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Introduction  

Perhaps the most widely used loop pipelining methods are 

based around modulo scheduling. In modulo scheduling the 

operations from a single iteration of the loop body are scheduled 

into S stages, with each stage requiring T clock cycles to 

execute. Each operation in the loop body is assigned to start on a 

single cycle in a single stage. The S stages run sequentially to 

execute a single iteration of the innermost loop, but may all run 

in parallel for different loop iterations without breaching the 

resource constraints of the target platform. A new iteration of the 

innermost loop is initiated every T clock cycles with the result 

that the executions of S loop iterations are overlapped. Standard 

modulo scheduling based methods are limited to pipelining 

(overlapping) the iterations of the innermost loop in a loop nest. 

Single-dimension Software Pipelining (SSP) extends innermost 

loop pipelining methods, such as modulo scheduling, allowing 

them to be applied at any level in a rectangular loop nest. Under 

this methodology a single loop level is selected for pipelining 

based upon metrics such as the expected initiation interval for 

each level and/or the potential for data reuse. 

The data dependence graph for the loop nest is then 

simplified according to the method presented in by assuming 

that the iterations from loop levels above and below the 

pipelined level execute sequentially, all dependence distance 

vectors are reduced to equivalent scalar values .This allows 

standard modulo scheduling techniques to be applied to the 

nested loop, regardless of which level is being pipelined.  The 

final schedule is then constructed from the modulo schedule. A 

new iteration of the pipelined loop level is initiated every T 

clock cycles, but an extra delay must be added after each group 

of S consecutive iterations. The delay added between each group 

is the same and its value is defined. The extra delays are 

necessary to ensure that no more than S iterations are overlapped 

into a pipeline with S stages as this would cause resource 

conflicts. 

PIPELINING 

In computing, a pipeline is a set of data processing elements 

connected in series, so that the output of one element is the input 

of the next one. The elements of a pipeline are often executed in 

parallel or in time-sliced fashion; in that case, some amount of 

buffer storage is often inserted between elements.  

Instruction pipelines, such as the classic RISC pipeline, which 

are used in processors to allow overlapping execution of 

multiple instructions with the same circuitry. The circuitry is 

usually divided up into stages, including instruction decoding, 

arithmetic, and registers fetching stages, wherein each stage 

processes one instruction at a time. 

Graphics pipelines, found in most graphics cards, which consist 

of multiple arithmetic units, or complete CPUs, that implement 

the various stages of common rendering operations (perspective 

projection, window clipping, color and light calculation, 

rendering, etc.). 

Software pipelines, where commands can be written so that 

the output of one operation is automatically used as the input to 

the next, are following operation. The UNIX command pipe is a 

classic example of this concept; although other operating 

systems do support pipes as well. 
Buffered, Synchronous pipelines 

Conventional microprocessors are synchronous circuits that 

use buffered, synchronous pipelines. In these pipelines, "pipeline 

registers" are inserted in-between pipeline stages, and are 

clocked synchronously. The time between each clock signal is  

set to be greater than the longest delay between pipeline stages, 

so that when the registers are clocked, the data that is
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ABS TRACT 

The aim of the paper is to produce faster results when pipelining above the inner most loop. 

The concept of outerloop pipelining is tested here with Fast Fourier Transform.  Reduction 

in the number of cycles spent flushing and filling the pipeline and the potential for data reuse 

is another advantage in the outerloop pipelining. In this work we extend and adapt the 

existing SSP approach to better suit the generation of schedules for hardware, specifically 

FPGAs. We also introduce a search scheme to find the shortest schedule available within the 

pipelining framework to maximize the gains in pipelining above the innermost loop. The 

hardware compilers apply loop pipelining to increase the parallelism achieved, but 

pipelining is restricted to the only innermost level in nested loop. In this work we extend and 

adapt an existing outer loop pipelining approach known as Single Dimension Software 

Pipelining to generate schedules for FPGA hardware coprocessors. Each loop level in nine 

test loops is pipelined and the schedules are implemented in VHDL. Across the nine test 

loops we achieve acceleration over the innermost loop solution of up to 7 times, with a mean 

speedup of 3.2 times. The results suggest that inclus ion of outer loop pipelining in future 

hardware compilers may be worthwhile as it can allow significantly improved results to be 

achieved at the cost of a small increase in compile time. 
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written to them is the final result of the previous stage. Another 

type is referred as buffered asynchronous pipelines. 

Buffered, Asynchronous pipelines  

Asynchronous pipelines are used in asynchronous circuits, and 

have their pipeline registers clocked asynchronously. Generally 

speaking, they use a request/acknowledge system, wherein each 

stage can detect when it's "finished". When a stage is finished 

and the next stage has sent it a "request" signal, the stage sends 

an "acknowledge" signal to the next stage, and a "request" signal 

to the previous stage. When a stage receives an "acknowledge" 

signal, it clocks its input registers, thus reading in the data from 

the previous stage. The AMULET microprocessor is an example 

of a microprocessor that uses buffered, asynchronous pipelines. 

Unbuffered pipelines 

Unbuffered pipelines, called "wave pipelines", do not have 

registers in-between pipeline stages. Instead, the delays in the 

pipeline are "balanced" so that, for each stage, the difference 

between the first stabilized output data and the last is minimized. 

Thus, data flows in "waves" through the pipeline, and each wave 

is kept as short (synchronous) as possible. The maximum rate 

that data can be fed into a wave pipeline is determined by the 

maximum difference in delay between the first piece of data 

coming out of the pipe and the last piece of data, for any given 

wave. If data is fed in faster than this, it is possible for waves of 

data to interfere with each other. 

Parallelism is achieved by starting to execute one 

instruction before the previous one is finished. 

• The simplest kind overlaps the execution of one instruction 

with the fetch of the next instruction, as on a RISC. Because two 

instructions can be processed simultaneously, we say that the 

pipeline has two stages. 

RISC refers to Reduced Instruction Set Computer. 
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Figure 1. Three Stage pipeline 

Load and store reference memory, so they take two cycles. A  

pipeline may have more than two stages.  Suppose, for example, 

that an instruction consists of four phases: 

 Instruction fetch  

 Instruction decode 

 Operand fetch  

  Execute 

In a non-pipelined processor, these must be executed 

sequentially, so that a result is only available each four pipeline 

cycles (subcycles): 

In a pipelined processor, after a delay to load the pipeline, a 

result is available each pipeline cycle. 

The type of pipelining described above achieves instruction-

level parallelism—execution of multiple instructions in parallel. 
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Figure2. Multiple instruction in parallel 

Scheduling 

The three stages are the different stages in a FFT diagram. 

The input data is getting loaded to the input buffer. The data gets 

processed to the three stages. Computation is done.   The ready 

signal indicates that the data is ready to be sent out. Since the 

number of loops available in the calculation of FFT is greater, 

we adapt the outer loop pipelining of SSP approach. 

 
Figure3. Block Diagram for 3staged Pipelining 

The three stages of the fast Fourier transform are described 

above. 

The most profitable loop is selected for which the 

scheduling is to be done. The middle stage of FFT is chosen for 

scheduling. The technique is same for calculation of decimation 

in time as well as frequency. 

Architectures of The FFT 

There are many hardware implementations for both DIF and 

DIT algorithms. For instance, we can choose between digit-

serial or bit-parallel arithmetic, or we can select between 

pipelined or iterative implementations. In the case of data-

oriented applications presenting a continuous flow of samples, 

the best architectures are those that favor speed over area.  The 

implementations that better fit these requirements are bit-parallel 

and pipelined architectures, where the processing is performed 

in several cascaded stages, We have chosen two main groups of 

FFT architectures, representing opposite points in the area-

performance design space: feedback (FB) and feed forward (FF) 

architectures. 

Architectures with FB provide the output flow at the clock 

frequency (one sample per clock cycle), because the feedback 

structure allows the reuse of some elements present in every 

stage.  On the other hand, FF structures provide a higher 
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throughput (R samples per clock cycle, R being the radix) 

because reuse is not applied and higher concurrency can be 

obtained, paying the price of a significant area overhead. 

Rotators are critical components in the FFT architecture because 

they require a significant percentage of the total area. 

They are mainly composed of a first element that multiplies 

data by the twiddles and a memory that stores the twiddles.  

Here the rotator uses the CORDIC algorithm which allows 

performing the multiplication by the twiddles without 

multipliers. This algorithm performs the rotation of a complex 

vector by means of a series of shifts and additions.  

Every shift rotates the vector components a given angle 

from a set of elemental angles.  This algorithm presents an 

intrinsic gain of approximately 1.647 Therefore, to keep the 

dynamic range of the input samples, this element would have to 

increase the data bit width by one bit.  As was explained for the 

butterfly, this extra bit can be truncated after rotation takes place 

or it can be kept. It is important to remark that overflow is 

avoided in any case.  

 Pipelining Above the Innermost loop 

When pipelining above the innermost loop, a simple 

controller is needed to be implemented.  

 
Figure 4. Block Diagram for Outer Loop Pipelining 

 The first group of butterfly diagram is numbered from stag10, 

stag11…………………….stag16, stag17. 

 The middle group of butterfly diagram is numbered from 

stag20, stag21…………………….stag26, stag27. 

 The third group of butterfly diagram is numbered from stag30, 

stag31…………………….stag36, stag27. 

 Since the middle group comprises a large number of 

computations, scheduling is done with the second stage. 

 The most profitable loop is choosen. 

 The second stage now contains registered inputs. 

 A multiplexer is used to select the signal. 

 When the mux selects 00 the outerloop pipelining is done. The 

registered inputs are being processed. 

 When the mux selects 01, 10, 11 the innerloop pipelining is 

done. The registered inputs are not considered. 

 First group of butterfly comprises of stag10,stag11…stag 17 

 Middle group of butterfly comprises of stag20,stag21…stag 

27 

 In the middle stage of computation stage26,stage27 are given 

registered input, since the delay taken by these two stages are 

high 

 When the mux selects 00 registered inputs are processed 

 Last group of butterfly comprises of stag30,stag31…stag 37 

 Output is taken from the output buffer 

 
Figure5. N = 8-point decimation-in-frequency FFT 

algorithm 

 
Figure6. Basic butterfly computation in the decimation-in-

frequency 

 
Figure 7. N = 8-point decimation-in-time FFT algorithm. 

 
Figure 8. Basic butterfly computation in the decimation-in-

time 
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 First group of butterfly comprises of stag10,stag11…stag 17 

 Middle group of butterfly comprises of stag20,stag21…stag 

27 

 In the middle stage of computation stage23,stage27 are given 

registered input, since the delay taken by these two stages are 

high 

 When the MUX selects 00 registered inputs are processed 

 Last group of butterfly comprises of stag30,stag31…stag 37 

 Output is taken from the output buffer 

An important observation is concerned with the order of the 

input data sequence after it is decimated (v-1) times. For 

example, if we consider the case where N = 8, we know that the 

first decimation yields the sequence x(0), x(2), x(4), x(6), x(1), 

x(3), x(5), x(7), and the second decimation results in the 

sequence x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7). This 

shuffling of the input data sequence has a well-defined order as 

can be ascertained from observing Figure below, which 

illustrates the decimation of the eight-point sequence 

Let us consider the computation of the N = 2
v
 point DFT by the 

divide-and conquer approach. We split the N-point data 

sequence into two N/2-point data sequences f1(n) and f2(n), 

corresponding to the even-numbered and odd-numbered samples 

of x(n), respectively, that is, 

. 

Thus f1(n) and f2(n) are obtained by decimating x(n) by a factor 

of 2, and hence the resulting FFT algorithm is called a 

decimation-in-time algorithm. 

 
Figure9. Shuffling of the data and bit reversal. 

It is well known that the Fourier Transform (FT) has currently a 

key role in signal processing applications. The FT is useful for 

frequency domain analysis of a signal, i.e. it transposes a signal 

from time domain into frequency domain. Many applications 

ranging from telecommunication, electric energy distribution 

systems, fail prevention analysis and general signal processing 

use this transform as a tool for coding/decoding or spectrum 

analysis of a signal. Because of the complexity of the processing 

algorithm of FT and its importance in signal analysis, many 

people have been working on methods and application specific 

processor architecture for improving the computation 

performance. Butterfly highly parallel. 

Simulation Results 

 In the loop of a DIF FFT  when the scheduling is not done  

 When the MUX selects 01 

 The inputs of stage 26, stage27 are not registered and the 

delay taken by these two stages are high. 

 
Figure10. When Scheduling Is Not Done In DIF 

Time taken for the computation = 5101805ps  

 In the loop of a DIF FFT  after the scheduling while outerloop 

pipelining: 

 When the MUX selects 00 

 The inputs of stage 26, stage27 are registered and the delay 

taken by these two stages are controlled by outerloop pipelining. 

 The simulation result is given below 

 
Figure11. When Scheduling Is Done In DIF 

Time taken for the computation = 4902985ps  

 In the loop of a DIT FFT  when the scheduling is not done: 

 When the MUX selects 01 

 The inputs of stage 23, stage27 are not registered and the 

delay taken by these two stages are high. 

  The simulation result is given below 

 
Figure12. When Scheduling Is Not Done In DIT 

Time taken for the computation = 5097909ps  

 In the loop of a DIT FFT after the scheduling while outerloop 

pipelining : 
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 When the MUX selects 00 

 The inputs of stage 23, stage27 are registered and the delay 

taken by these two stages are controlled by outerloop. 

 The simulation result is given below 

 
Figure13. When Scheduling Is Done In DIT  

Time taken for the computation = 4904284ps  

The FFT is a fast implementation of the Discrete Fourier 

Transform (DFT), indicated by. It is based on a divide-and-

conquer model, by which the discrete transform is divided into 

smaller and simpler transforms, and from these simpler 

transforms, the whole transform is obtained .The divide-and-

conquer model is based on the idea that a N-point DFT 

computation can be divided into two N/2-point DFT 

computation. These N/2-point DFT computations can be divided 

into two N/4-point DFT computation, and so on. Actually, the 

division occurs after a reorganization of the points, so that each 

point corresponds to a two points DFT in each position when 

using a radix-2 method, for example. After the division and the 

DFT computation, a merging process is performed, in which the 

transforms are reassembled Nowadays semiconductor 

technology is able to create very complex devices that can 

enclose a complete system in a single chip (SoC). If the system 

is created from scratch, achieving the desired performance is 

costly and time consuming. To meet the tight time-to-market 

requirement, the electronic design uses pre-designed intellectual 

property (IP) cores as a common practice. These cores may be 

parametrizable and customizable to be synthesized in a large 

application specification. They are available to the designer from 

heterogeneous sources, design team, CAD tool libraries, CAD 

tool independent libraries, etc. One of the areas that major 

demands of application specific circuits design is digital signal 

processing (DSP). Fast Fourier Transform is a computationally 

intensive DSP function, widely used in many applications 

HDL Synthesis Report 

Macro Statistics 

# Adders/Subtractors                            : 1 

 4-bit adder                                           : 1 

# Registers                                           : 47 

 1-bit register                                        : 2 

 16-bit register                                      : 43 

 4-bit register                                        : 2 

# Xors                                                  : 74 

 1-bit xor2                                             : 60 

 16-bit xor2                                           : 14 

====================================== 

*       Advanced HDL Synthesis                * 

====================================== 

Analyzing FSM <FSM_0> for best encoding. 

Optimizing FSM <FSM_0> on signal <nxt_state[1:3]> with 

sequential encoding. 

------------------- 

 State | Encoding 

------------------- 

 st0   | 000 

 st1   | 001 

 st2   | 011 

 st3   | 100 

 st31  | 010 

 st4   | 101 

 st5   | 110 

------------------- 

Advanced HDL Synthesis Report 

Macro Statistics 

# Adders/Subtractors             : 1 

 4-bit adder                             : 1 

# Registers                              : 42 

 Flip-Flops                              : 42 

# Xors                                     : 14 

 16-bit xor2                             : 14 

Performance analysis 

 For both the computations of DIF FFT and DIT FFT we get 

faster results when pipelining above the innermost loop. 

 SSP combines both the techniques of inner as well as 

outerloop pipelining. 

 Our extended Single Dimension Software Pipelining 

algorithm has been used to pipeline each level in nine nested 

loops.  

 The pipelined data path for each loop level is implemented 

manually in VHDL based on the schedule produced by our tool. 

 The results are faster with outerloop pipelining. 

The VHDL for the pipeline controller for each case is generated 

automatically by our scheduling tool from the set of 

parameterized component blocks described in the previous 

section 

Table I 

Computation 
time taken by              

inner loop 

Time taken by    outer 

loop 

DIF FFT 5101805ps 4902985ps 

DIT FFT 5097909ps 4904284ps 

Advantages  

 Reduction in the number of cycles spent flushing and filling 

the pipeline and the potential for data reuse. 

 Computation takes place at a faster rate when compared with 

inner loop pipelining. 

 Time consumption is minimum. 

 Since SSP combines both loops, the user can select any one 

which suits for that particular application. 

Conclusion 

In this work an existing methodology for pipelining 

software loops above the innermost loop level has been adapted 

for use in generating FPGA based hardware co-processors. The 

Single-dimension Software Pipelining (SSP) method for a multi-

dimensional loop nest chooses the most profitable loop level in 

the loop nest and software pipelines it. Our scheduling tool has 

been applied to test loops of FFT. The fastest solution is found 

when the loop is pipelined above the innermost loop.  The 

results suggest that inclusion of outer loop pipelining in future 

hardware compilers may be worthwhile as it can allow 

significantly improved results to be achieved at the cost of a 

small increase in compile time. 
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Future work 

Our experimental results were based upon the test loops of 

FFT. In many typical DSP applications, loops comprise a 

majority of the number of cycles, or MIPS. Because of this, 

performance of loops can greatly affect the performance of the 

entire application. Therefore one possible future work is to 

investigate with the loops of FIR, IIR filters and DCT. 
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