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ABSTRACT

A novel RF-MOSFET (Radio Frequency Metal Oxide Semiconductor Field Effect
Transistor) model with PTM (Predictive technology model) for 90 nm CMOS
(Complementary Metal Oxide Semiconductor) technology is presented. A simple and
accuracy method is developed to directly extract all the high frequency parasitic effect
from measured S-parameter biased at zero and linear region. This model is proposed to
overcome some of short channel effects at nano-scale highly dopped drain and source
based on the conventional small signal MOSFET (Metal Oxide Semiconductor Field Effect
Transistor) equivalent circuit, RF (Radio Frequency) characterization of CMOS
(Complementary Metal Oxide Semiconductor) has been taken up in terms of RF Figure of
Merits. The excellent correspondence is achieved between simulated and measured S-
parameter (Scattering parameter) from 1GHz to 10 GHz frequency range.

© 2015 Elixir All rights reserved.

Introduction

For CMOS RFIC (Radio Frequency Integrated Circuit)
development, developing circuits at high frequency and low
voltage becomes a challenge, especially since most of the
MOSFET models are not designed for either low voltage or high
frequencies. Undesired interaction with a low resistivity
substrate adds to the task of designing RF circuit on CMOS
processes [1],. Device characterization and modeling at RF
frequencies is necessary to allow accurate prediction of circuit
performance prior to fabrication. The ultimate goal in modeling
is a versatile model with few parameters (less than 20
parameters) and good performance in all the region of operation
including high frequency of operation. [2].

MOSFET device is considered to be short when the channel
length is the same order of magnitude as the depletion-layer
widths (X4p, Xgs) Of the source and drain junction. As the channel
length L is reduced to increase both the operation speed and the
number of components per chip, the so-called short-channel
effects arise. [3]

In order to overcome the drawback of previously reported
approaches, a novel model is presented to accurately predict the
high frequency behavior of RF-MOSFET [4], [5]. A typical
advanced MOSFET is shown in Figure 1. The complete new
equivalent circuit small signal RF-model is shown in Figure 2.

RF characterization of CMOS has been taken up based on
their respective small signal model. By doing Y- or Z- parameter
analysis of their respective model and analytical procedure for
parameter extraction has been developed and presented here. [4],

[5].
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Figure 1. Cross-section of a typical advanced MOSFET
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Figure 2. Small signal RF Model

The small signal RF model of Figure.2 has been used for
analysis and the Y & Z parameters have been found in terms of
the circuit parameters. The parameters are Gate resistance (Rg),
drain resistance (Ry), source resistance (Rg), gate-to-drain
capacitance (Cy), drain-to-base capacitance (Cg), gate-to-
source capacitance (Cg), drain-to-source transconductance (Jgs),
and the substrate parameters i.e. substrate resistance (Rsub),
substrate capacitance (Cqp).[1],[6],
Technology Specification

Table-1 [7]
Nano- CMOS: Technology node: 90 nm NMOS
Leff Tox Vdd Vth Rdsw | on | off

35 1.4 1.2 0.2 |180 1100 50
nm nm V \Y QAum (LA/umM) | (nA/um)

RF Model Development

To have an efficient design environment, design tools with
accurate models for devices and interconnect parasitics are
essential. It has been known that for analog and RF applications
the accuracy of circuit simulations can be strongly determined
by the device models. Accurate device models become crucial to
correctly predict the circuit performance. [8]

For a model to describe the device -characteristics
accurately, all important model parameters should be extracted
from the actually Fabricated NMOS device [10]. The RF model
development steps are shown using a flowchart shown in figure
3.
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Figure 3. Flowchart for Model

Fabrication of Nanoscale MOSFET

Here fabrication of nanoscale MOSFET is performed using
ATLAS (SILVACO) TCAD tool. LDD (Lightly Doped Drain) is
used to overcome device degradation short channel effects [8],
and improved a lot but still have a chance of improvement.
Heavily doped drain and source, lightly doped drain and source
extensions and lightest doping of gate are done. The device
structure of fabricated NMOSFET is shown in figure 4.
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Figure 4 Device Structure of Fabricated-simulated MOSFET
Analysis and Parameter Extraction

The equivalent small signal RF model is shown in figure 2.
Circuit analysis of the small signal RF model yielded the
following results.

In the frequency rangesw <<[R (C +C, N and
o <<[L,(C, +C )™, a simplified expression for small

signal Y-parameters Y,;, Y,,, Y,,, and Y,,of the circuit
enclosed by dashed line in Fig. 2 can be derived as: [2]
A. Y-parameters

Y, = szg (o™ +ng)2 + jo(Cy +Cyy)

| _ ()
Y21 =0, - Ja)ng @)
Y1z E—ja)ng @)
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jog,ReCop + jaCy, (L+ jaR,,Cyp)

Y, =0y + joCy +—— .
“ gd J o 1+Ja)Rsub(Csub+Cdb) 1+Ja)Rsub(Csub+Cdb) (4)

B. Z-parameters
Re[Z,,]1= R, +BC , [(w* A’ + B?) (5)

Im[Z,,]1=-wAC , [(w® A* + B?) ©

Re[Z,,]=R, +R, +(C, +C4)B/(0’ A’ +B?) (7)
Im[Z,,]= eBR, (C, +ng)2 - aACy +cgd)2 (A’ +B?)

8)
Where,
A=C,C+Cy(Cy +Cyy) ©)
B= gds (ng + Cgs) + nggd (10)

In order to determine the other parameters, they can be shown in

terms of real and imaginary part of Y or Z as shown below.
a) Transconductance,

9, = Real(Y,,) (11)
b) Drain-to-source transconductance,
g4 =Real(Yy,): whenw 0 — (12)
c) Gate resistance,

' "\ 2

R, =Real(Y;;)/Im(Y,,) (13)
d) Gate-to-drain capacitance, Cya =—1IM(Y,,)l/ @ (14)
e) Gate-to-source
capacitance C ¢ = [Im(Y,,)/ @] - Cy (15)
f) Extraction of Substrate Parameters Rgy, Cap and g

The extraction equations are given as follows:
Re(Y,,) — 94

Rsub = (16)
2
(Im(Y,,) +1m(Y3,)) " — 9, (RE(Y5,) — 9
_ Re(YZZ) - g ds (17)
db — J
Ryp@(IM(Y,,) +1m(Y,,)
gmb ~0.2x gm (18)
Extraction Results
Table 2
For Vgs=03V Vds=0V, Rs=3Q Rd=5.95
Q
Bias point 1 Bias point 2
Vg=03V,Vg=10|Vy=03V,Vy=15
\Y \Y
Om 3.8 mS 4.5 mS
Jus 1.06 mS 1.241 mS
Ry 1.606 Q 1.38Q
Cqgs 319.07 fF 308.5 fF
Cu 117.01 fF 112.96 fF
Rsub 22 mQ 14.49 mQ
Cab 90.0 fF 88.12 fF
Omb 0.76 mS 0.9 mS

Short channel effects are studied and hence lightly doped drain
and lightly doped source regions are considered to overcome
these effects. ATLAS (Silvaco) TCAD tool is used for
fabrication of MOSFET of channel length 90nm, gate oxide
thickness as 2nm and threshold voltage 0.26V.
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Model Testing

The component in the RF model has been determined, hence
the RF model is known. For model testing, S-parameters of the
model are generated and compared with the Fabricated NMOS
Device S-parameters.

The comparison of Fabricated NMOS Device and modeled
S-parameters will show that if the Fabricated NMOS Device and
modeled plots are close then model is accurate within the
permissible limit.

Comparison of Generated And Modelled S-Parameters

The comparison of the Modeled and Generated from
Fabricated NMOS S-parameters is shown herewith. Fig.5 shows
the comparison S-parameters at bias point 1 i.e. Vy=03V
and V4=1.0V.
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Figure. 5(a) Plot for S;; and Sy, Vs Frequency at bias point
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Figure. 5 (b) Plot for S,; and S, Vs Frequency at bias point 1
RF Figure-of-Merits (FOMSs)

f;. f.x and Noise for CMOS
In the specific case of high frequency performance, two figure of
merit are particularly popular. These are f; and fmax , Which

are the frequency at which the current gain and power gain,
respectively becomes unity. In the case of CMOS, for the
expression of f ,[9] we assume that the drain is terminated at
short circuit and the gate is driven by an ideal current source as
shown in figure 6. The current source drive implies that the
series gate resistance simply has no influence on f;. The gate
to drain capacitance is considered only in the computation of
input impedance; its feed forward contribution to output current
to gate current is given by-
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b On
iin w(cgs +ng)
id . .
—1 has a value of unity at a frequency at a frequency given
|

(19)

in

by
w; = I (20)
ngs +ng }

__ O,
27{(C,,+Cyq)

Computing fmax is a general quite difficult , so we will invoke

several simplifying assumption to make an approximate
derivation possible. We compute the input impedance with an
incrementally shorted drain and ignore the feed forward current

throughC ;. We do consider the feedback from drain to gate

therefore,  f; (21)

through ng in computing the output impedance, because

computing of the maximum power gain requires termination in a
conjugate match.

With the above assumptions, we can calculate the power
delivered to the input by the current source drive as given by

= (22)

The magnitude of the short-circuit current gain at high
frequencies from the Fig. 6, we can write

i I}
LT (23)
|

G lig Cad ig D

i
%Cgs Emvgsé (#g , LCdb
) J_‘:Csb L

Figure. 6 MOSFET model including back gate effect
(resistive element is not shown) shorted at drain and an ideal
current source at the gate.

The resistive part of the output impedance is given by

iy

L 5B

C
— N _ . -Cyq
Cyi +Cy
If the conjugate termination has a conductance of the value
given by (24), then the power gain will be maximized. The total

maximum power gain is therefore given by

Qout Y- (24)

o, 1)
p_ 2o "2lerCy) o (25)
~ .2 T
P iR, ®’4R,C,,
2
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P
From equation (25), —L has the value unity at frequency given

by

(26)

fT
Therefore, f .~ |[———— (27)
87R,C,,

The f_. is proportional to the square root of f. and can be

higher than f. by minimizing the gate resistance.

Noise: Noise is generated in electronic circuits. That is, an
electronic circuit will have output even without any input signal.
Noise can be classified as one of five types:

Thermal noise, Shot noise, Flicker noise, Burst noise, and
Avalanche noise

At RF thermal noise is important. A useful measure of the noise
performance of a system is noise factor, usually denoted by F .
The noise factor F and noise figure ( NF ) are defined as:

3 Total outputnoise power
Total outputnoise power due to thesource

B,

Noise Figure (NF) =10*log,,(F) (29)

(28)

Simulation: CMOS
Using Figure. 2, h,, is simulated at V45 = 0.3 V and V4 =1.0

V, and compared with measured data and result is shown in
figure 8. Extending the plot along frequency axis we can find

the approximate value of fT at which current gain becomes 1.
The approximate value of f, can be obtained to be 40 GHz.
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Figure: 7 ADS Simulation of equivalent circuit for CMOS
Simulated noise figure and result is shown in Fig. 8 and 9.
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Figure: 8 Comparison of simulated and measured current
gain for CMOS
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Figure: 9 Simulation result of noise figure for CMOS
Summary

The MOSFET has been successfully fabricated using
ATLAS (SILVACO) TCAD tool. The device is solved for dc-vi
characteristics and S-parameters are obtained. The component in
the RF model has been determined, hence the RF model is
known. For model testing, S-parameters of the model are
generated and compared with the Fabricated NMOS Device S-
parameters. To overcome some of the short channel effects at
nano-scale lightly doped drain and source have been used. The
coupling through the substrate is an important effect for mixed
mode high-frequency IC design and should be appropriately
accounted. At low frequency (<1GHz), it is good enough to
model the substrate by a purely resistive network. However, at
high frequency (>1GHz) where most of the wireless
communication systems operate, both resistive and dielectric
losses are important and must be appropriately modeled by a
combination of Ry, and Cg,. When this is done and appropriate
account is taken of the back gate transconductance effect, a
much more accurate RF model is developed, which can be used
for evaluation output reflection coefficient in individual
transistors as well as carrying out circuit design.
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