34419

Subhadeep Ganguly and.Kunja Bihari Satapathy/ Elixir Bio Tech. 85C (2015) 34419-34421

Available online at www.elixirpublishers.com (Elixir International Journal)

Bio Technology

Elixir Bio Tech. 85C (2015) 34419-34421

Mathematical modeling for L-methionine fermentation by a mutant strain of *Corynebacterium glutamicum* X300

Subhadeep Ganguly and Kunja Bihari Satapathy*

Department of Botany, Utkal University, Vani Vihar, Bhubaneswar-751004, Odisha.

ARTICLE INFO

ABSTRACT

Article history: Received: 4 July 2015; Received in revised form: 1 August 2015; Accepted: 10 August 2015;

Keywords

L-methionine, Strain *Corynebacterium glutamicum*, Kinetic model, Sensitivity analysis, Fermentation. In this present investigation, a mathematical model has been developed for shake-flask fermentation of L-methionine by a multiple analogue resistant strain *Corynebacterium glutamicum* X300. Using computer simulation, different parameters of kinetic model were evaluated. The kinetic model developed in this present investigation revealed better assumptions for bacterial growth, L-methionine accumulation and substrate utilization compared to the assumptions as predicted in the available literature.Sensitivity analysis revealed that the predicted model has heighest impact on L-methionine fermentation. In this present study, non-growth associated product formation coefficient had maximum inhibitory effect on L-methionine fermentation.

© 2015 Elixir All rights reserved

Introduction

L-methionine is a sulfur-containing essential amino acid required in human diet.Plant and animal proteins are deficient in L-methionine content and consequently fail to meet the nutritional requirement for L-methionine. Deficiency of Lmethionine leads to hair loss, depression, rheumatic paralysis, toxemia etc ¹. The market for this amino acid increases constantly. L-methionine can be produced by chemical synthesis, protein hydrolysis and fermentation.Chemical synthesis produces racemic mixture of DL -methionine from which separation of L-methionine is difficult and protein hydrolysis is a very complex process ². Thus, now a days, maximum concern is focused on fermentatine production of this amino acid. A high-yielding strain of Corynebacterium glutamicum has been already developed in our laboratory ³.In this present study, a kinetic model has been developed for modeling the shake-flask fermentation of L-methionine by a multiple analogue resistant strain of Corynebacterium glutamicum X300.

Materials and methods

Selection of microorganism: Previously, a regulatory mutant *Corynebacterium glutamicum* X1 (accumulated only 0.6 mg/ml L-methionine) developed in our laboratory by induced mutation using UV irradiations from its parent strain *Corynebacterium glutamicum*(basically a L-glutamic acid producing bacterium which does not accumulate L-methionine) that was isolated from North Bengal soil was used for mutational study.*Corynebacterium glutamicum* X1 was then subjected for mutational studies as described below:

Chemical and Physical mutagensis: To develop a high Lmethionine yielding strain, the above mentioned regulatory strain was subjected to mutational treatments using Ethyl Methane Sulfonate (EMS) and UV irradiations as Chemical and Physical mutagens respectively as f **Exposure to EMS:** 1 ml cell suspension (containing $3x10^8$ cells) was added to 9ml EMS solution of different concentrations (221.8 mmol /ml, 186.3 mmol /ml 76.9 mmol /ml respectively) and was incubated (10,20,30,40 and 60 minutes respectively). From each sample, 1 ml cell suspension was then plated on CD agar medium and kept at 30^{0} C for 48 h.

Treatment with UV irradiation: 2 ml cell suspension (containing $3x10^8$ cells/ml) was taken in a petridish (5 cm diameter) and expose it to UV irradiation, using Hanovia germicidal lamp (15 Watt) from a distance of 12 cm for different periods of time (1-9 minutes). The UV treated cells were plated in similar ways as mentioned above.

Development of multiple L-methionine resistant strain: Multiple L-methionine analogue-resistant strain was develop by adding different L-methionine analogue (20-100 mg/ml) to the growth medium [namely: α -Methyl methionine , DL-ethionine , D-methionine sulphate and DL-norleucine]³.

Composition of basal salt medium for L-methionine production: L methionine production was carried out using the following basal salt medium (per litre): glucose, 60 g; $(NH_4)_2SO_4$, 1.5 g ; K_2HPO_4 , 1.4 g; $MgSO_4 \cdot 7H_2O$, 0.9 g; $FeSO_4 \cdot 7H_2O$, 0.01 g ;biotin, 60µg (Ganguly *et al.* 2014).

Optimum cultural conditions: Volume of medium ,25 ml; initial pH ,7.0; shaker's speed ,150 rpm; age of inoculum ,48 h; optimum cell density , $4.0X10^8$ cells/ml; temperature28^oC and period of incubation ,72 h⁴.

Composition of synthetic medium(per Liter): glucose, 100 g; (NH₄)₂SO₄, 8.0 g (in terms of nitrogen) ; K₂HPO₄ , 2.2 g; MgSO₄.7 H₂O, 1.5 g ; FeSO₄.7H₂O, 0.03 g; KH₂PO₄,2.0 g ; ZnSO₄.7H₂O , 1.6 mg ; CaCO₃, 1.5 g; Na₂MoO₄.2H₂O, 5.0 mg; MnSO₄.4H₂O , 2.5 mg; biotin ,80 mg and thiamine- HCl, 70 μ g

Analysis of L-methionine: Descending paper chromatography was employed for detection of L-methionine in culture broth and was run for 18 hours on Whatman No.1 Chromatographic paper. Solvent system used includes n-butanol: acetic acid: water (2:1:1). The spot was visualized by spraying with a solution of 0.2 % ninhydrin in acetone and quantitative estimation of L-methionine in the suspension was done using colorimetric method ⁶. All the chemicals used in this study were analytical grade (AR) grade and obtained from E mark .Borosil glass goods and triple distilled water used throughout the study.

Estimation of Dry Cell Weight (DCW): The cell paste was obtained from the fermentation broth by centrifugation and dried in a dried at 100[°]C until constant cell weight was obtained available in literature:

$$\frac{d}{dt} [B]^{= \mu_{\max}} \frac{[S]}{[S] + K_i (1 + K_i)}$$
(1)⁸

[Where, μ_{max} = Maximum specific growth rate (h⁻¹); [S] = Substrate concentration $(mg.ml^{-1})$; Kg = Monod growth Constant for substrate (mg.ml⁻¹); Ki= Inhibition Constant for growth by product $(mg.L^{-1})$]

$$\frac{d}{dt} \left[S \right]^{=} - \frac{1}{Y_h} \frac{dB}{dt} - \frac{1}{Y_P} \frac{dP}{dt}$$
(2)

[Where, y_b = Yield Cofficient biomass from substrate (mg.mg⁻¹); $_{Yp}$ = Yield Cofficient product from substrate (mg.mg⁻¹); P= Product Concentration (mg.mg⁻¹)]

$$\frac{d[P]}{dt} = X_{\text{Pmax}} \cdot \frac{[S]}{\substack{K \\ p + \frac{[S]}{(1 + \frac{[S]}{K_{p}})}}} \cdot B \quad (3)^{10}$$

[Where, = X_{Pmax} = Maximum specific production rate; Kp= Monod product constant for the substract; Kx= Monod growth constant for the specific biotin Concentration ($\mu g.L^{-1}$)] Using the logistic model we can win

$$\frac{dB}{dt} = \mu_{max}[S] (1 - \frac{[B]}{[Bm]})^{-------(4)^{11}}$$

(Where, $[B_m]$ = Maximum Biomass Concentration)

This equation is substrate-independent. The cellular growth can be predicted from the following equation:

للاما [Bm] •السعد [Bm]-[B0]+[Bm] •السعد-1 ere P = J B = [Bo][Bm] *^{µµmax}

[Where, B_0 = Initial Biomass Concentration (mg.mg⁻¹)]

This equation is applicable when t=0 and $B_0 = B_m$, thus, it shows the relationship between cellular growth and fermentation time. μ_m and B_m can be estimated from non-linear regression. According to Luedeking- Piret model, the rate of L-methionine production is linearly related to both bacterial cell mass (B) and growth rate (dB/dt) as:

 $\frac{dP}{dP} = C.\frac{dB}{dP} + \gamma B$ -----(6)¹³ dt dt

[Where, C= Growth associated product formation Coefficient $(mg.mg^{-1})]$

L-methionine production is associated with bacterial growth rate only when C \neq 0 and γ +0.As the substrate utilized for cellular growth, maintenance of the cells as product formation, thus we can write:

 $-\frac{d[S]}{dt} = \frac{1}{Y_b} \frac{dB}{dt} + 1Y_p \frac{d[P]}{dt} \cdot m_c \cdot B - \dots (7)^{14}$

 $dt \quad \overline{Y_b} \quad dt$ [Where, Y_p = Yield Coefficient product from substrate $(mg.mg^{-1}); [P] = Concentration of product (mg.mg^{-1}); m_c =$ Maintenance Coefficient (mg.mg⁻¹).]

This equation describes the utilization of substrate for Lmethionine production, bacterial growth and cellular maintenance.

Product formation can be calculated from the Bona and Moser's formula as follows:

 $P = C [B-B_0] + \underline{Bm\gamma}. \ln \underline{Bm-Bo}.$ (8)¹⁵ Bm-B μmax

[Where, B = Biomass Concentration at a given time (mg.mg⁻¹); $B_m = Maximum Biomass (mg.mg^{-1}); B_0 = Initial Biomass$ $((mg.mg^{-1})].$

The Sum Squares of Weighed Residues for estimation of kinetic parameters were examined using the following formula: $SSWR = \sum_{x=0}^{a} \sum_{y=0}^{b} D^{2}_{xy}/W^{2}_{y}$ (9)¹⁶

[Where, a= Number of experimental data; b=Number of process variable; D_{XY} = Difference between the model and experimental data of Xth variable in Yth experimental point; WY=Maximum weight of variable(mg.mg⁻¹)]

The Standard Error of Mean (SEM) of the variable was calculated using the following formula:

$$SEM(\Delta) = \frac{1}{a} \sum_{X=1}^{a} \Delta XY^{-(10)^{1/2}}$$

The Residual Variance of the error (R) was calculated as follows:

$$R = \frac{1}{a-1} \sum_{X=1}^{a} (\partial_{XY} \Delta)^{2} - \dots - (11)^{18}$$

The statistical adequeacy for the acceptance of this model can be calculated as follows:

The definition of statistic '
$$\lambda$$
' can be presented as follows:
 $\lambda^{=}(12)^{19}$

$$\frac{(a-b)a}{(a-1)b} = \sum_{Y=1}^{b} \frac{b}{R}$$

The End Point Deviation (EPD) in L-methionine fermentation was estimated as follows:

[Where, [P] =Product Concentration in Experiment (mg.mg-1); [P]_c= Product Concentration in control (mg.mg-1)]

The mathematical problem regarding this modeling was solved using Microsoft EXCEL.

Results and discussion

In this present study, three basic aspects namely: bacterial growth (B), product formation (P) and substrate uptake [S] were considered as presented in Table1.

Table 1: Comparison of kinetic parameters between present model and									
Bona and Moser's model									
Kinetic parameters		Present model	Bona and Moser's model						
1.Bacterial growth	μ_{max}	0.468	0.20						
_	B _m	12.610	0.30						
2.Substrate utilization	Bo	0.096	0.70						
	Y _b	0.968	0.40						
	Yp	0.638	0.40						
3.L-methionine	mc	0.121	0.10						
production	С	0.011	200						
	Γ	0.126	0.166						
4. Error values	Sswr	0.160	0.664						
	Λ	0.093	28.66						

L-methionine production was obtained in stationary phase .The calculated value of B₀ was lower than experimental value probably due to the viability of cells. This model depicts better resolution than Bona and Moser's model ⁽²⁰⁾.L-methionine production is associated with bacterial growth in a very complex manner.By fitting the data of the present investigation in equation 7, we get $Y_b=0.968 \text{ mg.mg}^{-1}$, $Y_p=0.683 \text{ mg.mg}^{-1}$ and $m_c=0.121$. Thus, in our present study, it is found that the resolution is much better than Bona and Moser's experiment. The percentage changes in the estimation of L-methionine were depicted in Table 2 as follows:

Table 2: ED is respon	to $\pm 5^{\circ}$	% and ±	:10% cha	nges for e	ach kinetic
		• • • •			

parameters in the present model									
Kinetic parameters	ED _{5%}		ED _{10%}						
Bo	-	-	-	-					
B _m	-0.013	0.013	-0.030	0.030					
μ _{max}	-0.011	0.011	-0.010	0.010					
Y _b	-	-	-	-					
Y _p	-	-	-	-					
m _c	-	-	-	-					
С	-0.018	0.018	-0.009	0.009					
Γ	-2.613	2.613	-3.618	3.618					

Increase in γ has negative effect on ED, leading to inhibition of L-methionine fermentation. Here, 5% and 10% increase in y lead to a 2.613% and 3.618 % decrease in ED respectively. A 5% and 10% elevation of B_m led to 0.013% and 0.030% reduction in ED and thus, inhibition of L-methionine production. µmax and C have quantitative negative impactson ED and thus on L-methionine fermentation. But other kinetic parameters had no effect on L-methionine production in this present study. Thus from the present study, it can tentatively concluded that, elevation of non-growth associated Lcoefficient methionine fermentation caused maximum detrimental effect on L-methionine fermentation.

References

[1] Subhadeep Ganguly and Kunja Bihari Satapathy, Effect of surface active agents, chelating agents and antibiotics on L-methionine fermentation by a multiple analogue resistant mutant *Corynebacterium glutamicum* X300, Eur.Chem.Bull.,2014, 3, 346-351.

[2] Fong CV, Goldgraben GR, Konz, Walker JP and Zank NS, Condensation process for DL-methionine production. *In*: A.S. Goldfrab (ed.), Organic Chemicals manufacturing hazards. Ann Arbor: Ann Arbor Publisher, 1981, 115-194.

[3] Subhadeep Ganguly, Kunja Bihari Satapathy and A.K Banik, Induced mutation, Development of Multiple Analogue Resistant Strain and Protoplast Fusion for L-methionine fermentation by *Corynebacterium glutamicum*, Research Journal of Pharmaceutical Dose Forms and Technology, 2014, 6, 303-310.
[4] Subhadeep Ganguly and Kunja Bihari Satapathy, Optimization of Physical Parameters for L-methionine fermentation by a multiple resistant mutant *Corynebacterium glutamicum* X300, The Journal of Bioprocess Technolog , 2013 ,98, 303-307.

[5] Subhadeep Ganguly and Kunja Bihari Satapathy, Selection of suitable synthetic medium for L-methionine fermentation by a multiple analogue resistant mutant *Corynebacterium glutamicum* X300, International Journal of Multidisciplinary Educational Research, 2013, 2, 252-261.

[6] Kase H and Nakayama K, L-methionine production by methionine analogue resistant mutants of *Corynebacterium glutamicum*, Agriculture Biochemistry, 1975, 39,153-160.

[7] Shah AH, Hameed A, Ahmad S and Khan GM, Optimization of culture Conditions for L-lysine fermentation by *Corynebacterium glutamicum*, On line Journal of Biological Sciences, 2002, 2, 151-156.

[8] Bona R and Moser A, Modeling of L-glutamic acid production with *Corynebacterium glutamicum* under biotin limitation, Bioprocess Engineering, 17, 1997, 139-142.

[9] Moser A and Schneider H, Modeling secondary metabolite production-case pleuromulin, in Computer application in fermentation technology, Modeling and Control of Biological Processes, Elsevier Science Publishers Ltd., 1989, 93-103.

[10] Luedeking R and Piret EL, A Kinetic Study of lactic acid fermentation: Batch process at controlled pH, Journal of Biochemical Microbiology and Engineering, 1959, 4, 231-241.

[11] Liu JZ, Li Weng, Zang QL, Xu H and Ji LN,A mathematical model for gluconic acid fermentation by *Aspergillus niger*, Biochemical Engineering Journal, 2003,14, 137-141.

[12] Votruba J,Practical Aspects of Mathematical modeling of fermentation processes as a method of description, simulation, identification and optimization, Acta Biotechnology, 1982, 2, 119-126.

[13] Zand H, Blazei M, Bales V and Markos J, kinetic Model for Gluconic Acid production by *Aspergillus niger*, Chemical paper, 2004,58, 23-28.

[14] Zhang XW, Sun T, Sun ZY, Liu X and Gu DX, Time dependent kinetic models for glutamic acid fermentation, Enzyme and Microbial Technology, 1998, 22, 205-209.

[15] Takac S, Calik G, Mavituna F and Dervakos G, Metabolic flux distribution for the optimized production of L-glutamate, Enzyme Microbiology Technology, 1998,23, 286-300.

[16] Caro I, Perez L and Cantero D, Development of kinetic model for the alcoholic fermentation of must, Biotechnology and Bioengineering, 1991, 38, 742-748.

[17] Giridhar RN and Srivastava AK, Mathematical modeling and its use for design of feeding strategies for L-sorbose fermentation, Canadian Journal of Chemical Engineering, 79, 2001, 349-355.

[18] Gong H and Lun S, The Kinetics of lysine batch fermentation, Chinese Journal of Biotechnology, 1996, 12, 219-225.

[19] Elibol M and Mavituna F, A Kinetic model for actinorhodin production by *Streptomyces coelicolor*, Process Biochemistry, 1999, 34, 625-631.

[20] Bona R and Moser A, Modeling of growth of *Corynebacterium glutamicum* under biotin limitation, Bioprocess Engineering, 1999, 17, 121-125.