Shyam Sundar Agrawal et al./ Elixir Appl. Math. 86 (2015) 35278-35280

Available online at www.elixirpublishers.com (Elixir International Journal)

# **Applied Mathematics**



Elixir Appl. Math. 86 (2015) 35278-35280

# Formula for Counting Similar Rectangles

Shyam Sundar Agrawal<sup>1</sup> and Chandrashekhar Mehsram<sup>2</sup>

<sup>1</sup>Department of Applied Mathematics, Disha Institute of Management and Technology, Raipur (C.G.), India. <sup>2</sup>Shri Shankaracharya Engineering College, Junwani, Bhilai (C.G.), India.

### ARTICLE INFO

Article history: Received: 20 June 2012; Received in revised form: 18 September 2015; Accepted: 21 September 2015;

## ABSTRACT

The present paper is an attempt to illustrate the direct formula for calculating total number of similar rectangles present, when any rectangle is sub divided into  $n \times n$  congruent rectangles. Subdivision of any rectangle into  $n \times n$  congruent rectangles means sides of the rectangle divided into n equal parts and points are joined in a sense that it forms  $n \times n = n^2$  number of congruent rectangles.

© 2015 Elixir All rights reserved.

# Keywor ds

Rectangle, Congruent Rectangles, Similar Rectangles, Euclid Geometry.

#### Introduction

In this paper we consider a rectangle ABCD with length x and breadth y. Divide each side into n equal parts with lengths x/n, y/n. Rectangles with length x/n and breadth y/n are congruent to each other. There are  $n \times n = n^2$  number of congruent rectangles. By the side ratio theorem rectangles with sides of length & breadth (x/n, y/n), (2x/n, 2y/n) (3x/n, 3y/n), .........., ((n-1)x/n, (n-1)y/n), (x, y) are similar to each other. In the following investigation, we determine the number of similar rectangles when an arbitrary rectangle is subdivided



In Fig – 1 we have consider rectangle ABCD with AB = CD = x, BC = AD = y. Let us subdivide it into  $2 \times 2 = 4$  congruent rectangles. Let E, F, H, I be mid points of AB, AD, BC, CD such

that AE = BE = CI = DI =  $\frac{x}{2}$ ,

$$BH = HC = AF = DF = \frac{y}{2}.$$

Points are joined in a sense that it forms  $2 \times 2 = 4$  congruent rectangles.

Then AE||FG||DI, EB||GH|||IC, AF||EG||BH, FD||GI|||HC So,

Tele:

 $FG = GH = \frac{x}{2}$ ,  $EG = GI = \frac{y}{2}$ .

Now rectangles AEGF, EBHG, GHCI, and FGID are congruent to each other with length x/2 and breadth y/2. So, by side ratio theorem rectangle AEGF, EBHG, GHCI, FGID, ABCD are similar to each other.

Case 2 (  $3 \times 3$  subdivisions)



In Fig - 2 we have consider rectangle ABCD with AB = CD = x, BC = AD = y. Let us subdivide it into  $3 \times 3 = 9$  congruent rectangle. Trisect segments AB, BC, CD, AD so that

AE = EF = FB = DO = OP = PC = 
$$\frac{x}{2}$$
,  
AG = GK = KD = BJ = JN = NC =  $\frac{y}{2}$ .

Points are joined in a sense that it forms  $3 \times 3 = 9$  congruent rectangles.

Then AE||GH||KL||DO, EF||HI||LM||OP, FB||J||MN||PC, AG||EH||FI||BJ, GK||HL||IM||JN, KD||LO||MP||NC. So,

AE = EF = FB = GH = HI = IJ = KL = LM = MN = DO = OP = PC = x/3,

AG = GK = KD = EH == HL = LO = FI = IM = MP = BJ = JN= NC = y/3.

Now, rectangles AEHG, EFIH, FBJI, GHIK, HIML, IJNM, KLOD, LMPO, and MNCP are congruent to each other with length x/3 and breadth y/3.

E-mail addresses: cs\_meshram@rediffmail.com © 2015 Elixir All rights reserved

Again rectangles AFMK, EBNL, GIPD, and HJCO are congruent to each other with length 2x/3 and breadth 2y/3. So, by side ratio theorem rectangle AEHG, EFIH, FBJI, GHIK, HIML, IJNM, KLOD, LMPO, MNCP, AFMK, EBNL, GIPD, HJCO, ABCD are similar to each other.

Case-3 Generalization ( $n \times n = n^2$  Subdivisions)

Similarly, we can investigate for  $n \times n = n^2$  subdivisions. To keep track of similar rectangles, it is helpful to represent rectangles of various dimensions graphically as suggested in Fig - 3 to Fig - 7

Rectangles of length x/n and breadth y/n represented by



Fig 3. Rectangles of length 2x/n and breadth 2y/n represented by



Fig 4. Rectangles of length 3x/n and breadth 3y/n represented by





Fig 6. Rectangles of length 5x/n and breadth 5y/n represented by

| Fig 7 |  |  |  |  |  |  |  |  |
|-------|--|--|--|--|--|--|--|--|
|       |  |  |  |  |  |  |  |  |
|       |  |  |  |  |  |  |  |  |
|       |  |  |  |  |  |  |  |  |

We use above representations (Fig – 3 to Fig – 7) to count number of similar rectangles with  $n \times n = n^2$  subdivisions for  $1 \le n \le 5$ , then look for pattern in our collected data in an effort to generalize our findings.

### **Description of Counting of Similar Rectangles**

Now, we describe how to count similar rectangles when any

rectangle is subdivided into  $n \times n = n^2$  subdivisions for  $1 \le n \le 5$  as follows:

### (I) For (1 X 1) Rectangle



Fig 8. No. of Rectangle =  $1=1^2$ 

(2) For (2X 2) Rectangle



Fig 9. No. of Rectangles =  $1+4 = 1^2+2^2$ (3) For (3 X 3) Rectangle



Fig 10. No. of Rectangles =  $1+4+9 = 1^2+2^2+3^2$ (4) For (4 X 4) Rectangle











(6) For  $n \times n = n^2$  Rectangles

By analyzing all the five cases we can write a possible expression for  $n \times n = n^2$ 

Total Number of Similar Rectangles  $1^2 + 2^2 + 3^2 + \dots + n^2 = n(n+1)(2n+1)/6$ 

Verification of general formula

Table – 1 contains the no. of similar rectangles present when any rectangle is subdivided into  $n \times n = n^2$  congruent rectangles both by using general counting and the given formula.

| <u>n×n</u>     | General Counting | By Formula | <u>n×n</u>     | General Counting | By Formula |
|----------------|------------------|------------|----------------|------------------|------------|
| $1 \times 1$   | 1                | 1          | 2×2            | 5                | 5          |
| 3×3            | 14               | 14         | $4 \times 4$   | 30               | 30         |
| 5×5            | 55               | 55         | б×б            | 91               | 91         |
| 7×7            | 140              | 140        | 8×8            | 204              | 204        |
| 9×9            | 285              | 285        | 10×10          | 385              | 385        |
| $11 \times 11$ | 506              | 506        | 12×12          | 650              | 650        |
| 13×13          | 819              | 819        | $14 \times 14$ | 1015             | 1015       |
| 15×15          | 1240             | 1240       | 16×16          | 1496             | 1496       |
| 17×17          | 1785             | 1785       | 18×18          | 2109             | 2109       |
| 19×19          | 2470             | 2470       | $20 \times 20$ | 2870             | 2870       |
| $21 \times 21$ | 3311             | 3311       | $22 \times 22$ | 3795             | 3795       |
| 23×23          | 4324             | 4324       | $24 \times 24$ | 4900             | 4900       |
| 25×25          | 5525             | 5525       | 26×26          | 6201             | 6201       |
| $27 \times 27$ | 6930             | 6930       | $28 \times 28$ | 7714             | 7714       |
| 29×29          | 8555             | 8555       | 30×30          | 9455             | 9455       |
| 31×31          | 10416            | 10416      | 32×32          | 11440            | 11440      |
| 33×33          | 12529            | 12529      | 34×34          | 13685            | 13685      |
| 35×35          | 14910            | 14910      | 36×36          | 16206            | 16206      |
| 37×37          | 17575            | 17575      | 38×38          | 19019            | 19019      |
| 39×39          | 20540            | 20540      | 40×40          | 22140            | 22140      |
| 41×41          | 23821            | 23821      | 42×42          | 25585            | 25585      |
| 43×43          | 27434            | 27434      | $44 \times 44$ | 29370            | 29370      |
| 45×45          | 31395            | 31395      | 46×46          | 33511            | 33511      |
| 47×47          | 35720            | 35720      | 48×48          | 38024            | 38024      |
| 49×49          | 40425            | 40425      | 50×50          | 42925            | 42925      |

#### Conclusion

In this paper we give a direct formula to find the total number of similar rectangles present when any rectangle is subdivided into  $n \times n = n^2$  congruent rectangles. By this formula easily one can find the result without general counting. **References** 

1. Posamentier, A. (2002). "Advanced Euclidean Geometry", Emeryville, CA: Key College Press.

2. Abbott, P. (1948). "Teach Yourself Geometry", The English University Press, London.

3. Hilbert, D. (1971). "Foundations of Geometry", Open Court. Chicago.