
K. Immanuvel Arokia James et al./ Elixir Comp. Sci. & Engg. 85 (2015) 34671-34676

34671

Introduction

Perhaps the most widely used loop pipelining methods are

based around modulo scheduling. In modulo scheduling the

operations from a single iteration of the loop body are scheduled

into S stages, with each stage requiring T clock cycles to

execute. Each operation in the loop body is assigned to start on a

single cycle in a single stage. The S stages run sequentially to

execute a single iteration of the innermost loop, but may all run

in parallel for different loop iterations without breaching the

resource constraints of the target platform. A new iteration of the

innermost loop is initiated every T clock cycles with the result

that the executions of S loop iterations are overlapped. Standard

modulo scheduling based methods are limited to pipelining

(overlapping) the iterations of the innermost loop in a loop nest.

Single-dimension Software Pipelining (SSP) extends innermost

loop pipelining methods, such as modulo scheduling, allowing

them to be applied at any level in a rectangular loop nest. Under

this methodology a single loop level is selected for pipelining

based upon metrics such as the expected initiation interval for

each level and/or the potential for data reuse.

The data dependence graph for the loop nest is then

simplified according to the method presented in by assuming

that the iterations from loop levels above and below the

pipelined level execute sequentially, all dependence distance

vectors are reduced to equivalent scalar values .This allows

standard modulo scheduling techniques to be applied to the

nested loop, regardless of which level is being pipelined. The

final schedule is then constructed from the modulo schedule. A

new iteration of the pipelined loop level is initiated every T

clock cycles, but an extra delay must be added after each group

of S consecutive iterations. The delay added between each group

is the same and its value is defined. The extra delays are

necessary to ensure that no more than S iterations are overlapped

into a pipeline with S stages as this would cause resource

conflicts.

PIPELINING

In computing, a pipeline is a set of data processing elements

connected in series, so that the output of one element is the input

of the next one. The elements of a pipeline are often executed in

parallel or in time-sliced fashion; in that case, some amount of

buffer storage is often inserted between elements.

Instruction pipelines, such as the classic RISC pipeline, which

are used in processors to allow overlapping execution of

multiple instructions with the same circuitry. The circuitry is

usually divided up into stages, including instruction decoding,

arithmetic, and registers fetching stages, wherein each stage

processes one instruction at a time.

Graphics pipelines, found in most graphics cards, which consist

of multiple arithmetic units, or complete CPUs, that implement

the various stages of common rendering operations (perspective

projection, window clipping, color and light calculation,

rendering, etc.).

Software pipelines, where commands can be written so that

the output of one operation is automatically used as the input to

the next, are following operation. The UNIX command pipe is a

classic example of this concept; although other operating

systems do support pipes as well.
Buffered, Synchronous pipelines

Conventional microprocessors are synchronous circuits that

use buffered, synchronous pipelines. In these pipelines, "pipeline

registers" are inserted in-between pipeline stages, and are

clocked synchronously. The time between each clock signal is

set to be greater than the longest delay between pipeline stages,

so that when the registers are clocked, the data that is

Tele:

E-mail addresses: immanuel_james@yahoo.com

 © 2015 Elixir All rights reserved

Outerloop pipelining in FFT using single dimension software pipelining
K. Immanuvel Arokia James

1
 and M. J. Joyce Kiruba

2

1
Department of EEE VEL Tech Multi Tech Dr. RR Dr. SR Engg College, Chennai, India.

2
Department of ECE, Dr. MGR University, Chennai, India.

ABS TRACT

The aim of the paper is to produce faster results when pipelining above the inner most loop.

The concept of outerloop pipelining is tested here with Fast Fourier Transform. Reduction

in the number of cycles spent flushing and filling the pipeline and the potential for data reuse

is another advantage in the outerloop pipelining. In this work we extend and adapt the

existing SSP approach to better suit the generation of schedules for hardware, specifically

FPGAs. We also introduce a search scheme to find the shortest schedule available within the

pipelining framework to maximize the gains in pipelining above the innermost loop. The

hardware compilers apply loop pipelining to increase the parallelism achieved, but

pipelining is restricted to the only innermost level in nested loop. In this work we extend and

adapt an existing outer loop pipelining approach known as Single Dimension Software

Pipelining to generate schedules for FPGA hardware coprocessors. Each loop level in nine

test loops is pipelined and the schedules are implemented in VHDL. Across the nine test

loops we achieve acceleration over the innermost loop solution of up to 7 times, with a mean

speedup of 3.2 times. The results suggest that inclus ion of outer loop pipelining in future

hardware compilers may be worthwhile as it can allow significantly improved results to be

achieved at the cost of a small increase in compile time.

 © 2015 Elixir All rights reserved.

ARTICLE INFO

Article his tory:

Received: 19 May 2012;

Received in revised form:

22 August 2015;

Accepted: 29 August 2015;

Keywor ds

FFT,

Pipelining, VHDL,

Nested loop,

FPGA,

Integer Linear Programming (ILP).

Elixir Comp. Sci. & Engg. 85 (2015) 34671-34676

Computer Science and Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

K. Immanuvel Arokia James et al./ Elixir Comp. Sci. & Engg. 85 (2015) 34671-34676

34672

written to them is the final result of the previous stage. Another

type is referred as buffered asynchronous pipelines.

Buffered, Asynchronous pipelines

Asynchronous pipelines are used in asynchronous circuits, and

have their pipeline registers clocked asynchronously. Generally

speaking, they use a request/acknowledge system, wherein each

stage can detect when it's "finished". When a stage is finished

and the next stage has sent it a "request" signal, the stage sends

an "acknowledge" signal to the next stage, and a "request" signal

to the previous stage. When a stage receives an "acknowledge"

signal, it clocks its input registers, thus reading in the data from

the previous stage. The AMULET microprocessor is an example

of a microprocessor that uses buffered, asynchronous pipelines.

Unbuffered pipelines

Unbuffered pipelines, called "wave pipelines", do not have

registers in-between pipeline stages. Instead, the delays in the

pipeline are "balanced" so that, for each stage, the difference

between the first stabilized output data and the last is minimized.

Thus, data flows in "waves" through the pipeline, and each wave

is kept as short (synchronous) as possible. The maximum rate

that data can be fed into a wave pipeline is determined by the

maximum difference in delay between the first piece of data

coming out of the pipe and the last piece of data, for any given

wave. If data is fed in faster than this, it is possible for waves of

data to interfere with each other.

Parallelism is achieved by starting to execute one

instruction before the previous one is finished.

• The simplest kind overlaps the execution of one instruction

with the fetch of the next instruction, as on a RISC. Because two

instructions can be processed simultaneously, we say that the

pipeline has two stages.

RISC refers to Reduced Instruction Set Computer.

E1

IF1 IF2

E2

IF3

E3

IF4

E4

IF5

E5

IF6

E6

IF7

E7

IF8

E8

Time

(cy cles)

0 1 2 3 4 5 6 7 8

Operations

E x e c u ti o n

In s tru c ti o n

fe tc h

Figure 1. Three Stage pipeline

Load and store reference memory, so they take two cycles. A

pipeline may have more than two stages. Suppose, for example,

that an instruction consists of four phases:

 Instruction fetch

 Instruction decode

 Operand fetch

 Execute

In a non-pipelined processor, these must be executed

sequentially, so that a result is only available each four pipeline

cycles (subcycles):

In a pipelined processor, after a delay to load the pipeline, a

result is available each pipeline cycle.

The type of pipelining described above achieves instruction-

level parallelism—execution of multiple instructions in parallel.

T i m e

(p i p e l i n e c y c l e s)

P i p e l i n e

sta g e s

Execute

Operand

fetch
Instruction

decode

Instruction

fetch I 2I 1 I 3 I 4 I 5

I 2I 1 I 3 I 4 I 5

I 2I 1 I 3 I 4 I 5

I 2I 1 I 3 I 4 I5

Figure2. Multiple instruction in parallel

Scheduling

The three stages are the different stages in a FFT diagram.

The input data is getting loaded to the input buffer. The data gets

processed to the three stages. Computation is done. The ready

signal indicates that the data is ready to be sent out. Since the

number of loops available in the calculation of FFT is greater,

we adapt the outer loop pipelining of SSP approach.

Figure3. Block Diagram for 3staged Pipelining

The three stages of the fast Fourier transform are described

above.

The most profitable loop is selected for which the

scheduling is to be done. The middle stage of FFT is chosen for

scheduling. The technique is same for calculation of decimation

in time as well as frequency.

Architectures of The FFT

There are many hardware implementations for both DIF and

DIT algorithms. For instance, we can choose between digit-

serial or bit-parallel arithmetic, or we can select between

pipelined or iterative implementations. In the case of data-

oriented applications presenting a continuous flow of samples,

the best architectures are those that favor speed over area. The

implementations that better fit these requirements are bit-parallel

and pipelined architectures, where the processing is performed

in several cascaded stages, We have chosen two main groups of

FFT architectures, representing opposite points in the area-

performance design space: feedback (FB) and feed forward (FF)

architectures.

Architectures with FB provide the output flow at the clock

frequency (one sample per clock cycle), because the feedback

structure allows the reuse of some elements present in every

stage. On the other hand, FF structures provide a higher

K. Immanuvel Arokia James et al./ Elixir Comp. Sci. & Engg. 85 (2015) 34671-34676

34673

throughput (R samples per clock cycle, R being the radix)

because reuse is not applied and higher concurrency can be

obtained, paying the price of a significant area overhead.

Rotators are critical components in the FFT architecture because

they require a significant percentage of the total area.

They are mainly composed of a first element that multiplies

data by the twiddles and a memory that stores the twiddles.

Here the rotator uses the CORDIC algorithm which allows

performing the multiplication by the twiddles without

multipliers. This algorithm performs the rotation of a complex

vector by means of a series of shifts and additions.

Every shift rotates the vector components a given angle

from a set of elemental angles. This algorithm presents an

intrinsic gain of approximately 1.647 Therefore, to keep the

dynamic range of the input samples, this element would have to

increase the data bit width by one bit. As was explained for the

butterfly, this extra bit can be truncated after rotation takes place

or it can be kept. It is important to remark that overflow is

avoided in any case.

 Pipelining Above the Innermost loop

When pipelining above the innermost loop, a simple

controller is needed to be implemented.

Figure 4. Block Diagram for Outer Loop Pipelining

 The first group of butterfly diagram is numbered from stag10,

stag11…………………….stag16, stag17.

 The middle group of butterfly diagram is numbered from

stag20, stag21…………………….stag26, stag27.

 The third group of butterfly diagram is numbered from stag30,

stag31…………………….stag36, stag27.

 Since the middle group comprises a large number of

computations, scheduling is done with the second stage.

 The most profitable loop is choosen.

 The second stage now contains registered inputs.

 A multiplexer is used to select the signal.

 When the mux selects 00 the outerloop pipelining is done. The

registered inputs are being processed.

 When the mux selects 01, 10, 11 the innerloop pipelining is

done. The registered inputs are not considered.

 First group of butterfly comprises of stag10,stag11…stag 17

 Middle group of butterfly comprises of stag20,stag21…stag

27

 In the middle stage of computation stage26,stage27 are given

registered input, since the delay taken by these two stages are

high

 When the mux selects 00 registered inputs are processed

 Last group of butterfly comprises of stag30,stag31…stag 37

 Output is taken from the output buffer

Figure5. N = 8-point decimation-in-frequency FFT

algorithm

Figure6. Basic butterfly computation in the decimation-in-

frequency

Figure 7. N = 8-point decimation-in-time FFT algorithm.

Figure 8. Basic butterfly computation in the decimation-in-

time

K. Immanuvel Arokia James et al./ Elixir Comp. Sci. & Engg. 85 (2015) 34671-34676

34674

 First group of butterfly comprises of stag10,stag11…stag 17

 Middle group of butterfly comprises of stag20,stag21…stag

27

 In the middle stage of computation stage23,stage27 are given

registered input, since the delay taken by these two stages are

high

 When the MUX selects 00 registered inputs are processed

 Last group of butterfly comprises of stag30,stag31…stag 37

 Output is taken from the output buffer

An important observation is concerned with the order of the

input data sequence after it is decimated (v-1) times. For

example, if we consider the case where N = 8, we know that the

first decimation yields the sequence x(0), x(2), x(4), x(6), x(1),

x(3), x(5), x(7), and the second decimation results in the

sequence x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7). This

shuffling of the input data sequence has a well-defined order as

can be ascertained from observing Figure below, which

illustrates the decimation of the eight-point sequence

Let us consider the computation of the N = 2
v
 point DFT by the

divide-and conquer approach. We split the N-point data

sequence into two N/2-point data sequences f1(n) and f2(n),

corresponding to the even-numbered and odd-numbered samples

of x(n), respectively, that is,

.

Thus f1(n) and f2(n) are obtained by decimating x(n) by a factor

of 2, and hence the resulting FFT algorithm is called a

decimation-in-time algorithm.

Figure9. Shuffling of the data and bit reversal.

It is well known that the Fourier Transform (FT) has currently a

key role in signal processing applications. The FT is useful for

frequency domain analysis of a signal, i.e. it transposes a signal

from time domain into frequency domain. Many applications

ranging from telecommunication, electric energy distribution

systems, fail prevention analysis and general signal processing

use this transform as a tool for coding/decoding or spectrum

analysis of a signal. Because of the complexity of the processing

algorithm of FT and its importance in signal analysis, many

people have been working on methods and application specific

processor architecture for improving the computation

performance. Butterfly highly parallel.

Simulation Results

 In the loop of a DIF FFT when the scheduling is not done

 When the MUX selects 01

 The inputs of stage 26, stage27 are not registered and the

delay taken by these two stages are high.

Figure10. When Scheduling Is Not Done In DIF

Time taken for the computation = 5101805ps

 In the loop of a DIF FFT after the scheduling while outerloop

pipelining:

 When the MUX selects 00

 The inputs of stage 26, stage27 are registered and the delay

taken by these two stages are controlled by outerloop pipelining.

 The simulation result is given below

Figure11. When Scheduling Is Done In DIF

Time taken for the computation = 4902985ps

 In the loop of a DIT FFT when the scheduling is not done:

 When the MUX selects 01

 The inputs of stage 23, stage27 are not registered and the

delay taken by these two stages are high.

 The simulation result is given below

Figure12. When Scheduling Is Not Done In DIT

Time taken for the computation = 5097909ps

 In the loop of a DIT FFT after the scheduling while outerloop

pipelining :

K. Immanuvel Arokia James et al./ Elixir Comp. Sci. & Engg. 85 (2015) 34671-34676

34675

 When the MUX selects 00

 The inputs of stage 23, stage27 are registered and the delay

taken by these two stages are controlled by outerloop.

 The simulation result is given below

Figure13. When Scheduling Is Done In DIT

Time taken for the computation = 4904284ps

The FFT is a fast implementation of the Discrete Fourier

Transform (DFT), indicated by. It is based on a divide-and-

conquer model, by which the discrete transform is divided into

smaller and simpler transforms, and from these simpler

transforms, the whole transform is obtained .The divide-and-

conquer model is based on the idea that a N-point DFT

computation can be divided into two N/2-point DFT

computation. These N/2-point DFT computations can be divided

into two N/4-point DFT computation, and so on. Actually, the

division occurs after a reorganization of the points, so that each

point corresponds to a two points DFT in each position when

using a radix-2 method, for example. After the division and the

DFT computation, a merging process is performed, in which the

transforms are reassembled Nowadays semiconductor

technology is able to create very complex devices that can

enclose a complete system in a single chip (SoC). If the system

is created from scratch, achieving the desired performance is

costly and time consuming. To meet the tight time-to-market

requirement, the electronic design uses pre-designed intellectual

property (IP) cores as a common practice. These cores may be

parametrizable and customizable to be synthesized in a large

application specification. They are available to the designer from

heterogeneous sources, design team, CAD tool libraries, CAD

tool independent libraries, etc. One of the areas that major

demands of application specific circuits design is digital signal

processing (DSP). Fast Fourier Transform is a computationally

intensive DSP function, widely used in many applications

HDL Synthesis Report

Macro Statistics

Adders/Subtractors : 1

 4-bit adder : 1

Registers : 47

 1-bit register : 2

 16-bit register : 43

 4-bit register : 2

Xors : 74

 1-bit xor2 : 60

 16-bit xor2 : 14

======================================

* Advanced HDL Synthesis *

======================================

Analyzing FSM <FSM_0> for best encoding.

Optimizing FSM <FSM_0> on signal <nxt_state[1:3]> with

sequential encoding.

 State | Encoding

 st0 | 000

 st1 | 001

 st2 | 011

 st3 | 100

 st31 | 010

 st4 | 101

 st5 | 110

Advanced HDL Synthesis Report

Macro Statistics

Adders/Subtractors : 1

 4-bit adder : 1

Registers : 42

 Flip-Flops : 42

Xors : 14

 16-bit xor2 : 14

Performance analysis

 For both the computations of DIF FFT and DIT FFT we get

faster results when pipelining above the innermost loop.

 SSP combines both the techniques of inner as well as

outerloop pipelining.

 Our extended Single Dimension Software Pipelining

algorithm has been used to pipeline each level in nine nested

loops.

 The pipelined data path for each loop level is implemented

manually in VHDL based on the schedule produced by our tool.

 The results are faster with outerloop pipelining.

The VHDL for the pipeline controller for each case is generated

automatically by our scheduling tool from the set of

parameterized component blocks described in the previous

section

Table I

Computation
time taken by

inner loop

Time taken by outer

loop

DIF FFT 5101805ps 4902985ps

DIT FFT 5097909ps 4904284ps

Advantages

 Reduction in the number of cycles spent flushing and filling

the pipeline and the potential for data reuse.

 Computation takes place at a faster rate when compared with

inner loop pipelining.

 Time consumption is minimum.

 Since SSP combines both loops, the user can select any one

which suits for that particular application.

Conclusion

In this work an existing methodology for pipelining

software loops above the innermost loop level has been adapted

for use in generating FPGA based hardware co-processors. The

Single-dimension Software Pipelining (SSP) method for a multi-

dimensional loop nest chooses the most profitable loop level in

the loop nest and software pipelines it. Our scheduling tool has

been applied to test loops of FFT. The fastest solution is found

when the loop is pipelined above the innermost loop. The

results suggest that inclusion of outer loop pipelining in future

hardware compilers may be worthwhile as it can allow

significantly improved results to be achieved at the cost of a

small increase in compile time.

K. Immanuvel Arokia James et al./ Elixir Comp. Sci. & Engg. 85 (2015) 34671-34676

34676

Future work

Our experimental results were based upon the test loops of

FFT. In many typical DSP applications, loops comprise a

majority of the number of cycles, or MIPS. Because of this,

performance of loops can greatly affect the performance of the

entire application. Therefore one possible future work is to

investigate with the loops of FIR, IIR filters and DCT.

References

[1] Kieron Turkington, George A. Constantinides , Konstantinos

Massselos, and Peter, Outer Loop pipeling for Application

Specific Datapaths in FPGAs, pp 1- 13,2007.

[2] M. Lam. Software Pipelining: An Effective Scheduling

Technique for VLIW Machines. Proceedings in SIGPLAN’ 88

Conference on Programming Language Design and

Implementation (PLDI), pp. 318-328, 1988.

[3] D. Petkov. Efficient Pipelining of Nested Loops: Unrolland-

Squash, M.Eng. Thesis, Massachusetts Institute of Technology,

pp, 1-5 January 2001.

[4] Hongbo Rongy, Alban Douillety, R. Govindarajan z, Guang

R. Gaoy Code Generation for Single-Dimension Software

Pipelining of Multi-Dimensional Loops. University of Delaware,

New York pp 1-12, 2004.

