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Introduction 

The study of heat transfer phenomenon in porous media has 

been intensively increased during the last four decades. This is 

because of its important applications in contemporary 

technologies such as geothermal exploitations, oil recovery, 

radioactive waste management, transpiration cooling and ground 

water pollution. A newly explored area in which the heat 

transfer phenomenon finds interesting applications in the study 

of flow and heat transfer analysis in partial filled boxes. The 

boxes may contain oranges, apples, mangoes or some other such 

food items. In such systems, it is of great importance to 

investigate the air flow and heat transfer from the atmosphere to 

the inner side of the boxes to keep the food items fresh. Timely 

reviews of the literature on heat transfer in porous media have 

been reported in the excellent monographs by Ingham and Pop 

[1], Vafai [2] and Nield and Bejan [3] With interest coming 

from these broad fields to technical engineering applications, the 

study of natural convection in cavities filled with porous media, 

both theoretically and experimentally, has also received 

considerable attention in the past few decades.  The main 

objectives of these studies are usually the analysis of the 

resulting flow and heat transfer characteristics on functions of 

the dimensionless parameters governing the involved 

phenomenon. Abundant literature is available on convection 

phenomena, but the literature lacks studies that take into account 

the convection in a saturated porous medium. Non-Darcy effects 

on natural convection in porous media. have found many 

applications, such as in fluid flow in geothermal reservoirs, 

separation processes in chemical industries, dispersion of 

chemical contaminants through water saturated soil, 

solidification of casting, migration of moisture in grain storage 

systems, crude oil production, etc. A comprehensive survey 

concerned with this subject can be found in the literature (Pop 

and Ingham [4], Vafai [2,5], Nield and Bejan [3]). 

Raptis et al. [6] studied the hydromagnetic free convection 

flow through a porous medium between two parallel plates. 

Aldos et al. [7] studied mixed convection flow from a vertical 

plate embedded in a porous medium in the presence of a 

magnetic field. Umavathi and Malashetty [8] studied the 

Oberbeck convection flow of couple stressed fluid in a vertical 

porous channel. Chamkha [9] considered magnetohydrodynamic 

(MHD) free convection flow from a vertical plate embedded in a 

thermally stratified porous medium with Hall effects. Makinde 

and Mhone [10] studied the heat transfer analysis of MHD 

oscillatory flow in a channel filled with a porous medium. 

Umavathi et al. [11-14] analyzed the flow and heat transfer 

characteristic in a porous medium for different geometries. 

Recently Umavathi and Veerashetty [15,16] studied the non-

Darcy mixed convection in a vertical porous channel with 

boundary conditions of third kind.   

Most of these studies are based on constant physical 

properties, more accurate prediction for the flow and heat 

transfer can be achieved by taking into account the variation of 

these properties such as variation of fluid viscosity with 

temperature (constant thermal conductivity), variation of fluid 

with conductivity (constant viscosity) and combined effect of 

variation of fluid viscosity and thermal conductivity with 

temperature.    

Accordingly Garry et al. [17] and Mehta and Sood [18] 

have concluded that compared to the constant viscosity case, the 

flow characteristics change substantially when this effect is 

included. Recently, Kafoussius and Williams [19] and 

Kafoussius and Rees [20] have used the local non similarity 

method to investigate the effect of the temperature dependent 

viscosity on the mixed convection flow past a vertical flat plate 

in the region near the leading edge. From all these studies they 

came to a conclusion that the viscosity of the fluid is sensitive to 

temperature variations, the effect of temperature-dependent 

viscosity has to be taken into consideration; otherwise 

considerable errors may occur in the characteristics of the heat 

transfer process. Hossain et al. [21] have investigated the natural 

convection flow from a vertical wavy surface and Hossain and 

Munir [22] investigated the mixed convection flow from a 

vertical flat plate. Klemp et al. [23] has studied the effect of 
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temperature dependent viscosity on the entrance flow in a 

channel in the hydrodynamic case. Attia and Kotb [24] studied 

the steady MHD fully developed flow and heat transfer between 

two parallel plates with temperature dependent viscosity. 

For the fluids, which are important in the theory of 

lubrication, the heat generated by the internal friction and the 

corresponding rise in temperature do affect the viscosity and 

thermal conductivity of the fluid and they can no longer be 

regarded as constant. The physical properties of fluids such as 

viscosity and thermal conductivity may change significantly 

with temperature (Schlichting, [25]). The temperature-dependent 

property problem is further complicated by the fact that the 

properties of different fluids behave differently with 

temperature. Different relations between the physical properties 

of fluids and temperature were given by Kays and Crawford 

[26]. Ockendon and Ockendon [27] presented an analysis for 

suddenly heated or cooled channel flow of a Newtonian fluid 

with the viscosity either algebraically or exponentially 

dependent on temperature. Elbashbesy and Ibrahim [28] 

analyzed the flow of viscous incompressible fluids along a 

heated vertical plate, taking into account the variation of the 

viscosity and thermal diffusivity with temperature. 

  In the present work, the effect of variable viscosity keeping 

thermal conductivity constant, the effect of variable thermal 

conductivity keeping viscosity constant and the effect of both 

variable viscosity and conductivity with temperature is studied 

with flow of viscous incompressible permeable fluid in a vertical 

channel. The fluid is flowing between two infinite plates 

maintained at two constant but different temperatures. The 

Darcy-Brinkman model is used to define the porous medium. 

The viscosity and thermal conductivity is assumed to vary 

exponentially with temperature. The viscosity and Darcy 

dissipation terms in the energy equation are taken into 

consideration. The governing coupled nonlinear ordinary 

differential equations are solved using the Runge-Kutta shooting 

method (RKSM) and analytically using perturbation method 

(PM).  The effects of temperature dependent viscosity, 

temperature dependent thermal conductivity, wall temperature 

ratio, buoyancy parameter and porous parameter on the velocity 

and temperature distributions are discussed.   

Mathematical formulation 

Consider a steady laminar, fully developed flow of an 

incompressible viscous fluid between two parallel plates. The 

distance between the plates is 2b  and the origin of coordinate 

axis is located in the mid-plane of the channel. The two plates 

are kept at two constant temperatures 1T  for the left plate and 

2T  for the right plate. The channel is assumed to occupy the 

region of space b Y b   . A fluid rises in the channel driven 

by buoyancy forces. The no-slip boundary condition is imposed 

on the parallel plates for the velocity, and since the plates are 

infinite in the X -direction, the physical variables are invariant 

in these directions and the problem is essentially one-

dimensional with velocity component  U Y  along the X -

axis. The physical properties characterizing the fluid except 

density, viscosity and thermal conductivity are assumed to be 

constant. As customary, the Boussinesq approximation and the 

equation of state   

0 0[1 ( )]T T     .                                      (1) 

will be adopted. The flow and heat transfer of viscous fluid is 

examined considering the following three cases. 

In Case 1 we consider only variation of viscosity with constant 

thermal conductivity, in Case 2 keeping viscosity constant, vary 

the thermal conductivity and in Case 3 we study the combination 

of both variable viscosity and thermal conductivity. 

Case 1: Effect of variable viscosity 

The governing equations of motion for variable viscosity 

become (Nield and Bejan, [3]) 

 0 0 0
d dU U

g T T
dY dY


  



 
    

 
       (2) 

22
2

0 2
0

d T dU
K U

dY dY






 
   

 
        (3) 

where U  is the velocity of the fluid, T  the temperature of the 

fluid, 0  the static density,   the coefficient of thermal 

expansion, g  the acceleration due to gravity,   the viscosity  

and 0K  the thermal conductivity of the fluid. 

The boundary conditions on the velocity and temperature fields 

are given as 

0U   at Y b            (4) 

1T T  at Y b  , 2T T  at Y b         (5) 

where b  is the characteristic length. 

The fluid viscosity   is assumed to vary with temperature as 

(Saravanan and Kandaswamy, [29] and Attia, [30]) 
 0

0

a T T
e 
 

                         (6) 

where the subscript 0 denotes the reference state and a  an 

empirical constant.  

In Eq. (6) the viscosity   is assumed to depend on 

temperature exponentially. The parameter a  may take positive 

values for liquids such as water, benzene or crude oil. In some 

gases like air, helium or methane a  may be negative, i.e., the 

coefficient viscosity increases with temperature (Sutton and 

Sherman, [31]; Schlichting, [32]). This type of model can find 

applications in many processes where preheating of the fuel is 

used as a means to enhance heat transfer effects. In addition, for 

many fluids such as lubricants, polymers, and coal slurries 

where viscous dissipation is substantial, an appropriate 

constitutive relation where viscosity is a function of temperature 

should be used.  

Equations (2)-(5) determine the velocity and temperature 

distribution, they can be written in a dimensionless form by 

means of the following dimensionless parameters  

0

2

0

u U
g b T



 



, 

0T T

T






, 

Y
y

b
 ,  

2 4 2 2

0

0 0

b g T
N

K

 




                          (7) 

 Using Eqs. (6) and (7) the dimensionless governing 

Eqs. (2) - (5) reduces to 
2

2 2

2
0v v

d u d du
b u b

dy dy dy


                             (8) 

2 22

2

2 2 2 2 0

v

v

d du du
N b N

dy dydy

Nu b N u




  

   
    

   

  

                                  (9) 

and the non dimensional boundary conditions reduces to 
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0u   at 1y                                                     (10) 

1 m    at 1y   , 1   at 1y  .                      (11) 

where vb a T   is the variable viscosity parameter, 

1 2T T
m

T





 the wall temperature ratio and N  is the 

buoyancy parameter. 

The Eq. (6) can be approximated by expanding    in terms of a 

truncated Taylor’s series about 0x   and consider only first 

two terms in the series. 

Case 2: Effect of variable conductivity 

In this case we consider the steady laminar fully developed 

flow of a viscous fluid (constant viscosity) with the variable 

conductivity and the effect of viscous permeable dissipation. 

The governing equations of this motion are 

 
2

0

0 0 02
0

Ud U
g T T

dY


  


                          (12) 

2

20

0 0
d dT dU

K U
dY dY dY






   
     

   
                    (13) 

The boundary conditions are same as in Eqs. (4) and (5). 

The thermal conductivity of the fluid is assumed as (Attia, [30]) 
    0

0 0 01
b T T

K K e K b T T
 

                          (14) 

The thermal conductivity of the fluid is assumed to vary 

with temperature as can be seen in Eq. (14) where the parameter 

b  may be positive for some fluids such as air or water vapor or 

negative for others like liquid water or benzene (Schlichting, 

[32] and White, [33]).  

The thermal conductivity changes approximately linearly 

with temperature in the range from 0 °F to 400 °F (Kays, [34]).  

The above governing Eqs. (12) and (13) are written in 

dimensionless form by using Eqs. (7) and (14) as 
2

2

2
0

d u
u

dy
                                                        (15) 

2 2 22

2

2 2 2 2 0

k k

k

d d du du
b N b N

dy dy dydy

Nu Nb u

 


  

     
       

     

  

        (16) 

The corresponding boundary conditions are same as in Eqs. (10) 

and (11), where kb b T   is the variable conductivity 

parameter. 

Case 3: Combined effect of variable viscosity and thermal 

conductivity 
The momentum equations governing the motion of an 

incompressible fluid in the presence of viscous dissipation with 

the variable viscosity and variable thermal conductivity are 

given by 

 0 0 0
d dU U

g T T
dY dY


  



 
    

 
        (17) 

2

2 0
d dT dU

K U
dY dY dY






   
     

   
         (18) 

The expressions for viscosity   and thermal conductivity K  

are given in Eqs. (6) and (14).  

In terms of the non dimensional variables as in Eq. (7), Eqs. (17) 

and (18) take the form 

2
2 2

2
0v v

d u d du
b u b

dy dy dy


                               (19) 
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  
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   
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    

 

 
   

 

           (20) 

and the corresponding boundary conditions are given in Eqs. 

(10) and (11).  

Equations (19)-(20) show that the dimensionless velocity 

and temperature fields depend on four parameters: the viscosity 

parameter vb , the conductivity parameter kb , the buoyancy 

parameter N , the porous parameter   and the wall 

temperature ratio m .  

Solutions 

Perturbation method 

The solutions of the governing equations of motion are found 

using perturbation method for all the three cases. 

Case 1: Effect of variable viscosity 

Equations (8) and (9) are coupled nonlinear equations 

because of variable viscosity and viscous dissipation and it is 

difficult, in general, to solve analytically. When neglecting the 

viscous dissipative heating ( 0N  ), Eqs. (8) and (9) become 

linear and solutions can easily be obtained.  

In many practical applications cited above, N  can not be 

zero ( 0N  ), but in many situations it can take small values. 

For example, for mercury in a channel of half-width 2cm, and 

with 1 0 20 CT T  , N  takes the value of 0.128. Small 

values of  1N   facilitate finding analytical solutions of Eqs. 

(8) and (9) in the form 

0 1u u Nu              (21) 

0 1N                (22) 

where the second and higher order terms on the right-hand side 

give a correction to 0 0,u   accounting for the dissipative 

effects. Substituting Eqs. (8)-(11) into Eqs. (21) and (22) and 

equating like powers of N  to zero, we obtain 

Zeroth order equations 
2

2 20 0 0
0 0 02

0v v

d u d du
b u b

dy dy dy


                        (23) 

2

0

2
0

d

dy


                                                                        (24) 

  The corresponding boundary conditions are 

0 0 at 1u y                                                        (25) 

0 01 at 1, 1 at 1 m y y                           (26) 

First order equations  
2

0 01 1 1

2

2

1 1 0 12 0

v v

v

d dud u du d
b b

dy dy dy dydy

u b

 

   

 

   

                        (27) 
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2 22

0 01
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2 2 2 2

0 0 0 0

v

v

du dud
b

dy dydy

u b u




  

   
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   

  

                        (28) 

The corresponding boundary conditions are 

1 0 at 1u y   ; 1 0 at 1y                           (29) 

Case 2: Effect of variable conductivity 

The method of solution is similar to the Case 1. Substituting 

Eqs. (21) and (22) into Eqs. (12)-(14) and equating like powers 

of N  to zero, we obtain 

Zeroth order equations 
2

20
0 02

0
d u

u
dy

               (30) 

22

0 0

2
0k

d d
b

dy dy

  
  

 
            (31) 

The corresponding boundary conditions are same as in Eqs. (25) 

and (26). 

First order equation 
2

21
1 12

0
d u

u
dy

                                                           (32) 

2 22

0 0 01 1

02

2 2 2 2

0 0 0

2

0

k k

k

d du dud d
b b

dy dy dy dydy

u b u

 


  

   
     

   

  

         (33)                                                        

The corresponding boundary conditions are same as in Eqs. 

(29). We shall further perform a perturbation analysis of the Eqs. 

(30)-(33) considering variable conductivity parameter as a 

perturbation parameter. The solutions of Eqs. (30)-(33) is 

assumed as follows 

0 00 01ku u b u  ; 0 00 01kb    ;  

1 10 11ku u b u  ; 1 10 11kb                                        (34) 

Using Eqs. (34) into Eqs. (25), (26), (29) and (30)-(33) and 

equating like powers of kb , we obtain the following boundary 

value problems 
2

200
00 002

0
d u

u
dy

                            (35) 

2

00

2
0

d

dy


                                                                          (36) 

2
201

01 012
0

d u
u

dy
                                                     (37) 

22

01 00

2
0

d d

dy dy

  
  
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                                                    (38) 

2
210

10 102
0

d u
u

dy
                                                     (39) 

22
2 210 00

002
0

d du
u

dy dy




 
   
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                                      (40) 

2
211

11 112
0

d u
u

dy
                                                     (41) 

2

00 10 00 0111

2

2

2 2 200

00 00 01 00 00

2 2

2 0

d d du dud

dy dy dy dydy

du
u u u

dy

 

   

 

 
    
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           (42) 

The corresponding boundary conditions are 

00

00 00

01 01

10 10

11 11

0 at 1;

1 at 1, 1 at 1;

0 at 1; 0 at 1;

0 at 1; 0 at 1;

0 at 1; 0 at 1

u y

m y y

u y y

u y y

u y y

 







   


     



      
     

      

                (43) 

Case 3: Effect of combined variable viscosity and thermal 

conductivity 

The method of solutions of Eqs. (19) and (20) is similar to 

as in case 2, and we obtain the following equations 
2

2 200 00 00
00 00 002

0v v

d u d du
b u b

dy dy dy


                   (44) 

2

00

2
0

d

dy


                                                                              (45) 

2

01 01 00 00 01

2

2

01 01 00 012 0

v v

v

d u d du d du
b b

dy dy dy dydy

u b

 
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 

   

                                    (46) 

22

01 00

2
0

d d

dy dy

  
  
 

                                                       (47) 

The solutions of the linear ordinary differential equations in all 

the above cases are found and present in graphs and tabular 

form. 

Numerical solutions 

The analytical solutions obtained in the above section are 

valid for small values of perturbation parameters. Further it is 

seen in the above section that it is not possible to find solutions 

of even the first order in all the cases. Hence we resort to solve 

the governing equations by numerical methods using Runge-

Kutta shooting method (RKSM).  The validity of RKSM is 

justified by comparing the solutions with the results obtained by 

the perturbation method and the values are displayed in tables. 

The perturbation method and RKSM solutions agree very well in 

the absence of perturbation parameter.   

Skin friction and Nusselt number 

In addition to the velocity and temperature fields, the 

following physical quantities can be defined: 

The dimensionless skin friction at each boundary can be defined 

as 

1

1y

du

dy




  and 2

1y

du

dy




                           (48) 

The dimensionless Nusselt number at each boundary can be 

defined as follows: 

1

1y

d
Nu

dy





  and 2

1y

d
Nu

dy





                          (49) 

The above equations are solved and the results are tabulated in 

Tables 1-3 for different governing parameters. 

 



  J.C. Umavathi and Syed Mohiuddin/ Elixir Appl. Math. 85 (2015) 34228-34238 34232 

Results and Discussion 

The problem under study consists of the numerical and 

analytical investigation of flow and heat transfer in a vertical 

channel.  The channel is filled with porous medium.  The Darcy-

Brinkman model is used to define the governing equations.  

Three cases are considered for the study, in the first case 

keeping thermal conductivity constant and exponential 

dependence of the varying viscosity on temperature is analyzed. 

Keeping the viscosity constant and the exponential dependence 

of thermal conductivity on temperature is discussed in case 2.  

The exponential dependent of both the viscosity and thermal 

conductivity on temperature is studied in case 3.   

Due to the variation of viscosity and temperature, results in 

decomposing the viscous force term in the momentum equation 

and conducting term into two terms.  The variations of these 

resulting terms with the variable viscosity parameter vb  and 

thermal conductivity parameter kb and their relative magnitude 

have an importance on the flow and temperature fields.  The 

major parameter such as wall temperature ratio m , buoyancy 

parameter N  and porous parameter   on the flow for positive 

and negative values of viscosity parameter vb  and the 

conductivity parameter kb  is numerically evaluated and 

depicted graphically.  The governing equations which are highly 

nonlinear and coupled cannot be solved in a closed-form 

therefore the approximate solutions are found analytically using 

perturbation method (PM) whose solutions are restricted for 

small values of perturbation parameter.  These restrictions are 

relaxed by finding the solutions numerically using Runge-Kutta 

shooting method (RKSM).   

The validity of Runge-Kutta shooting method is justified by 

comparing the solutions of RKSM with PM.  For temperature 

dependent viscosity the buoyancy parameter N  is used as the 

perturbation parameter.  The analytical solutions are found up to 

the first order  0 1N    . For temperature dependent 

thermal conductivity, the buoyancy parameter N  and thermal 

conductivity parameter kb are used as the perturbation 

parameter. Here also the analytical solutions are found up to first 

order   00 01 10 11k ku u b u N u b u    , but the solution of 11u  

is not found.  While finding out the perturbations solutions for 

temperature dependent viscosity and thermal conductivity, only 

zeroth order solutions are found 

  00 01 10 11k ku u b u N u b u    .  That is to say that the 

solutions of 00 01,u u are found, however 10 11,u u are not found.  

However the numerical solutions are found for any values of the 

governing parameter using RKSM method.   

For temperature dependent viscosity (case 1), the effects of 

viscosity variation parameter vb on the velocity and temperature 

fields are seen in Figs. 1 and 2 respectively.  As the viscosity 

variation parameter vb increases, flow increases and the profiles 

for constant viscosity  0vb  lies above 0vb   and below 

0vb  on velocity and temperature fields. The variable 

viscosity parameter vb on the flow was the similar result 

observed by Attia [35] on the MHD channel flow of dusty 

fluids.  The wall temperature ratio m  fixing the values of N , 

vb and  can be viewed in Figs. 3 and 4. It is seen that as the 

wall temperature ratio m  increases the flow is enhanced, it is 

interesting to note that for negative values of m  there is a flow 

reversal at the left wall.  Since the wall temperature boundary 

condition are taken as 1 m  at left wall and fixed as 1 at the 

right wall, the temperature profiles are varied at the left wall and 

remains constant at the right wall.  

 The buoyancy parameter also enhances the flow for 

increasing values of buoyancy parameter N as seen in Figs. 5 

and 6.  This result is due to the fact that physically an increase in 

the numerical values of buoyancy parameter N  implies an 

increase of buoyancy force which will help in increasing the 

dissipations.  

 Therefore the temperature is increased and hence the 

velocity is also enhanced.  The effect of N on the flow is the 

similar result observed by Umavathi [36]. The effect of porous 

parameter  (increase of Darcy number) is to suppress the flow 

for fixed values of , ,vb N m .  This is also an expected result 

because physically, large values of porous parameter   

correspond to densely packed porous medium and hence flow 

rate will be reduced.  The effect of porous parameter   on the 

flow is similar result observed by Umavathi and Veershetty [15] 

for constant properties. 

The values of skin friction and Nusselt number on the 

variation of viscosity variation parameter vb , wall temperature 

ratio m , buoyancy parameter N and porous parameter   are 

tabulated in table 1.  One can view that as vb  increases skin 

friction and Nusselt number increases at the left wall (hot wall) 

and decreases at the right wall. For increase in wall temperature 

ratio m , skin friction increases at the left wall and decreases at 

the right wall whereas the Nusselt number decreases at both the 

walls.   

The buoyancy parameter N  increases the skin friction and 

Nusselt number at the left wall and decreases at the right wall. 

The porous parameter   decreases the skin friction and Nusselt 

number at the left wall and increases at the right wall. 

Keeping viscosity constant and considering temperature 

dependent thermal conductivity, the effects of the governing 

parameters on the flow are analyzed.  It is seen from Figs. 9 and 

10 that as the thermal conductivity parameter increases both the 

velocity and temperature fields are suppressed.  The profiles for 

constant thermal conductivity  0kb  lies above 0kb  and 

below 0kb  .  The effect of thermal conductivity parameter 

kb (Figs. 9 and 10) is in contrast with the effect of variable 

viscosity parameter vb  (Figs. 1 and 2).  The effect of kb is the 

similar result observed by Attia [37] and Palani and Kim [38]. 

The effects of wall temperature ratio m , buoyancy parameter 

N  and porous parameter   for variable thermal conductivity 

(constant viscosity) shows the similar results observed for 

variable viscosity (constant thermal conductivity) and hence not 

shown pictorially.   

Table 2 displays the effects of variable thermal 

conductivity, wall temperature ratio, buoyancy parameter and 

porous parameter on skin friction and Nusselt number.  It is seen 

that as the variable thermal conductivity parameter kb  

increases, skin friction and Nusselt number decreases at the left 

wall and increases at right wall, which is in contrast with the 

effects of variable viscosity parameter with constant thermal 

conductivity.   
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The effect of wall temperature ratio m , buoyancy 

parameter N  and porous parameter   on skin friction and 

Nusselt number are the similar result observed for variable 

viscosity (table 1). 

To understand the flow nature, both the viscosity and 

temperature are taken as temperature dependent and the results 

are drawn.  Keeping the value for variable thermal conductivity 

parameter kb  fixed  0.2kb   , the effect of variable 

viscosity parameter vb on the velocity and temperature fields are 

shown in Figs. 11 and 12.   

The effect of vb is to the increase the velocity and 

temperature fields which is the similar result observed for 

constant thermal conductivity (Figs. 1 and 2). Keeping the value 

of variable viscosity parameter vb  fixed  0.2vb   , the 

effect of variable thermal conductivity parameter kb on the flow 

is to suppress the velocity and temperature fields as seen in Figs. 

13 and 14.  This is also the similar result observed for constant 

viscosity (Figs. 9 and 10).  The effects of wall temperature m  

and buoyancy parameter N  and porous parameter   for 

variations of viscosity and thermal conductivity on velocity and 

temperature reveal the similar results as observed for variation 

of thermal conductivity keeping the viscosity and thermal 

conductivity constant. The effect of kb and vb on the flow was 

the similar result observed by Attia [30] for hydro magnetic 

channel flow of dusty fluid. 

The effect of variable viscosity, variable thermal 

conductivity, wall temperature ratio m , buoyancy parameter 

N and porous parameter  on skin friction and Nusselt number 

is shown in table 3.  Fixing 0.2vb   , increasing the values of 

kb decreases the skin friction and Nusselt number at the left wall 

and increases at the right wall.  

Fixing 0.2kb    and increasing the values of vb  shows 

that skin friction and Nusselt number increases at the left wall 

and decreases at the right wall.  The effects of m , N and   on 

the skin friction and Nusselt number are the similar results as 

observed for variable viscosity with constant temperature as 

seen in table 1. 

The analytical solutions obtained by regular perturbation 

methods are valid only for small values of perturbation 

parameter.  To overcome this restriction the governing equations 

are solved using Runge-Kutta shooting method.  The validity of 

Runge-Kutta shooting method is justified by comparing the 

results obtained by perturbation method and Runge-Kutta 

shooting method in the absence of buoyancy parameter N  and 

displayed in tables 4, 5 and 6 for variable viscosity (constant 

thermal conductivity), variable thermal conductivity (constant 

viscosity) and combined effect of variable viscosity and thermal 

conductivity.  It is viewed from tables 4 and 5 that the analytical 

and numerical solutions are exact for 0N  and the error 

increases as buoyancy parameter N  increases.   

The computation to evaluate first order solutions for the 

variable viscosity and combined effect of variable viscosity and 

thermal conductivity was very tedious and hence table 4 

(velocity) and table 6 gives the comparison for 0N  only.  

Numerical solutions were obtained for the effects of buoyancy 

parameter N on the flow. 
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Table 1. Computations showing the effect of parameter variations on skin friction and Nusselt number 
 

  

1y

du

dy
 

1y

du

dy
 

1y

d

dy


 

1y

d

dy


 

vb  1, 0.01, 2m N     

-0.3 

-0.2 

0 

0.2 

0.3 

0.38145648 

0.53735320 

0.85772612 

1.18950790 

1.35964416 

-0.38045140 

-0.45207723 

-0.58904407 

-0.71776138 

-0.77907158 

-0.49872118 

-0.49801823 

-0.49671324 

-0.49617634 

-0.49644120 

-0.50118111 

-0.50168887 

-0.50263006 

-0.50315186 

-0.50313956 

m  0.2, 0.01, 2vb N      

-2 

-1 

0 

1 

2 

-0.31868740 

0.10213422 

0.38569853 

0.53735320 

0.56248705 

-0.22038197 

-0.30768770 

-0.38569853 

-0.45207723 

-0.50429840 

1.00017222 

0.50022067 

0.00099517 

-0.49801823 

-0.99734663 

0.99985499 

0.49959903 

-0.00099517 

-0.50168887 

-1.00224655 

N  0.2, 1, 2vb m      

0.1 

0.5 

1.0 

1.5 

2.0 

0.53833444 

0.54280161 

0.54863447 

0.55474880 

0.56114336 

-0.45332656 

-0.45904030 

-0.46656707 

-0.47454173 

-0.48298043 

-0.48007239 

-0.39784495 

-0.28904914 

-0.17301734 

-0.04915279 

-0.51699784 

-0.58749532 

-0.68163884 

-0.78309566 

-0.89255342 

  0.2, 1, 0.01vb m N     

0.5 

1 

2 

4 

0.98951126 

0.82485783 

0.53735320 

0.28856613 

-0.92049039 

-0.74637653 

-0.45207723 

-0.21991601 

-0.49541455 

-0.49638414 

-0.49801823 

-0.49926877 

-0.50398148 

-0.50312954 

-0.50168887 

-0.50060036 
 

Table 2. Computations showing the effect of parameter variations on skin friction and Nusselt number 

 

1y

du

dy
 

1y

du

dy
 

1y

d

dy


 

1y

d

dy


 

kb  1, 0.01, 2m N     

-0.5 

-0.2 

0 

0.2 

0.5 

0.87257251 

0.86391767 

0.85772612 

0.85120720 

0.84084685 

-0.60594900 

-0.59558818 

-0.58904407 

-0.58280944 

-0.57405990 

-0.39311522 

-0.45109205 

-0.49671324 

-0.54894555 

-0.64205481 

-0.64970441 

-0.55561438 

-0.50263006 

-0.45620265 

-0.39694231 

m  0.2, 0.01, 2kb N     

-2 

-1 

0 

1 

2 

-0.29322463 

0.10040558 

0.48220599 

0.85120720 

1.20647129 

-0.24151604 

-0.36875190 

-0.48220600 

-0.58280944 

-0.67152976 

0.82435821 

0.45340570 

0.00155574 

-0.54894555 

-1.21990999 

1.22939321 

0.55296946 

-0.00155576 

-0.45620265 

-0.82898216 

N  0.2, 1, 2kb m     

0.1 

0.5 

1.0 

1.5 

0.85573035 

0.87814478 

0.91349890 

0.96317581 

-0.58675207 

-0.60633636 

-0.63736834 

-0.68121641 

-0.50715941 

-0.30312623 

0.00912889 

0.43023283 

-0.48400270 

-0.62092645 

-0.83407020 

-1.12776538 

  0.2, 1, 0.01kb m N     

0.5 

1 

2 

3 

1.56619081 

1.31132138 

0.86391767 

0.61314993 

-1.23875413 

-0.99871531 

-0.59558818 

-0.38951362 

-0.44845841 

-0.44942879 

-0.45109205 

-0.45195603 

-0.55857233 

-0.55746176 

-0.55561438 

-0.55469459 
 

Table 3. Computations showing the effect of parameter variations on skin friction and Nusselt number 

 

1y

du

dy
 

1y

du

dy
 

1y

d

dy


 

1y

d

dy


 

kb  0.2, 1, 0.01, 2vb m N       

-0.5 

-0.2 

0.54418143 

0.54022858 

-0.46279409 

-0.45621055 

-0.39325272 

-0.45192555 

-0.64935035 

-0.55485191 
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0 

0.2 

0.5 

0.53735320 

0.53428415 

0.52932132 

-0.45207723 

-0.44815616 

-0.44267898 

-0.49801823 

-0.55073615 

-0.64462066 

-0.50168887 

-0.45513300 

-0.39574303 

vb  0.2, 1, 0.01, 2kb m N       

-0.5 

-0.2 

0 

0.2 

0.5 

0.07459621 

0.54022858 

0.86391767 

1.19823334 

1.71946733 

-0.22948084 

-0.45621055 

-0.59558818 

-0.72586383 

-0.90478127 

-0.45303962 

-0.45192555 

-0.45109205 

-0.45075153 

-0.45227197 

-0.55376416 

-0.55485191 

-0.55561438 

-0.55603305 

-0.55536292 

m  0.2, 0.2, 0.01, 2k vb b N      

-2 

-1 

0 

1 

2 

-0.24074670 

0.10398294 

0.57868947 

1.18037885 

1.90684981 

-0.28719689 

-0.43692084 

-0.57868948 

-0.70999399 

-0.82954237 

0.82433799 

0.45343125 

0.00179261 

-0.54819769 

-1.21896865 

1.22938804 

0.55291329 

-0.00179261 

-0.45680450 

-0.83003453 

N  0.2, 0.2, 1, 2k vb b m        

0.1 

0.5 

1.0 

1.5 

2 

0.09645532 

0.09775298 

0.09944919 

0.10123522 

0.10312020 

-0.30281524 

-0.30422213 

-0.30605406 

-0.30797460 

-0.30999252 

0.45520172 

0.46352609 

0.47443394 

0.48595136 

0.49814136 

0.54892797 

0.53025827 

0.50607824 

0.48088145 

0.45457006 

  0.2, 0.2, 1, 0.01k vb b m N     

0.5 

1 

2 

4 

2.12204243 

1.78082160 

1.18037885 

0.64909861 

-1.48305886 

-1.19412800 

-0.70999399 

-0.33722557 

-0.54169170 

-0.54406232 

-0.54819769 

-0.55149582 

-0.46205112 

-0.46006281 

-0.45680450 

-0.45443597 
 

Table 4. Comparison of velocity and temperature for various values of  0.2, 1, 2vb m    with Runge-Kutta shooting 

method 

Velocity Temperature 

 0N   0N   0.5N   

 Analytical Numerical Analytical Numerical Analytical Numerical 

1 

0.2 

0.0 

-0.2 

-1 

0.00000000 

0.32908640 

0.35809109 

0.36648480 

0.00000000 

0.00000000 

0.32908640 

0.35809109 

0.36648479 

0.00000000 

1.00000000 

1.40000000 

1.50000000 

1.60000000 

2.00000000 

1.00000000 

1.40000000 

1.50000000 

1.60000000 

2.00000000 

1.00000000 

1.47926354 

1.58394643 

1.68136412 

2.00000000 

1.00000000 

1.48738864 

1.59244325 

1.68950259 

2.00000000 
 

Table 5. Comparison of velocity and temperature for various values of  0.2, 1, 2kb m      with Runge-Kutta shooting 

method 

Velocity 

 

y 
0N   0.01N   0.1N   

Analytical Numerical Analytical Numerical Analytical Numerical 

1 

0.2 

0.0 

-0.2 

-1 

0.00000000 

0.26017279 

0.27927980 

0.28185957 

0.00000000 

0.00000001 

0.26019434 

0.27927518 

0.28182969 

0.00000000 

0.00000000 

0.26038334 

0.27950263 

0.28207384 

0.00000000 

0.00000000  

0.26034619 

0.27943401 

0.28198063 

0.00000000 

0.00000000 

0.26227833 

0.28150817 

0.28400227 

0.00000000 

0.00000000 

0.26172587 

0.28087694 

0.28335176 

0.00000000 

Temperature 

 

y 
0N   0.01N    0.1N   

Analytical Numerical Analytical Numerical Analytical Numerical 

1 

0.2 

0.0 

-0.2 

-1 

1.00000000 

1.42400000 

1.52500000 

1.62400000 

2.00000000 

0.99999999 

1.42428367 

1.52495844 

1.62364607 

2.00000000 

1.00000000 

1.42533220 

1.52641585 

1.62537770 

2.00000000 

1.00000000 

1.42525560 

1.52596774 

1.62460586 

2.00000000 

1.00000000 

1.43732203 

1.53915850 

1.63777699 

2.00000000 

1.00000001 

1.43408585 

1.53513602 

1.63332361 

2.00000000 
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Conclusion 

The problem of free convective flow in a vertical channel 

filled with porous medium was analyzed for the variation of 

viscosity (constant thermal conductivity), variation of thermal 

conductivity (constant viscosity) and for the variation of both 

viscosity and thermal conductivity on the temperature was 

studied.  The analytical solution were found by perturbation 

parameter method  valid for small values of perturbation 

parameter and numerical solutions were found by Runge-Kutta 

shooting method valid for any values of governing parameters.  

The Runge-Kutta shooting method and perturbation method 

show good agreement in the absence of buoyancy parameter.  

The following results were drawn. 

1. Increase in the variable viscosity enhances the flow and heat 

transfer whereas increase in the variable thermal conductivity 

suppresses the flow and heat transfer for variable viscosity, 

variable thermal conductivity and their combined effect. 

2. The wall temperature ratio and buoyancy parameter enhances 

the flow for variable viscosity, variable thermal conductivity and 

their combined effect where as porous parameter suppresses the 

flow in all the three cases. 

3. The solutions obtained by Runge-Kutta shooting method and 

perturbation method are exact in the absence of buoyancy 

parameter and the error increases as the buoyancy parameter 

increases. 
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Table 6. Comparison of velocity and temperature for various values of 0, 0.5, 1, 2vN b m       with 

Runge-Kutta shooting method 

Velocity 

 0kb   0.5kb   

Analytical Numerical Analytical Numerical 

1 

0.2 

0.0 

-0.2 

-1 

0.00000000 

0.43527624 

0.48032956 

0.49845168 

0.00000000 

0.00000000 

  0.43527623 

 0.48032955 

 0.49845167 

0.00000000 

0.00000000 

0.41409899 

0.45709881 

0.47563857 

0.00000000 

0.00000000 

  0.41483107 

 0.45751414 
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