34557

Dhananjay Yadav and Ritesh Srivastava/ Elixir Mech. Engg. 85 (2015) 34557-34559

Available online at www.elixirpublishers.com (Elixir International Journal)

Mechanical Engineering

Elixir Mech. Engg. 85 (2015) 34557-34559

Vortex Shedding Past a Single Cylinder Confined in a Channel with Blockage Ratio 0.83, 0.85, 0.88 and 0.9

Dhananjay Yadav¹ and Ritesh Srivastava^{2,*} ¹School of Mechanical Engineering, Yonsei University, Seoul 120 749, South Korea. ²Deptmartment of Mechanical Engineering, Mangalayatan University, India.

ARTICLE INFO

Article history: Received: 9 June 2015; Received in revised form: 10 August 2015; Accepted: 21 August 2015;

ABSTRACT

A numerical investigation of the vortex shedding past a circular cylinder in a twodimensional channel of varying height is presented in the term of Strouhal number by solving continuity and momentum equations using FLUENT 6.3. The computational grid structure is generated by using Gambit. In this work, the result is carried out with blockage ratio b=0.83, 0.85, 0.88.

© 2015 Elixir All rights reserved.

Keywords

Vortex shedding, Strouhal number, Blockage ratio.

Introduction

The cross flow close to a solid surface has many practical applications including the flow over heat exchanger tubes, seabed pipelines and experimental models in wind tunnel. Efforts have been made by several researchers to understand the effects of solid wall on the flow past a circular cylinder. The experimental studies carried out by Bearman and Zdravkovich (1978), Buresti and Lanciotti (1979), Angrilli et al. (1982), Zdravkovich (1983) and Taniguchi and Miyakoshi (1990). Broadly speaking on these studies, they have shown that the vortex shedding is completely suppressed when the cylinder is closer than a critical distance from the wall. But, almost all experimental studies are at reasonably higher Reynolds numbers in the range on O(104)-O(105) where turbulence and threedimensionality are important. Studies at low Reynolds numbers are relatively scarce. The experiential studied to estimate the effects of tunnel blockage on the span wise correlation of the wake of a circular cylinder over a range of Reynolds numbers that varied between 2400 and 4000 was carried out by Blackburn (1994). It was observed that blockage increases the span wise correlation of the wake. Chen et al. (1995) gave the numerically simulated a centrally placed cylinder with a focus on the nature and occurrence of the bifurcation from steady symmetric flow to the periodic shedding regime. The effects of a closely placed solid wall was not given due attention. The effect of varying gap between the cylinder and the channel walls was analysed by Zovatto and Pedrizzetti (2001). Sahin and Owens (2004) have presented a parameter for study the transition from steady two-dimensional flow to periodic vortex shedding across a range of blockage ratio. They found that the critical Reynolds number for such a transition increased with increasing blockage ratio. At increased blockage ratios, the flow alters significantly with vortices beginning to be shed from both the cylinder and the walls. Rehimi et al., (2008) have observed in both two- and three-dimensional studies at a given distance downstream of the cylinder depending on the blockage ratio and the Reynolds number. As for the transition from two-dimensional to threedimensional flow for a single blockage ratio of 0.20 was studied by Camarri and Gianetti (2010) using linear stability analysis and obtained that the inversion had little effect on the types of mode of transition and that the critical Reynolds numbers. Griffith et al. (2011) have studied the vortex shedding and threedimensional behaviour of flow past a cylinder confined in a channel with blockage ration 0.2, 0.33 and 0.5 using spectralelement solver and observed that Strouhal number increases with blockage ratio 0.2, 0.3 and 0.5. Very recently, Yadav et al. (2015) studied the numerical simulation of vortex shedding past a single cylinder confined in a channel. They observed that the Strouhal number decreases with increase in block ratio.

In the present paper, the simulation is carried out with blockage ratio 0.83, 0.85, 0.88 and 0.9 using FLUENT 6.3 solver. It is observed that Strouhal number decreases up to blockage ratio 0.83 to 0.9.

Problem Formulation

Consider the 2-D flow of air across an infinitely long circular cylinder confined in a channel as shown in Fig. 1. The length and the height of the computational domain are defined in terms of the axial and lateral dimensions L and H, respectively.

Tele: E-mail addresses: riteshteacher@gmail.com

^{© 2015} Elixir All rights reserved

The cylinder is placed at upstream and downstream distances of $x_u = 12D$ and $x_d = 45D$, respectively and the total length of the computational domain is $L = x_u + x_d$ in the axial direction, where *D* is the diameter of the cylinder.

Governing Equations and Boundary Conditions

The equations governing incompressible viscous fluid flow in two-dimensions are the continuity equation and the two components of momentum equation. In absence of body forces and heat transfer, these equations can be expressed in the conservative non dimensional primitive variable form as follows (Patil and Tiwari, 2009): Continuity Equation:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

X-Momentum equation:

$$\frac{\partial u}{\partial t} + \frac{\partial (uu)}{\partial x} + \frac{\partial (vu)}{\partial y} = -\frac{\partial p}{\partial x} + \frac{1}{\operatorname{Re}} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

(2)

Y-Momentum equation:

$$\frac{\partial v}{\partial t} + \frac{\partial (uv)}{\partial x} + \frac{\partial (vv)}{\partial y} = -\frac{\partial p}{\partial y} + \frac{1}{\operatorname{Re}} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)$$
(3)

The following boundary conditions in their dimensionless forms are used.

1)The inlet boundary conditions are given by a prescribed parabolic profile,

 $u_{in} = u_0 \left[1 - 4 \left(\frac{y}{H} \right)^2 \right]$, where u_0 and H are the centre line

velocity and the distance between the side walls, respectively.

2)On the circular obstacle: No slip condition is used i.e. u = v = 0.

3)At upper and lower boundaries: No-slip condition of velocity is used i.e. u = v = 0.

4)At the exit boundary: The Neumann boundary condition as: $\partial u = \partial v$

$$\frac{\partial x}{\partial x} = 0, \ \frac{\partial x}{\partial x} = 0$$

The simulation studies are carried out for several values of Reynolds numbers (Re), based on the centre line in flow velocity and diameter (D) of the cylinder, and normalized channel height (D/H). The considered values lie in the ranges Reynolds number from 50 to 300 and blockage ratio b=0.83 0.85, 0.88. To validate the solution, we also considered the blockage ratio b=0.2. The parameter space considered in the study is shown in Table 1.

 Table 1. Reynolds numbers and channel heights considered

 for single circular evliptor

for single circular cynnuci				
Reynolds number (Re)	50, 100 to 300 in steps of 50			
Blockage ratio b=(D/H)	0.2, 0.83, 0.85 and 0.88.			

Numerical Methodology and Results

The problem under consideration is solved by commercial software package FLUENT (6.3). The grid is generated by using GAMBIT. The second order upwind scheme is used to discretise convective terms of momentum equations while the diffusive term is discretised by central difference scheme. To validate the solution, calculations is carried out first for the blockage ratio b=0.2. The Strouhal number for different values of Reynolds numbers at blockage ratio 0.2 is plotted in Fig. 2 and compared our results with the results given in Griffith et al. (2011). From these, we noted that the agreement is very good and this verifies

the results obtained in the present work. The Reynolds number is defined as $\text{Re} = \frac{u_0 D}{v}$, where *D* is the diameter of the circular cylinder and *v* is the kinematic viscosity. The blockage ratio is defined as $b = \frac{D}{H}$, where H is the width of the channel.

Fig 2. Variation of Strouhal number with Reynolds number for blockage ratio b=0.2 validation with paper result of Griffith et al. (2011)

Flow behaviour past single cylinders confined in a channel with different blockage ratio has been studied. Simulation has been carried out for the blockage ratio b=0.83, 0.85 and 0.88. Fig.3 shows the plot of Strouhal number with Reynolds number for different values of the block ratio and tabulated in Table 2.

It is observed that the Strouhal number increases with Reynolds number and decreases with blockage ratio 0.8 to 0.9. This happens because for the blockage ratio greater 0.85, the velocity becomes very high and pressure becomes very low.

Table 2. Comparison of Strouhal number with Reynol	ds
number for different values of blockage ratio	

Re	Strouhal number at b=0.8	Strouhal number at b=0.83	Strouhal number at b=0.85	Strouhal number at b=0.88	Strouhal number at b=0.9
100	0.531	0.501	0.499	0.49	0.482
150	0.534	0.530	0.520	0.495	0.494
200	0.539	0.531	0.522	0.496	0.497
250	0.542	0.532	0.526	0.512	0.510

Conclusion

Motivated by the vortex shedding past a circular cylinder which is very useful in many practical applications including the flow over heat exchanger tubes, seabed pipelines and experimental models in wind tunnel in the present paper the effect of blockers ratio 0.83 to 0.9 on the Strouhal number was investigated. The results show that the Strouhal number decreases with increase in block ratio greater than 0.8. This illustrates that for these block ration vortex shedding frequency increases and coefficient of lift oscillates.

References

1. Angrilli, F., Di Silvio, G., and Zanardo, A., Hydroelasticity study of a circular cylinder in a water stream, In Flow Induced Structural Vibrations (ed. E. Naudascher), IUTAM-IAHR Symposium, 504-512.

2. Bearman, P. W. and Zdravkovich, M. M., Flow around a circular cylinder near a plane boundary, Journal of Fluid Mechanics 89 (1978) 33-47.

3. Blackburn, M.H., Effect of blockage on spanwise correlation in a circular cylinder wake, Experiment in Fluids 18 (1994) 134– 136.

4. Buresti, G. and Lanciotti, A., Mean and fluctuating forces on a circular cylinder in cross-flow near a plane surface, J. of Wind Engng. Ind. Aerodyn.41 (1992) 639-650.

5. Camarri, S., Gianetti, F., Effect of confinement on threedimensional stability in the wake of a circular cylinder, Journal of Fluid Mechanics 642 (2010) 477–487.

6. Chen, J.H., Pritchard, W.G., Tavener, S.J., Bifurcation of flow past a cylinder between parallel plates, Journal of Fluid Mechanics 284(1995) 23–41.

7. Griffith, M.D., Leontini, J., Thompson, M.C., Hourigan, K., Vortex shedding and three-dimensional behaviour of flow past a cylinder confined in a channel, Journal of Fluids and Structures 27 (2011) 855–860.

8. Patil, P., and Tiwari, S., Three-Dimensional Numerical Investigations on Flow and Heat Transfer for Flow Past a Channel confined Square Cylinder, Progress in Computational Fluid Dynamics, 10 (2010)146-156.

9. Rehimi, F., Aloui, F., Ben Nasrallah, S., Doubliez, L., Legrand, J., Experimental investigation of a confined flow downstream of a circular cylinder centred between two parallel walls, Journal of Fluids and Structures 24 (2008)855–882.

10. Sahin, M., Owens, R.G., A numerical investigation of wall effects up to high blockage ratios on two-dimensional flow past a confined circular cylinder, Physics of Fluids 16 (2004)1305–1320.

11. Taniguchi, S., and Miyakoshi, K., Fluctuating fluid forces acting on a circular cylinder and interference with a plane wall 9 (1990) 197-204.

12. Zdravkovich, M. M., Interference between two circular cylinders forming a cross, Journal of Fluid Mechanics 128 (1983) 231-246.

13. Zovatto, L., Pedrizzetti, G., Flow about a circular cylinder between parallel walls, Journal of Fluid Mechanics 440 (2001)1–25.

14. Yadav, D., Srivastava, R., Lee, J., Numerical simulation of vortex shedding past a single cylinder confined in a channel, Fluid Mechanics 1 (2015) 1-4.