig 1. Variation of  with  for different  
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Fig  2. Variation of  with  for different  
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Fig 3. Variation of  with  for different  
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Fig 4. Variation of  with  for different  
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Fig 5. Variation of  with  for different  
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Fig 6. Variation of  with  for different  
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Fig 7. Variation of  with  for different  
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Fig 8. Variation of  with  for different  
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Fig 9. Variation of  with  for different  
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Fig 10. Variation of  with  for different  



  Sujata Panda et al./ Elixir Appl. Math. 84 (2015) 33430-33439 
 

33437 

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

1.0,1.0
71.0Pr,100

,05.0,001.0
/800

3







p

mD

mKgs







y

T



Ra = 0, 1, 2, 3, 4, 5, 10

 

Fig 11. Variation of  with  for different  
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Fig 12. Variation of  with  for different  
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Fig 13. Variation of  with  for different  
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Fig 14. Variation of  with  for different  
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Fig 15. Variation of Nu along the plate for different  

Table 1. Variation of Skin friction  and Nusselt Number  along the plate with different size of the particles  

 

Skin friction  Nusselt Number  

    

1.20 1.60E-03 1.43E-03 6.12E+02 6.00E+02 

1.40 1.86E-03 1.52E-03 7.04E+02 6.51E+02 

1.60 1.98E-03 1.74E-03 7.75E+02 7.42E+02 

1.80 2.05E-03 1.97E-03 7.81E+02 7.77E+02 

2.00 1.98E-03 2.01E-03 7.56E+02 7.55E+02 

2.40 2.10E-03 1.88E-03 7.58E+02 7.09E+02 

2.80 1.98E-03 1.91E-03 7.45E+02 7.18E+02 

3.00 2.01E-03 1.91E-03 7.48E+02 7.18E+02 

4.00 1.99E-03 1.91E-03 7.49E+02 7.17E+02 

5.00 1.96E-03 1.91E-03 7.49E+02 7.17E+02 

 

Table 2. Variation of Skin friction  and Nusselt Number  along the plate with different material density of the 

particles  

 

Skin friction  Nusselt Number  

      

1.20 1.43E-03 1.40E-03 1.38E-03 6.00E+02 5.98E+02 5.97E+02 

1.40 1.52E-03 1.43E-03 1.40E-03 6.51E+02 6.36E+02 6.30E+02 

1.60 1.74E-03 1.65E-03 1.62E-03 7.42E+02 7.30E+02 7.25E+02 

1.80 1.97E-03 1.91E-03 1.88E-03 7.77E+02 7.72E+02 7.70E+02 

2.00 2.01E-03 1.96E-03 1.94E-03 7.55E+02 7.51E+02 7.49E+02 

2.40 1.88E-03 1.83E-03 1.80E-03 7.09E+02 6.98E+02 6.94E+02 

2.80 1.91E-03 1.84E-03 1.81E-03 7.18E+02 7.07E+02 7.04E+02 

3.00 1.91E-03 1.84E-03 1.82E-03 7.18E+02 7.09E+02 7.06E+02 

4.00 1.91E-03 1.84E-03 1.81E-03 7.17E+02 7.07E+02 7.04E+02 

5.00 1.91E-03 1.84E-03 1.81E-03 7.17E+02 7.07E+02 7.04E+02 

 

Table 3. Variation of Nusselt Number  along the plate with different Prandtl number  

    

1.20 6.00E+02 5.89E+02 6.70E+04 

1.40 6.51E+02 5.86E+02 6.76E+04 

1.60 7.42E+02 6.52E+02 4.44E+04 

1.80 7.77E+02 6.92E+02 4.28E+04 

2.00 7.55E+02 6.78E+02 4.83E+04 

2.40 7.09E+02 6.25E+02 3.68E+04 

2.80 7.18E+02 6.27E+02 3.05E+04 

3.00 7.18E+02 6.27E+02 3.51E+04 

4.00 7.17E+02 6.24E+02 3.17E+04 

5.00 7.17E+02 6.24E+02 3.32E+04 
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Table 4. Variation of Nusselt Number  along the plate with different Radiation parameter (  

        

1.20 5.82E+02 6.00E+02 6.22E+02 6.43E+02 6.63E+02 6.80E+02 7.42E+02 

1.40 5.41E+02 6.51E+02 7.33E+02 7.88E+02 8.25E+02 8.50E+02 9.01E+02 

1.60 5.70E+02 7.42E+02 8.24E+02 8.63E+02 8.82E+02 8.92E+02 9.04E+02 

1.80 5.98E+02 7.77E+02 8.38E+02 8.62E+02 8.73E+02 8.79E+02 8.93E+02 

2.00 5.85E+02 7.55E+02 8.07E+02 8.31E+02 8.44E+02 8.54E+02 8.78E+02 

2.40 5.25E+02 7.09E+02 7.74E+02 8.09E+02 8.31E+02 8.45E+02 8.78E+02 

2.80 5.12E+02 7.18E+02 7.87E+02 8.21E+02 8.40E+02 8.53E+02 8.81E+02 

3.00 5.09E+02 7.18E+02 7.86E+02 8.19E+02 8.39E+02 8.51E+02 8.80E+02 

4.00 5.00E+02 7.17E+02 7.85E+02 8.18E+02 8.38E+02 8.51E+02 8.81E+02 

5.00 4.99E+02 7.17E+02 7.85E+02 8.18E+02 8.38E+02 8.51E+02 8.81E+02 

Conclusion 

A finite difference method with non-uniform grid is used to investigate an incompressible, laminar viscous boundary layer flow of 

dilute fluid-particles over a flat plate. The flow profiles for both fluid and particle phases were obtained numerically along the whole 

length of the plate from the leading edge to far downstream of it. The boundary layer characteristics of interest, including the wall 

shear stress and the wall heat transfer rate are calculated with the effect of radiation and internal heat generation/absorption. The 

results obtained in this study illustrate the influence of the particles on boundary layer flow characteristics.  

References 

1. A. Aziz, [2009], “A similarity solution for Laminar Thermal Boundary layer over a flat plate with a convective surface boundary 

condition”, communications in Nonlinear Sciences, Vol.4, No.4,pp:1064-1068. 

2. A. Raptis and C. Perdikis [1999], “Radiation and free convection flow past a moving plate”, Int. J. of Appl.Mechanics and 

Engineering, Vol.4, pp:817-821. 

3. M. Q. Brewster[1972], “Thermal radiative transfer and properties”, John Wiley & Sons, New York, 1972 

4. M.A Hossain and H.S Takhar [1996], “Radiation effecton mixed convection along a vertical plate with uniform surface 

temperature”, Heat and Mass Transfer, Vol.31, pp: 243-248. 

5. N. Datta & S.K. Mishra [1982], “Boundary Layer Flow of a Dusty Fluid over a Semi-Infinite Flat Plate”, Acta Mechanica, 42:71-

83. 

6. N. Datta & S.K. Mishra [1985] , “Boundary Layer Flow of a Dusty Fluid over a Semi-Infinite Flat Plate” ,Acta 

Mechanica,vol.42.no1-2,198 

7. O.D. Makinde  [2011], “Similarity solution for natural convection from a moving vertical plate with internal heat generation and a 

convective boundary condition”, Thermal Sciences, Vol.15, suppl.1,pp: S137-S143. 

8. O.D. Makinde, P.O. Olanrewaju [2010], “Buoyancy effects on thermal boundary layer over a vertical plate with a convective 

surface boundary condition”, Trans. AMSE,Journal of Fluid Engineering ,Vol.132, pp:1-4. 

9. P. K. Tripathy & S. K. Mishra [2012], “Two-Phase Thermal Boundary Layer Flow”,  Int. J. of Engineering Research & Technology, 

1(8), October. 

10. P. K. Tripathy, S.S. Bishoyi & S. K. Mishra [2012], “Numerical Investigation of Two-Phase Flow over a Wedge”, Int j. of 

Numerical methods and Applications, 8(1): 45-62. 

11. P.K. Tripathy, A.R. Sahu & S.K. Mishra [2012], “Numerical Modeling of Two Phase Flow with Transverse Force”, Acta Ciencia 

Indica, 38M (4):675-686. 

12. P.K. Tripathy, A.R. Sahu & S.K. Mishra [2012], “Numerical Simulation of Forced Convection Two-Phase Flow over an 

Adiabatic Plate”, Int. J. of Mathematical Sciences, 33(1):1154-1159. 

13. S. K. Mishra S.K. & P.K. Tripathy [2011], “Approximate Solution of Two Phase Thermal Boundary Layer Flow”, Reflections des 

ERA, 6 (2):113-148. 

14. S. K. Mishra S.K. & P.K. Tripathy [2011], “Mathematical and Numerical Modeling of Two Phase Flow and Heat Transfer Using 

Non-Uniform Grid”, Far East journal of Applied Mathematics, 54(2):107-126. 

15. S. L. Soo [1968], “Fluid dynamics of Multiphase systems”, Blasisdell publishing company,London,:248-256. 

16. U.N Das, R.K.Deka & V.M. Soundalgekar [1996], “Radiation effects on flow past an impulsively started vertical infinite plate”, 

Journal of Theoretical Mechanics, pp: 111. 

17. W.G England and A.F Emery [1969] , “Thermal radiation effects on the laminar free convection boundary layer of an absorbing 

gas”,Journal of Heat Transfer, Vol.91,pp:37-44. 

 

 


