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Introduction  

Depletion of forest resource by industrialization and rapid 

growth of population, particularly in the third world country is 

of grave concern. A typical example in this regard is the 

degradation of the forestry resources in the Doon Valley located 

in the foothills of Himalayas, Uttaranchal, India. Here the 

degradation of forest has been caused mainly by limestone 

quarries, paper, other wood-based industries and associated 

population growth [14]. [21] have proposed a Mathematical 

model for forest degradation caused by resource independent 

industrialization population by considering the spatial 

distribution of both the forest biomass as well as the density of 

industrialization by studying the behavior of uniform steady 

state solution. 

It may be pointed out here that in real ecological situations 

when forest is degraded by industrialization distributed spatially, 

patchiness is caused in the forest habitat. It is worth nothing that 

little efforts have been made to study such systems using 

mathematical models [6, 16, 21, and 23]. How ever in [21], has 

not considered the effect of patchiness caused by 

industrialization. Further [2-4,7] studied a single species 

diffusion model by assuming that the habitat consists of two 

adjoining patches and studied the behavior of steady state 

distribution and local asymptotically stable conditions. 

Biotic populations are usually distributed non-uniformly in 

their habitat, and the distribution is often patchy, due to 

patchiness of the habitat which arises from a variety of 

mechanisms and processes under various conditions including 

deforestation in the case of a forest habitat. It would, thus, seem 

natural to study the population dynamics of a single species by 

including diffusion effects, in a patchy habitat. Many 

investigators [1,5,6,8-13] have shown that in a homogeneous 

habitat, the diffusion , increases the stability of the system, but 

this may not always be true, if the habitat is patchy [7,15,17,18]. 

A model of a single species population living in two patch 

habitats with migration between them across a barrier was 

proposed by Freedman and Waltman [5]. The model was 

extended in [17,19] to include the case where animal species 

leaving one habitat does not necessarily reach the other habitat, 

the existence of a positive equilibrium as a function of barrier 

strengths was examined. Also Freedman [7] studied a single 

species diffusion model by assuming that the habitat consists of 

two patches and has shown that there exists a positive, 

monotonic, continuous non uniform steady state solution that is 

linearly asymptotically stable under both reservoir and no-flux 

boundary conditions.   

Mathematical Model 

We consider a forest habitat 20 Ls   linearly 

distributed, where forest resources are depleted by different 

levels of industrialization in the above adjoining regions 

10 Ls   and 
21 LsL   where 00 L  and 

1L  is the 

interface of two regions. Let ),( tsRi
and ),( tsIi

 , (i=1,2) be 

respectively the densities of resource biomass and 

industrialization (population) pressure at location s and time t in 

the above mentioned i
th

 regions [ see figure 1]. It is assumed that 

),( tsRi
 grows logistically in both the region with the same 

intrinsic growth rate and carrying capacity, i.e. in absence of 

industrialization leading to a uniform spatial distribution. Since 

the levels of industrialization are assumed to be different in 

these two regions, the growth rate i  and carrying capacity
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iM  of ),( tsIi
 for i 1, 2 will be different. Since the 

industrialization is partially dependent on resource biomass, it is 

assumed that the rate of depletion of biomass density is equal to 

biomass density is equal to 
iii IR  . The harvesting in resource 

biomass and its diffusion in both the patches is also considered 

here. 

 
          Keeping all these in view, our proposed mathematical 

model is given by the following system of partial differential 

equations: 
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Where  

r   Intrinsic growth rate of resource biomass in both regions  

c   Carrying capacity of resource biomass in both regions  

i  Depletion coefficient in the i
th

 region; i=1, 2  

id  Diffusion coefficient of ),( tsRi  in the i
th

 region; i=1, 2   

iD  Diffusion coefficient of ),( tsIi  in the i
th

 region; i=1, 2   

i Growth rate of ),( tsIi  in the i
th

 region; i=1, 2 

)),(( tsRP ii  Harvesting functional response function such that 

  00 iP , for 0iR  ;   0)(  ii RP  and when the habitat has 

carrying capacity C  in the i
th

  patch , then   ,0CPi i . 

Uniform steady states  

To analyse the model (1.1) and (1.2) , we have taken the 

harvesting function in the following form: 

   iiii RatsRP ,  

Using this value in (1.1), the positive uniform equilibrium point 

),( **

iii IRE  is given by following equations: 
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Where 00  ii a
C
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From equation (2.1) it is clear that  
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We also observe that in absence of industrialization 

( ..ei 0i  , i=1,2) 

iW

r
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2
*
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 (3.2) 

This shows that the biomass is uniformly distributed in 

entire habitat. 

The model (1.1) and (1.2) is studied by ass uming the 

following initial, boundary and flux-matching conditions. The 

model is completed by assuming some positive initial 

distribution for forest resource biomass and industrialization, 

that is, 

0)()0,(  ssR ii     ,
ii LsL 1

i 1,2     (4.1) 

0)()0,(  ssI ii
     ,

ii LsL 1
i 1,2      (4.2) 

If the region is closed then there is no diffusion of 

industrialization and resource biomass across the boundary, no-

flux boundary condition for forest resource biomass and 

industrialization are   
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(4.3)  

And finally considering the continuity and the flux-matching 

conditions at the interface 1Ls   for ),( tsRi
 and ),( tsIi
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Linear and Non-linear stability analysis  

Theorem-1 The steady state solution of the system (1.1) and 

(1.2) with conditions (4.1-4.5) is locally asymptotically stable if 

the following conditions holds  

(i)    iA 02
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Proof:     
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           ),(),(
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tsnItsI iii             (5.2) 

Where ),( tsmi and ),( tsni  are the small perturbations 

around equilibrium states .  

Using (5.1) and (5.2), the linearised system of differential 

equations for the equilibrium point iE  is given by (6.1) and 

(6.2) as follows: 
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Now consider the following Liapunov function 
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Its time derivative is given by 
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Now using (7.1) and (7.2) in (8.1) we get: 



Kunwer Singh Jatav and Poonam Sinha/ Elixir Appl. Math. 86 (2015) 35377-35382 
 

35379 

    






iL

iL iiiiiiiiiiiii
i

dsRnmInIRWrm
t

V

1

**

0

2**22

1

))((22

 










 







 iL

iL
i

i
iL

iL i
i

i
ii

i
ds

s

n
nDds

s

m
md

1 2

2

1

2

1
2

22

1   

                                                                         

(7.2)     

Using boundary and flux-matching conditions for forest 

resource and industrialization density (4.3)-(4.5), we get 
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Using Sylvester’s criteria for (8.2) and choosing 
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It is shown that 

t

V



  is negative definite and hence it is proved 

that 
iE  is locally asymptotically stable. 

Theorem-2 The steady state solution of the system (1.1) and 

(1.2) with conditions (4.1-4.5) is global asymptotically stable if 

the following condition iii W0
2 4     holds. 

 Proof: Using the same transformation as taken in (5.1) and 

(5.2), the nonlinearised system of differential equations for the 

equilibrium point iE  is given below by (9.1) and (9.2) 
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Now consider the following Liapunov function 
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 Its time derivative is given by 
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Now using (9.1) and (9.2) in (10) we get: 
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Using boundary and flux-matching conditions for forest 

resource and industrialization density (4.3)-(4.5), we get
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Using Sylvester’s criteria that 

t

V



  is negative definite provided 

that the following condition is satisfied, 

                                       
iii W0

2 4  

Hence iE  is globally asymptotically stable if  iii W0
2 4  . 

Table-1 
Parameters Patch-

1 

Figure  Patch-

2 

Figure  

 
0r  

 
0r  

 

Intrinsic growth rate 

of Resource biomass 
r  0.06 r  0.08 

Carrying capacity of 
Resource biomass 

C  
400 C  

800 

Depletion rate of 
forest resource 1  

0.00004 
2  

0.00002 

Growth rate of the 
resource 1a  

6 
2a  

7 

Growth rate of the 
Industrialization 1  

8.759 
2  

74.97 

 
10  

0.00003 
20  

0.00001 

Diffusion coefficient 
of Resource biomass 1d  

0.5 
2d  

0.6 

Diffusion coefficient 
of Industrialization 

1D  0.7 
2D  

0.8 

Table-2 
Parameters 

(Patch-1) 

Figure  Parameters 

(Patch-2) 
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0.967 

*

1I  
400 *

2I  
800 

MO DEL IN HO MO GENEO US HABITAT 

MO DEL WITHO UT DIFFUSIO N 

Here the forest resource biomass and industrialization 

(population) are uniformly distributed throughout the habitat 

( 20 Ls  ) with no diffusion. Let R and I denote the forest 

resource and Industrialization densities respectively at the 

location s and at any time t. Then our model takes the following 

form  

2
2

0 aRRI
c

Rr
rR

t

R







   

(12.1) 

2
0II

t

I
 





     

(12.2) 

Uniform equilibrium states 

The uniform positive equilibrium point ),( *** IRE  

becomes 

 
0

0

0* 





W

r
R     if

    
0r   (13.1) 

0
0

* 



I                                                  (13.2) 

Where a
c

r
W  0  
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Linear and Non-linear stability analysis  

Theorem 3 The steady state solution of the system (12.1) and 

(12.2) with conditions (14.1-14.3) is locally asymptotically 

stable if the following conditions holds 
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Theorm 4  

The steady state solution of the system (12.1) and (12.2) 
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Proof: Using the same transformation as taken in (15.1) and 

(15.2), the non linearised system of differential equations for the 

equilibrium point 
*E  is given below by (18.1) and (18.2) 

 nWmmR
t

m





)( *             (18.1) 

 nnI
t

n
0

* )( 

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Now consider the following Liapunov function 
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Its time derivative is given by 
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Now using (20.2) and (20.2) in (21) we get: 

  



2
0

2
0

2L
L dsnmnWm

t

V

 

 It is then found using Sylvester’s criteria that 

t

V



  is negative 

definite proving *E  is global asymptotically stable in the region 

( ),0 2L  provided 
iii W0

2 4  . 

Table 1 
Parameters Patch-1 Figure Patch-2 Figure 

 
0r  

 
0r  

 

Intrinsic growth 

rate of Resource 

biomass 

r  0.06 r  0.08 

Carrying 

capacity of 

Resource 

biomass 

C  400 C  800 

Depletion rate 

of forest 

resource 

1  
0.00004 

2  
0.00002 

Growth rate of 

the resource 1a  
6 

2a  
7 

Growth rate of 
the 

Industrialization 

1  
8.759 

2  
74.97 

 
10  

0.00003 
20  

0.00001 

Diffusion 

coefficient of 

Resource 

biomass 

1d  
0.5 

2d  
0.6 

Diffusion 

coefficient of 

Industrialization 

1D  0.7 
2D  

0.8 

Table-2 
Parameters 

(Patch-1) 

Figure Parameters 

(Patch-2) 

Figure 

*

1R  
0.94492378 *

2R  
0.967 

*

1I  
400 *

2I  
800 

Model with diffusion 

Now we study of the behavior of the uniform steady state 

solution of the model (1.1) and (1.2) with diffusion in a single 

homogeneous habitat. In this case we consider that both the 

Industrialization (population) and forest resource is not spatially 

uniformly distributed. Here 
iii dtsItsR ),,(),,(  , 

iD i,  becomes 

DdtsItsR ,),,(),,(  and   respectively ; ],0[ 2Ls  . Then 

the model in this case can be written as  

  
2

22
0 ,

s

R
dtsRRPRI

c

Rr
rR

t

R








  (19.1) 
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t
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
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

                            (19.2) 

Uniform equilibrium states 

To analysis the model (19.1) and (19.2), we have taken the 

harvesting function in the following form: 

Using this value in (19.1), we get positive equilibrium points  

 
0

0

0* 





W

r
R  0r                           (20.1) 
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0
0

* 



I                                                  (20.2) 

Where 00  a
C

r
W  

In this case the initial and boundary conditions of the forestry 

resource biomass and industrialization become                                                                     

0)()0,(  ssR        ,
20 LsL      (21.1)                            

0)()0,(  ssI         ,
20 LsL              (21.2) 
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
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

 ),(
0

),0( 2    

                   (21.3) 

Linear and Non-linear stability analysis  

Theorem 5 The steady state solution of the system (19.1) and 

(19.2) with conditions (21.1-21.3) is locally asymptotically 

stable if it satisfies the same conditions as in theorem-3 . 

Proof:  Using the same transformation as taken in (15.1) and 

(15.2), the linearised system of differential equations for the 

equilibrium point 
*E  is given below by (22.1) and (22.2) 
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Now consider the following Liapunov function 
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Its time derivative is given by 
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Now using (22.1) and (22.2)  in (23.1) we get : 
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              (23.2)  

Using boundary and flux-matching conditions for forest 

resource and industrialization density (21.1)-(21.3) , we get         
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Using Sylvester’s criteria for (23.2) and choosing 

(i)   A 02 **  IWRr  

(ii) B 02 *
0  I  

(iii) ABR 4
2*2   

It is shown that 

t

V



  is negative definite and hence it is proved 

that *E  is locally asymptotically stable. 

Theorm  6 The steady state solution of the system (12.1) and 

(12.2) with conditions (14.1-14.3) is global asymptotically 

stable if it satisfies the same condition an in theorem-4. 

Proof: Using the same transformation as taken in (15.1) and 

(15.2), the nonlinearised system of differential equations for the 

equilibrium point 
*E  is given below by  
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Now consider the following Liapunov function 
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Its time derivative is given by 
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Now using (25.1) and (25.2) in (26) we get: 
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It is then found using Sylvester’s criteria that 

t

V



  is negative 

definite proving 
*E  is global asymptotically stable in the 

region ( ),0 2L  provided W0
2 4  . 

Table-1 
Parameters Patch-1 Figure  Patch-2 Figure  

 
0r  

 
0r  

 

Intrinsic growth 

rate of Resource 
biomass 

r  0.06 r  0.08 

Carrying capacity 
of Resource 
biomass 

C  
400 C  

800 

Depletion rate of 

forest resource 1  
0.00004 

2  
0.00002 

Growth rate of the 

resource 1a  
6 

2a  
7 

Growth rate of the 
Industrialization 1  

8.759 
2  

74.97 

 
10  

0.00003 
20  

0.00001 

Diffusion 
coefficient of 
Resource biomass 

1d  
0.5 

2d  
0.6 

Diffusion 

coefficient of 
Industrialization 

1D  0.7 
2D  

0.8 

 

Table-2 
Parameters 
(Patch-1) 

Figure  Parameters 
(Patch-2) 

Figure 

*

1R  
0.94492378 *

2R  
0.967 

*

1I  
400 *

2I  
800 

Conclusion 

In the present model, we have assumed that the density of 

resource biomass is governed by the logistic function with the 

same intrinsic growth rate and carrying capacity in the entire 

habitat. Further the harvesting in resource biomass and 

distribution of resource biomass in the patchy habitat are 
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assumed. The rate of depletion of forest resource biomass 

density due to industrialization, harvesting function and 

diffusion coefficients are considered to be different in each 

patch. It is further assumed that the density of industrialization is 

also governed by general logistic function in both the regions 

but with different growth rates and diffusion coefficients.  

The linear and non linear stability analysis is carried out for the 

positive uniform equilibrium state in homogeneous as well as 

patchy habitat by using Liapunov direct method. It is found that 

the positive uniform equilibrium state is both linear (local) and 

non linear (global) asymptotically stable under some conditions 

involving parameters in each case. It is shown that the 

equilibrium level of the resource biomass in two patches 

decreases as the density of industrialization or the rate of 

depletion due to industrialization increases. 
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