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Introduction  

Now-a-days it is expected that the achievement of energy 

conservation can be significantly accelerated by integrating 

smart, energy-efficient appliances into a “smart” electricity grid. 

Basically, smart appliances will be no longer merely passive 

devices that drive energy productions but active participants in 

the electricity infrastructure for energy optimization and 

increased compatibility. A key function for the smart appliances 

within the smart grid framework is the demand response (DR). 

Demand response (DR) refers to deliberate load reductions 

during system needed times, like periods of peak demand or 

heavy market price. Due to reduced consumption and increased 

generation, for both system's supply and demand to evenness, 

DR can be a source that counter balances or defers the need for 

new generation, transmission, and/or distribution setup. The best 

basic DR packages are structured to maintain system reliability 

and prevent blackouts. But nowadays, DR has evolved into a 

more dynamic resource that can also provide price extenuation 

and auxiliary services to utilities and grid workers. This work 

holds a summary of four types of DR based on their purpose and 

use: financial, emergency, auxiliary services, and peaking 

alternative. In general, DR includes all intentional modifications 

to electricity timing of energy usage, the level of instantaneous 

demand at critical times, and consumption patterns in response 

to market prices. At the same time, DR is a component of smart 

energy management, which includes distributed renewable 

resources and electric vehicle charging. Nevertheless, there exist 

many challenges in developing price-responsive DR strategy for 

a residential consumer, such as the quandaries faced in 

accurately estimating the energy consumption of a house and the 

development a DR algorithm in dynamic price setting. A key 

function for the smart appliances within the smart grid 

framework is the Demand Response (DR). The North American 

Electric Reliability Corporation has defined response as 

“changes in electricity usage by end-use customers from their 

normal consumption patterns in response to change in the price 

of electricity, or to incentive payments designed to induce lower 

electricity use at time of high wholesale market prices or when 

system reliability is endangered.” On a whole, around two types 

of DR available. They are curtailable DR and price responsive 

DR. In curtailable DR, an end-use customer agrees to curtail 

under certain circumstances in response to dispatch by the Load 

Serving Entity (LSE), aggregator, or the system operator and the 

customer receives an explicit payment for curtailing load. In 

price-responsive DR, an end-use customer is exposed to time-

varying (dynamic) rates and does not receive an explicit 

payment as compensation for curtailing load. This article 

presents a mechanism to develop and evaluate a price-responsive 

DR strategy through a computational experiment approach. 

A mechanism to obtain energy consumption of a residential 

house by using professional building simulation software. 

Through this method, one can “build” a simulated house that is 

similar to a practical one. The simulation uses standard 

commercial building materials defined in the software library 

and real-life weather data available at an approach of using 

regression technique to model home energy consumption based 

on the energy consumption obtained from the home energy 

simulation software. Therefore, it is possible to model the energy 

consumption of a residential house more accurately for 

complicated energy usage and weather conditions. A method to 

develop optimal DR algorithms based on the regressed 

household energy consumption model and conventional 

optimization and particle swam techniques. An integrative 

computing platform that combines the home energy simulator 

and MATLAB together for DR development and evaluation. A 

detailed comparison study focusing on characteristics 

advantages and disadvantages of different DR policies for both 

real-time and day-ahead binding customers. The paper is 

organized is such a way that Section II, heat transfer issues and 

the techniques used in a home energy simulator to estimate 

energy consumption of a residential house. 
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Section III gives a computational experiment system that 

combines home energy simulation and dynamic electricity prices 

for DR evaluation. Section IV illustrates how to use the 

computational experiment strategy to develop different DR 

policies based on optimization approach, particle swarm method, 

and a heuristic algorithm. The performance of different DR 

policies is evaluated in Section V. Final section of the paper 

holds the conclusion. 

Related Works 

Navid-Azarbaijani et al, (1996) found the problem of 

scheduling ON/OFF switching of residential appliances under 

the control of a Load Management System (LMS).The 

scheduling process is intended to reduce the controlled 

appliances’ power demand in accordance with a predefined load 

reduction profile. The conventional practices in this area are 

shown to be special cases of the PWM technique. The basic 

premise of this paper is that the existing scheduling tools 

available to the LMSs are not systematic and, as such, not 

flexible enough to allow realization of general LRT function. 

The important   advantage of LMS technology is to provide 

insight to various types of errors which arise in the scheduling 

process. The major drawback of this paper is that it does not 

involve substantial data collection or significant commitment of 

computing resources. T. J. Luiet al, (2010) research shows that 

the energy conservation can be significantly accelerated by 

integrating smart, energy-efficient appliances into a “smart” 

electricity grid. It is important to recognize and keep in mind the 

three levels of smart grid DR that must be developed and 

coordinated on a large scale in order to realize benefits from the 

smart grid. The second level of smart grid DR involves 

understanding the present usage of and coordinating the 

responses from all the smart appliances and other smart DR 

products (e.g., solar panels, electric vehicle supply equipment, 

and soon) in a given home. The third level of smart grid DR 

involves knowing the potential, and coordinating the response 

from, hundreds to millions of homes. This method as of now is 

implemented only in industries. Tung T. et al, (2010) 

investigated the problem of scheduling power consumption with 

time-varying prices that are known causally to consumers. Using 

stochastic dynamic programming, we have derived optimal 

policies and the algorithms to find a series of price thresholds. 

The scheduling problem is naturally cast as a Markov decision 

method. Procedures to find decision thresholds for both non 

interruptible and interruptible loads under a deadline constraint 

are then developed. The computational cost of the proposed 

scheduling is reasonably low for moderate time horizons, which 

arguably is the common case for hourly power pricing. The 

Main advantage of Markov decision process Algorithms is to 

provide reliable data on the power usage profiles. The drawback 

of this algorithm is that implementation cost is high. 

M Hashem Nehrir et al (2010) presents a comprehensive 

central DR algorithm for frequency directive, while diminishing 

the amount of manipulated load, in a smart micro grid. 

Simulation providing ancillary services for future smart micro 

grid can be a challenging task because of lack of conventional 

Automatic Generation Control (AGC) and spinning reserves, 

and expensive storage devices. Thus, increased attention has 

been focused on Demand Response (DR), especially in the smart 

lattice environment. The central DR strategy is based on 

communication between the utility control center and the 

responsive loads and has been shown to be stable up to a latency 

of 300 ms. The main advantage of DR algorithm based on 

deviation in frequency regulation it makes an optimal 

decision.The drawback of demand response Algorithm is that the 

system runs slowly. Duy Thanh Nguyenet al, (2011) in their 

research DR is treated as a public good to be exchanged between 

DR purchasers and venders. Purchasers need DR to improve the 

reliability of their own electricity-dependent businesses and 

systems. Venders have the measurements to significantly modify 

electricity request on invitation. Microeconomic theory is 

applied to model the DRX in the form of pool-based market. In 

this market, a DRX operator (DRXO) collects bids and offers 

from the buyers and sellers, respectively. The DRX concept can 

be considered an implicit market in which DR is a separate 

commodity to be traded through a virtual pool. Most 

importantly, this theory brings together DR buyers (i.e., TSO, 

retailers, distributors, each with their own reasons to demand 

some DR from time to time) and sellers (i.e., customers through 

the aggregators) under a common DRX “umbrella”. The DRX 

market-clearing scheme has an advantage of rewarding 

customers better by allowing them to deal with multiple buyers 

in a competitive way. Such a reward and competition based 

scheme can motivate customers to participate in DR programs 

more actively than in the past. This system is prize to found 

losses.  Jesus M. Latorre et al, (2011), found that wind energy 

represents a strongly increasing percentage of overall power 

construction, but wind normally does not follow the typical 

demand profile. Demand side management measures intend to 

adapt the demand profile to the situation in the system. Wind 

production rates are of less importance during high demand 

hours when implementing programs whose solely objective it is 

to reduce demand peaks. The impact of an increased installed 

wind capacity on operation and the cost savings resulting from 

the introduction of responsive demand are measured. Besides, 

results from the different implemented demand response options 

are compared. Major drawback of this is high cost. 

Masood Parvania et al, (2011), stated that any system 

operators around the world are challenged by the problems 

associated with integrating intermittent resources into the grid. 

As one of the possible solutions, Demand Response (DR) is 

expected to play a major role for mitigating integration issues of 

intermittent renewable energy resources.  The proposed method 

is in the mixed integer linear programming format.  This work 

presents the LRDR program which aims to procure load 

reduction from DR resources. The proposed model take into 

account the effect of load recovery by contributors. To disclose 

the features of the planned method, numerous mathematical 

studies are conducted on the IEEE-RTS. The results shows that 

the integrating load reduction in the energy market makes 

significant economic and technical benefits for the system. It has 

some drawbacks like mixed integer linear programming format   

method is very difficult and cost is high. 

Zhong Fan et al, (2012), work proposes a distributed 

framework for demand response and user adaptation in smart 

grid networks. In particular, the concept of congestion pricing in 

internet traffic control is used and this shows that pricing 

information is very useful to regulate user demand and hence 

balances network load. Both analysis and simulation results are 

presented to demonstrate the dynamics and convergence 

behavior of the algorithm. Based on this algorithm, then a novel 

charging method is proposed for Plug-in Hybrid Electric 

Vehicles (PHEVs) in a keen grid, where operators or PHEVs can 

adapt their charging rates according to their preferences. This 

paper is just a first stepping stone towards distributed demand 

response. Regarding the overall PHEV charging architecture, 

there could be a commercial entity called Energy Service 

Company (ESCo) that acts as an intermediary between a large 

number of PHEVs and the grid. The advantage of dynamics and 
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convergence behavior of the algorithm is adapted to the price 

signals to maximize their own benefits. The major disadvantage 

of this algorithm is that it is Unsecure. 

Fixed Price Method 

Cost estimation is an important parameter for strengthening 

enterprise cost management. The reasonableness and accuracy of 

estimation is the key in determining their profitability, 

attractiveness and maintainable development. The cost 

estimation and control in Chinese railway transportation 

equipment’s manufacturing industry can reduce the waste of 

resources in labor power, material and financial and enhance 

their skill level even the whole manufacturing. Although the 

level of cost control and management has been improving, it has 

not break down the dominating status of post-costing .This 

rough costing method not only reflect the real resources 

consumption during production, but also affects measurement 

and reports of other managing information, so it cannot meet the 

needs of cost management in manufacturing at this stage. In this 

work the method of the process cost estimation based on 

working procedure for conquering the shortcomings and 

limitations of cost accounting, Activity Based Costing (ABC) 

and Enterprise Resource Planning (ERP) cost checking, which is 

based on the cost checking of Chinese traditional railway 

transportation equipment’s manufacturing industry is proposed. 

Make the process of products as the basic cell in estimating costs 

which forms the model of process-based cost estimation more 

carefully and analyze the process cost of the transmission gear in 

a locomotive enterprise [1]. The relative theory and method has 

important reference to the cost calculation in the process of other 

products life cycle. 

Accounting Cost Estimation 

There are some methods of accounting cost estimation in 

common use. The high-low method of cost estimation is direct 

way to determine the variable cost and fixed cost. The main idea 

of high-low method of cost estimation is to confirm unit variable 

cost to the cost variance of the highest point and the lowest point 

cost of volume of business history in relevant range. And fixed 

cost can be got by subtracting variable cost from total cost. 

Scatter diagram is a useful means of cost estimation using 

graphic method. It is more efficient especially together with the 

use of other methods of cost estimation [2]. That method is to 

draw the historical cost data points on the coordinate diagram 

and to determine the cost pertinence. Least-squares regression 

analysis is to develop the observation data into a cost estimation 

formula using mathematical methods. Its idea is to minimize the 

sum of vertical variance between actual cost values and 

estimated values of each observation point .Accounting prior-

cost estimation is generally based on statistical result of 

historical cost data [2]. It considers only the factor of the volume 

of business generally, and lacks of affirmatory conditions. So the 

estimated result is imprecise.  

Accounting Costing 

Product costing makes product as the basic cell in 

calculating   the cost, such as particular product or batch of 

products, or a particular manufacturing process. The costing 

method is called manufacturing costing method within the range 

of manufacturing.  

Cost Structure 

The cost structure of manufacturing cost method includes 

direct materials direct labor and manufacturing overhead. Direct 

materials cost is the cost of main raw materials applied to a 

particular product. It depends on the consumption number of 

unit material. And it can be identified simply by multiplying the 

consumption number of raw materials and its unit cost. Direct 

labor cost is the cost of labor applied to a particular product. It 

can be obtained by multiplying the direct labor time and wage 

rate. Manufacturing overhead includes all manufacturing cost 

besides direct materials and direct labor. It is used directly for 

production, but it fails to be credited directly to a particular 

product cost. Most elements of manufacturing overhead do not 

have direct relationship to processing of the product. In actual 

production costing, if the workshop produces only a product, the 

manufacturing costs can be reckoned directly in production cost 

of the product, otherwise the manufacturing cost is reckoned in 

various products respectively ruled by reasonable allocation 

method [3].There are a lot of methods to assign the 

manufacturing cost. Some of them are commonly used, such as 

proportional distribution of the production hours, proportional 

distribution of worker’s wage, proportional distribution of 

machine hours and proportional distribution of annual planning.       

Costing Methods  

The manufacturing costing methods can be divided into   

costing method, job order costing method and process costing 

method. The category costing method is a calculating cost 

method which considers the assortment as cost objectives to 

collect and allocate production costs. The costs are distributed 

between finished product and goods in process. This method is 

suitable for volume-produce of one step production and 

multistep produce calculating costs according to production 

steps on management. The job order costing method is to collect 

production costs in accordance with the batch or order form and 

mainly used in single and small batch production. This method 

sees each product or each batch as the cost objective to calculate 

the costs. The calculating cycle of cost consistent with its life 

cycle and the production costs are collected in different batches 

[4]. The process costing method is to calculate product costs 

based on production steps and species of goods to collect and 

allocate production fees applying for continuous, large and 

multi-step producing industrial enterprises. In the light of 

different situation, it can be divided into similar steps, the 

proportion of law equivalent units, and gradually carried forward 

sub-step. 

Costing Process Flow 

Identify cost objectives and cost projects. For manufacturing, the 

cost objectives include product   category, product job order and 

product process.  

 Audit various expenditures and costs strictly. Determine the 

costs included in products.  

 Accumulate and allocate on productive expenses elements. 

Allocate on various costs according to projects among different 

products.  

 Accumulate and allocate auxiliary production costs.  

 Accumulate and allocate manufacturing overhead. For the 

allocation of manufacturing overhead, you should pay more 

attention on selecting the distributing standard.  

  Distinguish the costs between work-in-process and finished 

product.  

 Calculate the total cost and part cost of the finished goods 

  Accounting cost method is based on a total quantity and 

calculate unified distributing rates of manufacturing overhead to 

allocate the manufacturing overhead. The main purpose is to 

create cost-sharing on a unified basis. But with the increasing 

complexity of manufacturing costs, they cannot show the causal 

relationship between output and costs, objectively using every 

kind of distribution norms, which lead to results coarse 

relatively. 
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Fig 1. Block Diagram showing Product Cost Estimation 

In addition, this is post-costing method, which only tells you 

the costs occurring in each project, cost overruns or savings, and 

the reason is unclear, the responsibility is unknown. So it cannot 

control cost effectively [5]. 

Cost of Electricity Machine (Cd) 

The formula of calculating the technology and process cost 

of machine   electricity material is shown in equation (1) 

                                -------------(1) 

Where, Cd- the electricity cost of machine, yuan. 

T j- mobile hours of one-piece, min. 

PE- rated power of the electrical motor, kw 

i-the load coefficient of the electrical motor, 

It’s efficiency,  = 0.5 - 0.9 

SD - electricity price per hour, yuan/kw·h. 

Cost of Tools (Cda) 

The formula of calculating the technology and process cost 

of    tools is 

Cda == Sdap  Tj                                                     --------------(2) 

Where, Cda=the cost of tools, yuan.  

Sdap=is the average cost of using tools per minute while the 

Machine is working,  yuan/kwh. 

Home Energy Consumption-Simulation  

Heat Transfer In a Residential House 

In Modelling Energy Consumption of a Residential house, 

the amount of energy consumed by the Heating, Ventilation, and 

Air-Conditioning scheme (HVAC) is the most dominant part and 

is related to heat transfer. The heat load that a HVAC has is o 

mainly generated in three ways: conduction, convection, and 

radiation. For a residential house, conduction heat transfer 

results from internal and ambient temperature differences, such 

as the conduction through exterior walls and the roof. 

Convective heat transfer occurs as wind blows over exterior 

walls, windows, and the roof and also through velocity induced 

by temperature differences between surfaces and the fluid. Both 

convection forms are presented in regards to internal heat loads 

too. Heat radiation may include heat produced by internal loads, 

such as refrigeration, appliances, and people. Heat gain (and 

loss) also occurs through the introduction of outdoor air. Hence, 

for a practical house, computation of the heat loads in terms of 

the three heat transfer modes is very complicated. In addition, to 

accurately capture changes in temperature and solar loading 

throughout a day, calculations must be repeated hour by hour 

using practical weather and solar load data. In most conventional 

DR studies the heat loads of a residential house is primarily 

computed based on 1) approximate heat transfer equations, 2) an 

equivalent rectangle configuration for a residential house, and 3) 

a house model without detailed consideration of doors, windows, 

building materials and internal heat load shown in fig (2). 

 
Fig 2. HVAC heat load sources 

This work uses building simulation software eQUEST as a 

virtual test bed to determine home energy consumption. The 

software is x up-to-date, unbiased simulation tool that predicts 

hourly energy use of a house over one year given hourly weather 

information and a description of the house and its HVAC  

equipment . It can use real-life weather and solar data for a 

specific geographic by assuming that transition from one steady 

state to another can be achieved immediately. The roof is 

constructed by using standard built up roof construction. The 

roof is pitched at 25 and the attic has R-32 insulation. Doors 

location. Hence, one can estimate changes in the electrical load 

of a practical house throughout a year, certain days within the 

year, or certain time period of a day. The software is a steady-

state simulation program having a large simulation time step, 

such as minutes, and does not consider short-term transient and 

windows are added when appropriate [6]. A garage is created, 

but is no fair conditioned. Fig 2 shows the front view of the 

house. The location for the model is Springfield, IL, USA. 

Quick Energy Simulation Tool (EQUEST)  

The Quick Energy simulation tool, or eQUEST, allows 

users with partial simulation experience to develop 3D 

simulation models of a particular construction design. These 

replications incorporate construction site, alignment, wall/roof 

building, window belongings, as well as HVAC systems, day-

lighting and various control policies, along with the skill to 

evaluate design options for any single or combination of energy 

upkeep measure(s). eQUEST (Version 3.60) is a public domain 

tool developed by James Hirsch Associates for Southern 

California Edison (SCE 2007) and is based on the DOE-2.2, the 

latest versos of DOE-2 (GBS 2007a)[7]. The main differences 

between DOE-2.1E and 2.2are enhanced geometric 

representations (support of multifaceted convex polygons), a 

newly developed HVAC system concept, and additional HVAC 

components and features (SRG et al. 1998). This free energy 

simulation tool enables all functionalities of theDOE-2.2 

simulation engine and supports conformance analysis with Title 

24 California energy code (California Energy Commission 

2006).  

Demand Response and Dynamic Price 

Dynamic Electricity Price 

Electric utility companies typically use hourly Real-Time 

Price (RTP) or day-ahead price (DAP) structure in their dynamic 

pricing programs. In North America, Ameren Focused Energy, 

serving about 2.4 million electric customers in Illinois and 

Missouri, has very detailed RTP and DAP tariffs posted on their 

website since June 1, 2008 for both day-ahead and real-time 

markets. The day-ahead market produces financially binding 

schedules for the production and consumption of electricity one 

day before the functioning day. The real-time market resolves 

any differences between the amounts of energy scheduled day-

ahead and Real-Time Pricing (RTP). 
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Results On Dynamic Electricity Price 

The peak demand reductions observed for 80 such 

programs, grouped by the type of rate and the use of enabling 

technologies. In general, Critical Peak Pricing (CPP) and Peak 

Time Rebate (PTR) rates resulted in greater demand reductions 

than Time of Fuse (TOU) rates [8]. Enabling technologies 

generally increased the demand reductions. A 2011 paper on the 

subject of dynamic pricing showed that, of 109 pricing programs 

from 24 different utilities, the median peak demand reduction 

was 12%. For those programs that used enabling technologies, 

the median peak demand reduction was 23%. While most of 

these were pilot programs and used various implementation 

approaches (e.g., different experimental structures, Varying 

rates, on-/off- peak time periods, participant enrollment 

approaches, use of control groups, etc.), they generally shows 

similar price responsiveness from consumers shown in fig 3. 

 
Fig 3. Demand reductions during peak hours 

Real Time Pricing (RTP) 

Fig 1Tariffs based on Real-Time Pricing (RTP) do not 

charge preset components but apply different retail prices for 

different hours of the day and for the different days in order 

to be frequently aligned with wholesale prices. RTP 

programs have the advantages of increasing the demand 

responsiveness and of improving the market efficiency. 

Many experts, indeed, made clear declarations in favor of 

RTP. One of the supporters is Ray Gifford (chairman of the 

Colorado Public Utility Commission) who observed “if retail 

electricity prices reflected the cost of power, a demand-side 

reply would take the market back to evenness, diminishing 

both high prices and unpredictability” (see Fauquier and 

George 2002). Severin Bornstein (director of University of 

California Energy Institute) argued that “electricity markets 

will suffer from chronic difficulties until end-users become 

more active participants” (reported in Bushnell and Mansur 

2002). RTP has, indeed, many attractive features 

(Wolak2001, Bornstein and Holland 2003, Doucet and Kleit 

2003). For instance, RTP. Dynamic Electricity price method 

using in RTP days high price rate may occur at a moderate 

temperature day.  

Delay Ahead Pricing (DAP) 

Fig 1During 1998-2000, the California Power Exchange 

operated a day-ahead hour-by-hour auction market. This 

market ran each day to determine hourly wholesale 

electricity prices for the next day. By 7 a.m. each day, 

generators and retailers submit a separate schedule of price-

quantity pairs for each hour of the following day. The power 

exchange assembled these schedules into demand and supply 

curves and established the equilibrium point by the 

intersections of these curves. We focus on this (day-ahead) 

market since it contains the majority of trades. Hourly day-

ahead market data are available from the University of 

California Energy Institute Plots of prices and quantities. 

They exhibit annual, weekly, and daily seasonal components. 

The biggest volume of trades of each day is registered during 

the high-demand period from 9 a.m. to 5 p.m. Day-ahead 

price for the hottest, medium, and low temperature days and 

corresponding DAP during those day. 

Proposed Dynamic Price Method 

Fig 1The hardware design is integrated with a machine 

learning algorithm to achieve dynamic price response.  

Collectively considers both interests from the electricity 

supplier side and the customer side shown fig 4. The 

integrated computational experiment system consists of three 

parts: 1) home energy consumption simulation, 2) dynamic 

electricity price, and 3) demand response methods. The 

integrated system starts with a specification of home 

appliance usage strategy, which includes thermostat setting 

of HVAC units and when to use dishwasher, dryer, electric 

stove, etc. Then, energy consumption of a residential house 

is simulated for a practical weather pattern during a year or a 

day, including temperature, humidity, solar radiation, etc., at 

a location [9]. The results generated by the home energy 

simulator are loaded in to a MATLAB-based energy cost 

computation subsystem, based on which a new DR policy is 

generated. The updated DR policy is loaded into the home 

energy simulator and the process is repeated until an 

acceptable policy is reached. Fig 5 shows the flowchart of 

the computational experiment system.  

 
Fig 4. Block diagram for dynamic price method 

Particle Swarm Optimization Algorithm 

Particle Swarm Optimization (PSO) is an intelligence 

optimization theory was developed by Eberhart and Kennedy 

in 1995. The principle of this algorithm was inspired from 

the aging behavior of birds and fish schooling, and the two 

scholars were applied this phenomenon to overcome the 

problems associated with search and optimization. In this 

algorithm, several cooperative birds are used, and each bird, 

referred to as a particle, each particle hovering in the space 

has its own suitability value that mapped by an objective 

function and velocity movement. Each particle exchanges 

information obtained in its respective search process [10]. 

The typical process of optimization the particles are of a 

PSO particle. 

The movement of particles impact by two variables; the 

Pbest that used to store the best position of each particle as 

an individual best position, and the Gbest that found by 

comparing individual positions of the particle group and 

stock it as finest position of the swarm. 
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Fig 5. Flow chart of integrative computational 

experiment system 

The particle swarm uses this process to move towards the 

best position and continuously it revise its direction and velocity, 

by this way, each particle quickly converge to an optimal or 

close to a global optimum. 

  The standard PSO method can be defined by the following 

equations; 

vi (k+1)= w vi(k) + c1r1.(p best -xi(k)) + c2r2.( gbest-xi(k)……  (3) 

xi  (k+1) =xi(k)+ vi (k+1)          …… ... (4) 

i=1, 2…, N 

Where xi and vi are the velocity and position of particle i, ;k 

represents the iteration number; w is the inertia weight; r1, r2 are 

random variables and their values are uniformly distributed 

between [0,1]; c1, c2 represents the cognitive and social 

coefficient respectively. pbest, I is the individual best position of 

particle i, and gbest is the swarm best position of all the 

particles.  

pbesti= xi k 

f(xi k) > f (pbesti)     --------(5) 

Where, f represents the objective function that should be 

maximized. 

Basic Principle of PSO 

The basic functioning code of this method can be explained as 

follows;  

Step 1. (PSO Initialization): Particles are usually initialized 

randomly following a uniform distribution over the search space, 

are prepared on grid nodules that shelter the search space with 

equidistant points. Initial velocities are taken randomly.  

Step 2. (Fitness Evaluation): Evaluate the fitness value of each 

particle. Fitness evaluation is conducted by supplying the 

candidate solution to the objective function.  

Step 3.(Update Individual and Global Best Data):Individual and 

global best fitness values (pbest,i and gbest) and positions are 

updated by comparing the newly calculated fitness values 

against the previous ones, and replacing the pbest, i and gbest as 

well as their corresponding positions as  necessary.  

Step 4. (Update Velocity and Position of Each Particle): The 

velocity and position   of each particle in the swarm is updated.  

Step 5. (Convergence Determination): Check the convergence 

standard. If the   convergence standard is encountered, the 

process can be ended; else, the repetition number will increase 

by 1 and go to step 2. 

Topology Of PSO 

The inclusion of the local ring topology as part of a standard 

algorithm for particle swarm optimization comes with a warning, 

however. Given the sluggish junction of the best1 model, more 

function evaluations are required for the improved performance. 

This is especially important on unimodal utilities, where the fast 

junction of the gbest model combined with single minima in the 

feasible search space results in quicker performance than that of 

the l best swarm with its limited communication. 

PSO Algorithm 

1:  Initialize particle position: Tbuf(m) [t min,Tmax] 

2:  Initialize particle speed: T buf(m) [- ∆t, ∆T],m=1…,m 

3: {Calculate initial fitness values for rallparicles} fitness (m)=f 

(Tbuf(m),m=1….M 

4: T^G←T(k);if fitness(k)= max{fitness(m),m€ [1,M]}T^(m)← 

T(m); 

5: do 

6:{Update velocity for all particles}T(m)= Tuff(m)+c1.rand(0,1) 

[T(m)-buf(M)]+C2.RANDO(0,1)[TG-T    BUF(m)] 

7:  Update position for all particles} T(m)=Tbuf(m)+T(m) 

8: if T (m) out of boundary→ boundary handling T(m) 

 9: {Calculate fitness values for rallparicles} fitness (m)=f(T(m), 

m=1,…..M 

10:TG←T(k);iffitness(k)=max{fitness(m),m€[1,M]} 

T(m)←T(m);ifT(m)>Tbuf(m) 

 11: Tbuf(m)←T(m);Tbuf(m)←T(m) 

12: While maximum iteration or a stop is not reached 

13: Output global optimal solution T^G 

Results & Discussions 

Electric utility companies typically use hourly real-time 

price (RTP) or day-ahead price (DAP) structure in their 

dynamic pricing programs. In North America, Ameren 

Focused Energy, serving about 2.4 million electric customers 

in Illinois and Missouri, has very detailed RTP and DAP 

tariffs posted on their website since June 1, 2008 for both 

day-ahead and real-time markets. The day-ahead market 

produces financially binding schedules for the production 

and consumption of electricity one day before the working 

day. The real-time market resolves any alterations between 

the amounts of energy scheduled day-ahead and the real-time 

load, market member reoffers, hourly self-programs, self-

curtailments and any changes in general, real-time system 

conditions. Fig 6 demonstrates Ameren’s RTP and DAP in 

summer 2011 for its residential customers as well as 

temperature associated with those days that the RTP or DAP 

prices occurred. The figure shows that: 1) a high price rate 

may occur at a moderate temperature day [figs. 7 and 8], 2) 

the electricity price of an extremely hot day does not mean a 

high electricity price day [figs. 9 and 10], and 3) real-time 

price fluctuates more than the day-ahead price. 

 
Fig 6. Highest RTP Tariff in a summer day 
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Fig 7. High, Medium & Low RTP and their 

corresponding temperatures 

 
Fig 8. High, Medium, and Low temperature days and 

Corresponding RTP during those days 

 
Fig 9. Day-Ahead Price for High, Medium, and Low days 

and corresponding temperature 

 
Fig 10. Day-Ahead Price for High, Medium, and Low 

days and corresponding DAP during these days 

The Proposed Dynamic Electricity Price method is 

simulated by using MATLAB. In this method, end-use 

customer is exposed to time-varying (dynamic) rates and 

does not receive and explicit payment as compensation for 

curtailing loads. DR clearly reduces the energy consumption 

of the HVAC during peak hours using either RTP or DAP 

tariff structure. In terms of cost saving, DR is more effective 

for RTP binding loads than DAP binding loads. In terms of  

total cost, DAP is more economical but requires load binding 

one day before actual use of energy. Thus, a customer may 

need to take the risk of financial loss if the actual load level 

is lower or higher than the day-ahead binding load level fig 

11&12. 

 
Fig 11. Hourly and cost based output  for RTP 

 
Fig 12. Hourly and cost based output  for DAP 

For all the four algorithms, DR clearly reduces the 

energy consumption of the HVAC during peak hours using 

either RTP or DAP tariff structure. For DAP tariff struc ture, 

HVAC energy consumption could still be high during actual 

utility peak hours because DAP tariff may be inconsistent 

with the real-time load demand. For the heuristic algorithm, 

a “nine-point” thermostat setting at 71 , 72 , 73 , 74 , 75 , 76 

,77 , 78 , and 79 is used, in which 71 and 79 are the 

thermostat settings corresponds to PR 
min

 and PR 
max

 during a 

day respectively.  

Conclusion  

Fig 1 This work presents a computational experiment 

approach to develop and investigate demand response 

strategies for a typical residential house. In price-responsive 

DR, an end-use customer is exposed to time-varying 

dynamic) rates and does not receive an explicit payment as 

compensation for curtailing load. However, it is also found 

that the real-time market could be cheaper than the day-

ahead market for a number of days. For all the four DR 

algorithms, the demand response clearly reduces HVAC 

energy consumption during the peak hours using RTP or 

DAP tariff structure. In general, optimization-based DR 

algorithms are more efficient than the heuristic DR 

algorithm. However, demand response based on Model-OP, 

Reg-OP, and PSO-OP requires detailed price information of 

a day, which is usually not available for RTP tariff structure, 

giving the heuristic algorithm an advantage in this 

perspective. This method has an efficiency of 88%. 
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Residential demand forecast can thus be a future work scope 

required for demand response implementation.  
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