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Introduction 

A game is a description of strategic interaction that includes  the constraints on the actions that the players can take and the 

player‟s interests, but does not specify the actions that the players do take. A solution is a systematic description of the outcomes that 

may emerge in a family of games. Game theory suggests reasonable solutions for classed of games and examines their properties. 

Nash equilibrium is one of the most basic concepts in game theory. 

The next-most standard approach is to devise new solution concepts that overcome problems with Nash equilibrium, e.g., 

competitive safety strategies (Tennenholtz, 2002), minimax regret equilibrium (Hyafil and Boutilier, 2004), generalized strategic 

eligibility (Conitzer and Sandholm, 2005), CURB sets (Benisch, Davis, and Sandholm, 2006), and iterated regret minimization 

(Halpern and Pass, 2009). Still other work aims to identify strategies that work well without detailed modeling of the opponent. This 

line of work is perhaps exemplified by the very influential series of Trading Agent Competitions (Wellman, Greenwald, and Stone, 

2007). We are most interested in approaches that make explicit predictions about which actions a player will adopt, and that are 

grounded in human behavior. The relatively new field of behavioral game theory extends game-theoretic models to account for human 

behavior by taking account of human cognitive biases and limitations (Camerer, 2003). Experimental evidence is a cornerstone of 

behavioral game theory, and researchers have developed many models of how humans behave in strategic situations based on 

experimental data. Among these models, the closely related cognitive hierarchy model (Camerer, Ho, and Chong, 2004), and quantal 

response equilibrium (McKelvey and Palfrey, 1995). Although different studies consider different specific variations, the 

overwhelming majority of behavioral models of initial play of normal-form games fall broadly into this categorization. 

Game Theory 

A game is made of three basic components: a set of Players, a set of actions, and a set of preferences. These are collectively 

known as the rules of the game, and the modeller‟s objective is to describe a situation in terms of the rules of a game so as to explain 

what will happen in that situation. Trying to maximize their payoffs, the player will devise plane known as strategies that pick actions 

depending on the information that has arrived at each moment. The combination of strategies chosen by each player is known as the 

equilibrium. Given an equilibrium, the modeler can see what actions come out of the conjunction of all the players‟ plans, and this 

tells him the outcome of the game.  

The number of players will be denoted by n . Let us label the palyers with the integers 1 to n , and denote the set of players by 

 nN ,........2,1 . We assume throughout that there are atleast two players, that is n 2 . There are three main mathematical 

models or forms used in the study of games,(i) the extensive form (ii) the strategic or normal form and (iii) the coalitional form. 

In the strategic form, many of the details of the game such as position and move are lost; the main concepts are those of a strategy 

and a payoff. In the strategic form, each player chooses a strategy from a set of possible strategies. We denote the strategy set or action 

space of player i  by iA , for i =1,2,…… n . Each player considers all the other players and their possible strategies, and then chooses 

a specific strategy from his strategy set. All players make such a choice simultaneously, the choices are revealed and the game ends 

with each player receiving some payoff. Each player‟s choice may influence the final outcome for all players. We model the payoffs 

as taking as numerical values. The mathematical and philosophical justification behind the assumption that each player can replace 

such payoffs with numerical values is said to be utility theory. This theory is treated in detail in the books of Savage(1954) and of 

Fishburn (1988). We therefore assume that each player receives a numerical payoff that depends on the actions chosen by all the 

players.
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In this paper, we consider a wide range of widely-studied models strategic form behavioral 

game theory. It is standard multi agent settings to assume that agents will adopt Nash 

equilibrium strategies. This paper gives a brief overview of game theory. Therefore in the 

first section we want to outline what game theory generally is and where it is applied. In 

the next section, we introduce some of the most important terms of Non-cooperative game 

theory such as strategic form (or) normal form games, extensive form and Nash 

equilibrium. 
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The strategic form of a game is defined by the three objects 

(i) the set,  nN ,........2,1  of players. 

(ii) the sequence, nAAA ,...., 21  of strategy sets of the players, and 

(iii) the sequence,  naaaf ......, 211 ……..  nn aaaf ......, 21 , of real-valued payoff functions of the players. 

A game in strategic form is said to be zero-sum if the sum of the payoffs to the players is zero no matter what actions are by the 

players. That is, the game is zero-sum if   0,....,
1

21 


n

i

ni aaaf  for all nn AaAaAa  ,....., 2211 . 

Now the strategic form is extended to two-person non-zero-sum games. In general, such games do not have values and players do 

not have optimal strategies. The theory breaks naturally into two parts: (i) Non-cooperative theory (ii) Cooperative theory. 

In the non-cooperative theory in which the players, if they may communicate, may not form binding agreements. This is the area of 

most interest to economists, see Gibbons(1992), and Bierman and Fernandez (1993). In 1994, John Nash, John Harsanyi and Reihard 

Selten received the Nobel Prize in Economics for work in this area. The main concept, replacing value and optimal strategy is the 

notion of a strategic equilibrium, also called a Nash equilibrium. 

In this Cooperative theory the players are allowed to form binding agreements, and so there is strong incentive to work together to 

receive the largest total payoff. The problem then is how to split the total payoff between or among the players. This cooperative 

theory also splits into two parts. If the players measure utility of the payoff in the same units and there is a means of exchange of 

utility such as side payments, we say the game has transferable utility; otherwise non-transferable utility. 

When the number of players grows large, even the strategic form of a game, though less, detailed than the extensive form, 

becomes too complex for analysis. In the Coalitional form of a game, the notion of a strategy disappears; the main features are those 

of a coalitional and the value or worth of the coalition. In many-player games, there is a tendency for the players to form coalitions to 

favor common interests. It is assumed each coalition can guarantee its members a certain amount, called the value of the coalition. The 

coalition form of a game is a part of cooperative game theory with transferable utility, so it is natural to assume that the grand 

coalition, consisting of all the players, will form, and it is a question of how the payoff received by the grand coalition should be 

shared among the players. There we introduce the important concepts of the core of an economy. The core is a set of payoffs to the 

players where each coalition receives at least its value. We will also look for principles that lead to a unique way to split the payoff 

from the grand coalition, such as the shapely value and the nucleolus. 

Non-Cooperative Games in Extensive Forms and Equilibrium N-Tuples 

Non-cooperative 

A non –cooperative theory is based on the absence of coalitions in that it is assumed that each participant acts independently, 

without collaboration or communication without any of the others. 

Strategy 

The term „strategy‟ is defined as a complex set of plans of action specifying precisely what the player will do under every 

possible future contingency that might occur during the play of the game.(i.e) the strategy of a player is the decision rule he was for 

making a choice from his list of courses of action. 

Strategy can be classified as (i) Pure Strategy (ii) Mixed Strategy. 

(i) Pure strategy:  A Strategy is called pure if one knows inadvance of the play that it is certain to be adopted irrespective of the 

Strategy the other players might choose. 

(ii) Mixed strategy: A mixed strategy of player i  will be a collection of non-negative numbers which have unit sum and are in one to 

one correspondence with his pure strategies. 

Nash Equilibrium 

Nash equilibrium exists in any game if there is a set of strategies with the property that no player can increase her payoff  by 

changing her strategy while the other players keep their strategies unchanged. These sets of strategies and the corresponding payoffs  

represent the Nash equilibrium . We can simply see that the action profile (defect,defect) is the Nash equilibrium in the Prisoners 

dilemma game and the actions profile ( ballet,ballet) and (football, football) are the ones for the battle of the sexes game. 

Pure and mixed strategy Nash equilibrium 

In any game someone will find pure and mixed strategies, a pure strategy has a probability of one, and will be always played. On 

the other hand, a mixed strategy has multiple purse strategies with probabilities connected to them. A player would only use a mixed 

strategy when she is indifferent between several pure strategies, and when keeping the challenger guessing is desirable, that is when 

the opponent can benefit from knowing the next move. 

Another reason why a player might decide to play a mixed strategy is when a pure strategy is not dominated by other pure 

strategies, but dominated by a mixed strategy. Finally, in a game without a pure strategy Nash equilibrium, a mixed strategy may 

result in a Nash equilibrium. 

Normal forms and Mixed strategy equilibria 

Although not all finite n-person non-cooperative games have pure strategy equilibria we can ask about the situation if mixed 

strategies are permitted. His result, which generalizes the Von Neumann minimax theorem, is that main objective of this paper and 

certainly provides one of the strongest arguments in favor of equilibrium points as a solution concept for n-person non-cooperative 

games. 

Minimax Principl 
This principal minimizes the maximum losses. The maximum losses with respect to different alternatives of player B, irrespective 

of player A‟s alternatives, are obtained first. The minimum of these maximum losses is known as the minimax value and the 

corresponding alternatives are called as minimax strategy. 
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Strategic and extensive form games 

The strategic form (also called normal form) is the basic type of game studied in non-cooperative game theory. A game in 

strategic form lists each player‟s strategies, and the outcomes that result from each possible combination of choices. An outcome is 

represented by a separate payoff for each player, which is a number (also called utility) that measures how much the player likes the 

outcome. 

The extensive form, also called a game tree, is more detailed than the strategic form of a game. It is a complete description of how 

the game is played over time. This includes the order in which players take actions, the information that players have at the time they 

must take those actions, and the times at which any uncertainty in the situation is resolved. A game in extensive form may be analyzed 

directly, or can be converted into an equivalent strategic form. 

By a non-cooperative game is meant a game in which absolutely no preplay communication is permitted between the players and 

in which players are awarded their due payoff according to the rules of the game. 

In particular, agreements to share payoffs, even if this were practicable ( and in many instances it is not), are specially forbidden. 

Thus in a non-cooperative game it is „all players for themselves‟. 

We do not assert that transitory strategic cooperation cannot occur in as non-cooperative game if permitted by the rules. 

Typically, however, such arrangements to cooperative are not „binding unto death‟. For a requirement of this type would possess the 

limitation of cooperative games (that agreements are binding) without the possibility of preplay negotiation or profit sharing, atleast 

one of which normally occurs in cooperative games. 

An n  person non-cooperative game   in extensive form can be regarded as a graph theoretic tree of vertices  (states) and edges 

(decisions or choice) with certain properties.  

     These properties can be summarized as follows: 

(i)   has a distinguished vertex called the initial state. 

(ii) There is a payoff function which assigns to each outcome an n -tuple (  nPPP ,....., 21  where iP  denoted the payoff to the 
thi  

player. 

(iii) Each non-terminal vertex of  is given one of 1n  possible labels according to which player makes the choice at that vertex. If 

the choice is made by chance the vertex is labeled with an N is equipped with a probability distribution over the edges leading from 

it. 

(iv) The vertices of each player, other than nature, are partitioned into disjoint subsets known as information sets. A player is 

presumed to know which information set he or she is in, but not which vertex of the information set. This has the consequence that (a) 

Any two vertices in the same information set have identical sets of choices (edges) leading from them. 

(b) No vertex can follow another vertex in the same information set. 

Player i    ni 1  is said to have perfect information  in    if each information set for this player consists of one element. 

 The game   in extensive form is said to have perfect information if every player in   has perfect information. By a pure 

strategy  for player  i  is meant a function which assigns to each of player  si'  

 information sets one of the edges leading from a representative vertex of this set. 

We denote by iS  the set of all pure strategies for player i . A game in extensive form is finite if it has a finite number of vertices. 

If   has no chance elements the payoff iP  to the 
thi player is completely determined by an n -tuple  n ,....., 21 , where 

ii S , that is  nii PP  ,....., 21 .  If, however, chance of elements are involved then  niP  ,....., 21  is taken to be the 

statistical expectation of the payoff function of player i , with respect to the probability distributions specified from property (iv), 

when the pure strategies  n ,....., 21 ,  ii S , are chosen. 

A game is Zero sum if   0,......, 21

1




n

n

i

iP   for all n -tuples  n ,....., 21 , ii S . 

Definition 3.7. 1 : Equilibrium point  A pure strategy  n -tuple  n ,....., 21 , ii S  , is said to be an equilibrium point of   

if for each i ,  ni 1 , and any ii S ,  niinii PP  ,......,......,,......,......, 2121 




 

. Thus an n -tuple  

 n ,....., 21  is an equilibrium point if no player has a positive incentive for a unilateral change of strategy. 

 

We truncate a finite n -person game   having perfect information by deleting the initial vertex and the edges leading from it. 

Because each information set consists of a single vertex, what remains is a finite number of sub games ,,......, 21 r  called the 

truncations of  , each having perfect information. We can also consider the truncation of a given pure strategy ii S  by 

restricting it as a function to the vertices of some truncation of  . 

Theorem 3.7.1 

A finite n -person non-cooperative game   in extensive form which has perfect information possesses an equilibrium point in pure 

strategies. 

Proof: 
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 Let 0x  be the initial vertex of   and let the other ends of the edges from 0x  be the vertices raaa ,......, 21 . Then rja j 1, , 

are the initial vertices of the games r ,......, 21  respectively, obtained by truncating  . 

 

Figure 1. Truncating   

Let the longest play in   be of length N . We shall prove the theorem by induction on N . Clearly the games   r ,......, 21  have 

length at most 1N . 

Let  
njjj  ,......, 21   be pure strategies for each player for the game j  )1( rj  . 

Let  n ,....., 21   be pure strategies for each player for the 
 . We write  niP  ,......, 21 ,  

njjj

j

iP  ,....., 21  for the 

payoffs to player i  in   and j  respectively. 

For games of length zero the theorem is trivial ( in action is equilibrium), so we assume the existence of equilibrium points for 

games of perfect information with length at most 1N , in particular for r ,......, 21 . 

Let  00

2

0

1 ,......, njjj   be such a point for j  that is for every i ,  ni 1
. 

   000

2

0

1

0'0

2

0

1 ,......,......,,......,......, njijjj

j

injijjj

j

i PP            (1) 

We shall construct an equilibrium point   00

2

0

1 ,......, n  for the game  . 

Case 1 : 0x  is labelled N  

Let ,,......, 21 r  10  j ,  1j , denote the probabilities for the vertices raaa ,......, 21 to be selected. Let x  be any 

vertex of  . 

If 0xx   we do not need to define  xi

0 , nor do we need to define it if x is any other vertex labeled with an N . 

Otherwise jx   for some j  and is labeled with an i ,  ni 1
. We then define 

   xx iji

00   . 

For any pure strategies  n ,......, 21  of   we denote the restriction of i to j  by ji  . 

We plainly have    
jnjj

j

i

r

j

jni PP 


 ,......,,......, 21

1

21  and 
00

ijji   . 

Thus for  ni 1
, 

   000

2

0

1

1

00

2

0

1 ,......,......,,......., njijjj

j

i

r

j

jni PP  


  

                                  0'0

2

0

1

1

,......,......, njijjj

j

i

r

j

j P 


 from       (1) 

But   0'0

2

0

1

1

,......,......, njijjj

j

i

r

j

j P 


 =  0'0

2

0

1 ....,......, niiP   

so that, for each i ,  ni 1  

 0'0

2

0

1 ....,......, niiP     000

2

0

1 ....,......, niiP  ,  
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that is,  00

2

0

1 ,......., n  is an equilibrium point for  . 

Case 2 : 0x  is labeled with a player index. 

Without loss of generality we can suppose 0x
  is labeled with a 1. 

If 0xx  we define  x0

1  to be that choice of j  for which 
rj

Max
1

  00

2

0

1 ,......, njjj

j

iP   is attained, that is   .0

0

1  x  

For any other vertex 0xx  ,  xi

0  is defined, where necessary, as in case 1. 

Then      00

2

0

11

00

2

0

11

00

2

0

11 ,.....,,......,,......, njjj

j

nn PPP  
   , for rj 1 . 

Since  00

2

0

1 ,......, njjj   is an equilibrium point for j , 

   .,......,,......, 00

2

0

11

00

2

'

11 njjj

j

njjj

j PP    

Now any pure strategy 
'

1  for player 1 in  will truncate to some pure strategy 
'

1 j  in j  for any j , rj 1 . 

 Thus    .,......,,......, 00

2

'

11

00

2

'

11 njjj

j

n PP   where   jx 0

'

1 . Hence 

     00

2

0

11

000

2

0

11

00

2

'

11 ,......,,......,......,,......, nnin PPP  
  .      (2) 

If 1i   since  00

2

0

1 ,......,   n  is an equilibrium point for   

   
   0'0

2

0

1

0'0

2

0

1 ...,...,.....,,......,......, niinii PP  

                                        =    000

2

0

1

0'0

2

0

1 ,......,......,,......,......, 



  niinii PP   

                                        =  000

2

0

1 ,......,......., niiP   

Since    0

0

1 x . Hence if 1i ,  0'0

2

0

1 ,......,......, niiP    000

2

0

1 ,......,......., niiP     (3) 

But (2) and (3) together assert that  00

2

0

1 ,......, n  is an equilibrium point for  , and this complete the proof. 

Definition 3.7.2 

A non-cooperative game  (n person game) in normal form is a collection    
IiiIii PXI


 ,, , in which the set of player 

is I , the set of strategies for player i  is iX , and the payoff to player i  is given by RXP i
Ii

i 


: . Here the sets iX  could be 

taken to be sets of pure or mixed strategies. 

Theorem 3.7.2: Every game with complete information and a finite tree has atleast one equilibrium point. 

Definition 3.7.3 : 

A mixed strategy n-tuple   iin Xxxxxx  ,,....., 21 ,is an equilibrium point of an n-person non-cooperative game  if each i , 

,1 ni   and any    xPxxPXx iiiii  '' , . 

Theorem 3.7.3: A mixed strategy n-tuple  nxxxx ,....., 21  is an equilibrium point of a finite game  if and only if for each player 

index i  ,     xPxP iii    for every pure strategy ii S .   

Proof: 

If x is an equilibrium point of  , for each ,i  ni 1 , the inequality    xPxP iii 
    is irreducible from  

   xPxxP iii '

. Since a pure strategy is a particular case of a mixed strategy. 

To prove that the condition is sufficient to ensure that 
x

  is an equilibrium point, choose an arbitrary mixed strategy 

,'

ii Xx 
 

       xPxxPx iiiiiii  '' 
 

       xPxxPx iii

s

iiii

s iiii




'' 



 

From 
  




11

....., 21

s

ni xxxP
 ……..

   
jj

n

j
n

s

i xP
nn




1
21 ,.....,





 

And 
  




11 s

ii xP



………


  11 ii s


  11 ii s ………

   jj

n

j
j

s

i xP
nn


 1

1






    where 

 n ,.......1
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We get 
   xPxP iii 

 
 ii

s

x
ii




'


 

Which is 
   xPxP iii 

 , since 
 ii

s

x
ii




'


=1 

This theorem gives an effective procedure for checking a possible equilibrium point. 

Theorem 3.7.4:  For any mixed strategy n-tuple  nxxxx ,....., 21  each player i , ,1 ni   possesses a pure strategy 
k

i  such 

that    0k

iix   and    xPxP i

k

ii  . 

Theorem 3.7.5: Nash Theorem 

Any finite n-person non-cooperative game   has atleast one mixed strategy equilibrium point. 

Based on the four theorem the following problem solution  takes the informative one. 

Research Article 

Consider the non-cooperative n-person game in which each player Ii has exactly two pure strategies, either 1i  or 

2i . The payoff is     ji
ij

iniP  ,1......., 21 


 , Ii , where   is the kronecker  given by 

 


 


.,0

,1
,

otherwise

if ji

ji


   

If player i  uses a mixed strategy in which pure strategy 1 is chosen with probability  Iipi  . Prove that  nppp ,......, 21  defines 

an equilibrium point if and only if   j
ij

j
ij

pp

 21  for every Ii . Deduce that a mixed strategy equilibrium is given by 

,,

21

1

1

1
Iip

n

i 




















 and that for n=2,3 this is the only equilibrium point. 

Solution: 

Player 1: If 11   then 01 P  unless ,2........2  n in which case 11 P . 

                If 21   then 01 P  unless ,1........2  n in which case 21 P . 

       Similarly for the other players. Consider now the mixed strategy n-tuple  nxxxx ,....., 21
, where 

 iii ppx  1,
 for 

,1 ni 
 and 

 Iipi   is the probability of choosing 1i . 

From the above observation we obtain       j
ij

jj
ij

ii ppppxP

 121 . 

Also  ii xP   j
ij

p


1  if 1i  

         ii xP   j
ij

p

2  if  2i  

According to Theorem 2 “A mixed strategy n-tuple  nxxxx ,....., 21  is an equilibrium point of a finite game  if and only if for 

each player index i  ,     xPxP iii    for every pure strategy ii S .” 

x  is an equilibrium point if and only if 

 j
ij

p


1     j
ij

jj
ij

i pppp

 121             (1) 

And    j
ij

p

2     j

ij
jj

ij
i pppp


 121  for every Ii .        (2) 

Rearranging equation (1) we have  

       j
ij

jj
ij

i pppp

 121)1(  

That is,    j
ij

j
ij

pp

 21             (3) 

Similarly rearranging equation (2) gives 

ij
ij

i ppp 


)222(  j
ij

p


1  

ij
ij

i ppp 


)2(  j
ij

p


1  




j
ij
p2  j

ij
p


1              (4) 
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From equation (3) and equation (4) it follows that x  is an equilibrium point if and only if 

  j
ij

p


1 = j
ij
p


2  for every Ii             (5). 

For n=2 or 3 the system of equation (5) has no solution with any ip 0 or 1, but for n=4 these are several such solutions, for example 

141  pp , 032  pp . 

If n 5we can find solution with 141  pp , 032  pp  and the remaining ipn 4  

Arbitrary. To complete the analysis suppose 10  ip  for every Ii . 

 Consider the equation (5) for liki  ,  where lk  . This gives    j
kj

p


1 = j
kj

p

2  and  

 j
lj

p


1 = j
lj
p


2 . 

If we put A=  jp 1 , B= jp , since 10  ip , all i , we can write these as 
kk p

B

p

A 2

1



,  

ll p

B

p

A 2

1



 . 

Since A 0 and B 0 we easily see that lk pp  . But k  and l  were arbitrary, so that every player must use the same mixed 

strategy in x . 

Condition (5) therefore becomes simply   11
21 

 nn
pp . 

Solving for p  we obtain   pp n 1

1

21   

                                          













 1

1

211 np        

                                   

1

1

21

1





n

p  as required. 

Conclusion 

The process of finding equilibrium points in a bimatrix game consists in carrying out a finite number of rational operations on the 

values of the payoff matrix. For n 3 the above value of p is irrational, which shows that the situation for n=2 is untypical.  
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