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Introduction 

A disease is infectious if the causative agents whether a virus, bacterium, protozoan or toxin can be passed from one person (host) 

to another through modes of transmission such as direct physical contacts, aerial droplets, water or food, disease vectors, mother to 

newborns and so on. Disease infection begins with the transmission of the pathogen from the host to another [7]. After the pathogens 

invade the host body, they need to be able to evade or overcome the host immune response and be able to multiply or replicate. When 

the pathogens accumulate sufficiently large numbers and when they have reached the targeted organs, they begin to cause sufficient 

damage to the host body so that the host becomes symptomatic and the host is capable to transmit the pathogens to other host 

members of the community. The period from time of infection to time of showing symptoms is called the incubation period. The 

period from time of infection to time of being infectious is called the latent period. During the latent period, a host may or may not 

show symptoms but the host is not capable of transmitting pathogens to other hosts. When an infected host recovers from an infection, 

it usually maintains certain degree of immunity against reinfection from the same stain of pathogens. Dan and Zhongyi (2011) 

established and analyzed a deterministic mathematical model in their paper [1]. However, the integration of the recovered infants to 

the population was not incorporated into the mathematical model they established. In this paper, it is intended that the recovered 

infants class is incorporated into the mathematical model and the expression for the basic reproductive number of the mathematical 

model is obtained using the next generation matrix method. A quantity of central importance in epidemiology is the basic 

reproduction number, traditionally denoted as R0 [3]. From time to time, people also call it the basic reproductive rate or ratio or the 

basic reproduction ration. For microparasitic infections, R0 is defined as the mean number of secondary infections produced when one 

infected individual is introduced into a host population where everyone is susceptible. For most epidemiological models, an infection 

invades a fully susceptible host population if R0 > 1 and dies out if R0 < 1. If R0 > 1 (R0 < 1), then on average, each infectious infant 

produces more (less) than one new infection. Thus, the basic reproduction number R0 is a threshold quantity that determines when an 

infection invades a host population and when it does not [8]. 

Model Description 

The SEIVR mathematical model is partitioned into compartments of susceptible infants class (S), the exposed infants class (E), 

the infected infants class (I), the vaccinated infant class (V) and the temporary recovered infants class (R). The immunized 

compartment changes due to the coming in of the immunized infants into the population where we assume that a proportion of Λ of 

the incoming infants are immunized against the infectious diseases. This compartment reduces due to the expiration of duration of 

vaccine efficacy at the rate ω and also by natural death at the rate of μ. The susceptible population increases due to the coming in of 

the infants from the immunized compartment as a result of the expiration of the duration of vaccine efficacy at the rate ω. The 

susceptible population also reduces due to the natural death rate μ and infection with contact rate of infection β. The population 

dynamics of the exposed infants class at the latent period grows with the incidence rate of βSI(1+αI). This class reduces by natural 

death rate μ and occasional breakdown of the exposed infants at the latent period into infectious class at the rate of σ. Also, the 

population dynamics of the infectious class grows with the past information of the infected given by α while this class reduces by the 

natural death rate μ and successful cure of the infectious diseases at the rate of τ by given the infected immunization.
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ABSTRACT 

In this article, we proposed an SEIVR mathematical model of the transmission 

dynamics of infectious diseases among infants taking into consideration passive 

immunization, treatment of the exposed infants at latent period and the infectious 

diseases treatment. The basic reproductive number of the mathematical model was 

obtained using the next generation matrix method. It is generally known that if the 

number is less than one, the infectious disease will die out with time and if it is greater 

than one, the disease will spread and become endemic in the community. The 

epidemiological interpretation of this threshold parameter (basic reproductive number) 

is connected to the local and global stability of a disease – free equilibrium. 
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The vaccinated class denoted by V but because the efficacy of the vaccine is not one hundred percent such that it can wane at the 

rate of ω but the temporary recovered class increases with temporary immunity at the rate of δ which are transferred back to the 

susceptible class and decreases by natural death rate μ [5]. The schematic description of the model is shown in the Fig. 1 below.    

 
Figure 1. Diagrammatic representation of an SEIVR mathematical model 

Mathematical Model 

Keeping in view of above description, our population dynamics susceptible – exposed infants at latent period – infected – 

vaccinated – recovered is governed by the following set of ordinary differential equations given below. The SEIVR model is 

expressed as the system of nonlinear initial value problem given in the form; 
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in which S = S(t), E = E(t), I = I(t), V = V(t) and R = R(t) represent the population of susceptible infant class, the exposed infant class 

but not yet infected, the infected infant class, the vaccinated infant class and the temporary immune recovered infant class respectively 

with time t. the parameters in the mathematical model are positive and the Table 1 below provides the definitions for the model 

parameters. The model assumes a varying population of N(t) so that N(t) = S(t) + E(t) + I(t) + V(t) + R(t) and it is given in the form 

N(t) = K + Ce
-μt

 for K = Λ + A/μ.  

Table 1. The interpretation of the parameters and variables used. 

Parameters Definitions 

Λ Birth rate of the infants into the susceptible class 

a Fraction of infants with the infectious diseases 

A Number of infants with the infectious diseases 

P Fraction of the recruited infants who are vaccinated 

μ Mortality rate of the infants  

τ Rate at which infected infants are treated with vaccines 

β Transmission coefficient 

ω Rate at which the vaccine wanes 

σ Rate at which the exposed infants become infectious 

α Past information about the fraction of infected infants 

δ Rate at which re-infection occurs among the infants 

η Rate at which the susceptible infants are exposed to the 

infectious diseases 

ρ Fraction of the parents for which their infants are susceptible 

S0 Number of the susceptible infant population at time t = 0 

E0 Number of the exposed infant population at time t = 0 

I0 Number of the infected infant population at time t = 0 

V0 Number of the vaccinated infant population at time t = 0 

R0 Number of the temporary recovered infant population at time t = 

0 
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The Next Generation Matrix 

In epidemiology, the next generation matrix is a method used to derive the basic reproductive number for a compartmental model 

of the spread of infectious diseases [6]. This method was derived by Diekmann et al (2000) and improved by Driessche and 

Watmough (2002) [3]. To calculate the basic reproductive number of a compartmental model by using the next generation matrix 

method, the whole population is divided into n compartments such that m x n infected compartments. Let X i (i = 1, 2, 3, - - -, m) be 

the numbers of infected infants in the ith infected compartment at time t [2]. Then the epidemic model is given in the form: 
   

  
                            6 

where Xi represents the vector disease states, J = Fi(X) – Vi(X) represents the Jacobian matrix and  

Vi(X) = Vi
-
(X) – Vi

+
(X). In equation 6, Fi(X) represents the rate of appearance of new infection in compartment i by all other means 

and Vi
-
(X) represents the rate of transfer of individuals out of the compartment i. Equation 6 can also be written in the form; 
   

  
 = F(X) – V(X)                      7 

where  ( )  (  ( )   ( )         ( ))
  and V(x) = (  ( )   ( )         ( ))

 . Let X0 be the disease free equilibrium 

point, the values of the Jacobian matrix F(X) and V(X) are given in the form F(X) = 
  (  )

   
 and  

V(X) = 
  (  )

   
  where F and V are m x m matrices with 1 ≤ j ≤ m and F and V are non – singular matrices. Following Diekmann et al 

[2], we call FV
-1

 the next generation matrix for the model usually written as R0 and it is equal to the spectral radius ρ (FV
-1

) in which 

the spectral radius command computes the maximum of the absolute values of the eigenvalues of the matrix [4] i.e. 

      (  
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The Basic Reproductive Number of the Mathematical Model 

Consider the system of equations 1 to 5. Let the vector disease states be represented by     (     )
  such that; 
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The Jacobian matrix for equations 9 to 11 is obtained as; 

   (

 (   )             
     (   )  

   (   )
)                               12 

At the disease free equilibrium point X0 = (1, 0, 0, 0, 0), the Jacobian matrix (12) is given as; 
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Hence, 

     (  
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With equation 18, the basic reproductive number of the mathematical model (1) to (5) is obtained. This means that an exposed infant 

that survives 
 

(   )
 becomes infectious and contacts β susceptible infants during the period of infectivity at 

 

(      )
 which results in a 

new exposure. If R0 > 1, an epidemic is prevented when R0 S(0) < 1 [4]. Thus if the initial susceptible fraction has been reduced to less 
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than 
 

  
 for example by vaccination or through immunization procedure, then an epidemic can be reduced or even eventually 

eradicated from the community. 

Conclusion 

Epidemiologically, the basic reproductive number of an infectious disease tells us how many secondary cases will one infected 

infant produce in an entirely susceptible population [3]. This means that if R0 < 1, then there exists only the disease free equilibrium. 

This is attractive so that every solution of the system of ordinary differential equation approaches this equilibrium and the disease 

disappears from the population with time. In addition, if the R0 > 1, then there are two equilibria i.e. the disease free equilibrium and 

the endemic equilibrium. The endemic equilibrium is attractive so that every solution of the system of ordinary differential equation 

approaches its solution as time goes to infinity. Thus, in this case the disease remains endemic in the population. 
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