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Introduction  

Alzheimer’s disease is a brain disorder named for German 

physician Alois Alzheimer, who first described it in 1906.  It is a 

progressive and fatal brain disease, which destroys brain cells, 

causing memory loss and problems with thinking and behavior 

severe enough to affect work, lifelong hobbies or social life. 

Alzheimer’s gets worse over time, and it is fatal.  Like the rest of 

our Body organs, our brains change with age. The symptoms 

are, slowed thinking and occasional problems with remembering 

certain things. 

However, serious memory loss, confusion and other major 

changes in the way our minds work are not a normal part of 

aging. They may be a sign that brain cells are failing. The brain 

has 100 billion nerve cells (neurons). These cells are involved in 

thinking, learning and remembering. Others help us see, hear 

and smell. 

In Alzheimer’s disease, increasing numbers of brain cells 

deteriorate and die. Two abnormal structures called plaques and 

tangles are prime suspects in damaging and killing nerve cells. 

The proper investigation of the affected area can help in its 

treatment. Thus MR brain volume calculation of the affected 

area becomes vital. First processing of MR Brain images is 

through VBM. Voxel-based morphometry (VBM), compare 

different brains on a voxel-by-voxel basis after the deformation 

fields have been used to spatially normalize the images. In this 

the entire brain, is examined rather than a particular structure. 

This approach therefore depends on the types of structural 

difference that are expected among the images. 

A VBM-fuzzy approach as a combination of VBM and 

fuzzy logic is introduced to find the different intensity of 

affected area in an image.  This paper implements the VBM-

fuzzy approach to extract the MR brain image features voxel by 

voxel and classify them into various sets of classes for proper 

intensity identification of Alzheimer’s. GUI is used to select the 

specific output. 

Diagnosis of Alzhiemer’s Disease 

Earlier, several methods are used to diagnose the 

Alzheimer’s disease. 

Multiple Active Contour Models and Fuzzy Clustering 

Automatic segmentation was combining fuzzy clustering 

and multipleactive contour models. An automatic initialization 

Algorithm based on fuzzy clustering is used to robustly identify 

and classify all possible seed regions in the image. These seeds 

are propagated outward simultaneously to localize the final 

contours of all objects. 

In this, the level set approach is used in various imaging 

domains. The approach is based on the theory of curve 

evolution, geometric flows and their implementation using the 

level set based numerical algorithms proposed by other and 

sethian. 

This can be used only in microscopy images. 
Dynamically Dysfunctional Protein Interactions 

This is based on the network-based method, reveal that the 

active pathways Tend to be more complicated during the 

development of disease. Also find that the disease proteins 

performing important functions are always located in the 

cooperation of the identified pathways. These results also  

demonstrate that the network-based analysis can provide 

knowledge and evidences on the dynamics and pathological 

pathways of the complex Alzheimer’s disease 

It can be only used for protein interactions not genotype 

mechanisms. 

Stacked Generalization For Early Diagnosis OfAlzheimer’s 

Disease 

This is based on, multi resolution wavelet analysis is 

performed on event related potentials of the EEGs of a relatively 

larger cohort of 44 patients. Particular emphasis was on 
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ABS TRACT 

The volume calculation of MR Image segmented and estimate the affected intensity of 

Alzheimer’s disease is dealt with this paper. It is concerned with Voxel Based Morphometry 

to render the first part segmentation. The result gives an active region which further needs an 

estimation to justify the diagnosis. As in this case the image is in form of voxels. When 

properly processed, classified images can represent foundations for diagnostic purposes. A 

VBM - fuzzy approach was used to take advantage of Voxel Based Morphometry’s ability to 

fine segmentation based on voxel comparisons of GM, WM & CSF and membership d egrees 

andfunctions of fuzzy logic, respectively. The method of VBM is done with SPM. The 

method is based on the spatial properties of the MR Brain image features and makes use of 

SPM multi-scaled representations of the image. A fuzzy classifier is created  on basis of the 

previous segmented data. The method showed high quality classification for images of 

complex components in determining the intensity of Alzheimer’s and GUI is used as front 

end for the user comfort.   
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diagnosis at the earliest stage and feasibility of implementation 

in a community health clinic setting. Extracted features were 

then used to train an ensemble of classifiers based stacked 

generalization approach. 

It uses electrodes, which cause discomfort to patient. This is 

preliminary test, not accurate. 
MR Image Texture Analysis 

 This takes, the value of magnetic resonance (MR) image 

texture in Alzheimer’s disease (AD) both as a diagnostic marker 

and as a measure of progression. T1-weighted MR scans.  

Stepwise discriminate analysis was applied to the training set, to 

obtain a linear discriminate function. 

This can be only used to track the Alzheimer disease. 

Proposed System 

The VBM -fuzzy system, with software programs the SPM5 

& Mat lab toolboxes. The patient data is collected for 

processing. The toolbox of VBM is a collection of extensions to 

the segmentation algorithm of SPM5. The aim of VBM is to 

identify differences in the local composition of brain tissue, 

rather than large scale differences. This is achieved by spatially 

normalizing all the structural images to the same stereotactic 

space, segmenting the normalized images into gray and white 

matter, smoothing the gray and white matter images and finally 

performing a statistical analysis to localize significant 

differences between two or more experimental groups. The 

output is a statistical parametric map (SPM) showing regions 

where gray or white matter differs significantly among the 

groups. The VBM localizes the areas  

of brain affected by Alzheimer’s. GUI is used as front end, 

which allows user to select the particular output. 

 
Figure 1. Flow Diagram 

Spatial Normalization 

Spatial normalization involves registering the individual 

MRI images to the same template image. A template consists of 

the average of a large number of MR images that have been 

registered in the same stereotactic space. In the SPM2 software, 

spatial normalization is achieved in two steps.  

The first step involves estimating the optimum 12- 

parameter affine transformation that maps the individual MRI 

images to the template. Here, a Bayesian framework is used to 

compute the maximum a posteriori estimate of the spatial 

transformation based on the a priori knowledge of the normal 

brain size variability. 

The second step accounts for global nonlinear shape 

differences, which are modeled by a linear combination of 

smooth spatial basis functions. This step involves estimating the 

coefficients of the basic functions that minimize the residual 

squared difference between the image and the template, while 

simultaneously maximizing the smoothness of the deformations. 

The ensuing spatially-normalized images should have a 

relatively high-resolution (1mm or 1.5mm isotropic voxels), so 

that the segmentation of gray and white matter (described in the 

next section) is not excessively confounded by partial volume 

effects, that arise when voxels contain a mixture of different 

tissue types. 

 

 
Figure 2. VBM flow diagram 

Segmentation 

The spatially normalized images are then segmented into 

gray matter, white matter, cerebrospinal fluid and three nonbrain 

partitions. This is generally achieved by combining a priori 

probability maps or “Bayesian priors”, which encode the 

knowledge of the spatial distribution of different tissues in 

normal subjects, with a mixture model cluster analysis which 

identifies voxel intensity distributions of particular tissue types. 

The segmentation step also incorporates an image intensity non-

uniformity correction to account for smooth intensity variations 

caused by different positions of cranial structures within the 

MRI coil.Here the spatial normalization of the control as well as 

the patient is carried out.  

At first estimation of data is done, where raw data gets 

selected with controls. Then estimation options are carried out. It 

includes Tissue probability maps, Gaussians per class, affine 

regularization, warping regularization, warp frequency cutoff, 

bias regularization with very light regularization, bias FWHM 

with 70mm cutoff, sampling distance, setting the origin. Further 

writing options include GM,WM,CSF& Bias correction with 

native space, unmodulated normalized area, modulated 

normalized area. 

Smoothing 

The segmented gray and white matter images are now 

smoothed by convolving with an isotropic Gaussian kernel. The 

size of the smoothing kernel should be comparable to the size of 

the expected regional differences between the groups of brains, 

but most studies have employed a 12-mm FWHM kernel. The 

motivation for smoothing the images before the statistical 

analysis is three-fold. First, smoothing ensures that each voxel in 

the images contains the average amount of gray or white matter 

from around the voxel (where the region around the voxel is 

defined by the smoothing kernel). Second, the smoothing step 

has the effect of rendering the data more normally distributed by 

the central limit theorem, thus increasing the validity of 

parametric statistical tests. Third, smoothing helps compensate 

for the inexact nature of the spatial normalization. Smoothing 

also has the effect of reducing the effective number of statistical 

comparisons, thus making the correction for multiple 

comparisons less severe. 
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 Statistical Analysis 

Following the pre-processing, the final step of a VBM 

analysis involves a voxel-wise statistical analysis. This employs 

the general linear model (GLM), a flexible framework that 

allows a variety of different statistical tests such as group 

comparisons and correlations with covariates of interest. The 

standard parametric procedures (t tests and F tests) used are 

valid providing that the residuals, after fitting the model, are 

normally distributed. If the statistical model is appropriate, the 

residuals are most likely to be normally distributed once the 

segmented images have been smoothed.  

The results of these standard parametric procedures are 

statistical parametric maps. Since a statistical parametric map 

comprises the results of many voxel-wise statistical tests, it is 

necessary to correct for multiple comparisons when assessing 

the significance of an effect in any given voxel. 

Fuzzy color classification is a supervised learning method 

for segmentation of color images. This method assigns a color 

class to each pixel of an input image by applying a set of fuzzy 

rules on it. A set of training image pixels, for which the colors 

are known, are used to train the fuzzy system. 

 
Figure 3. Statistical Analysis  

Fuzzy Color Classification 

Different color spaces like HSL, RGB, YIQ, etc. have been 

suggested in image processing, each suitable for different 

domains. HSL color space is used because a color in this space 

is represented in three dimensions: one which codes the color 

itself (H) and another two which explain details of the color, 

saturation (S) and lightness (L).  Instead of assigning a specific 

hue value to each color around this circle, a fuzzy membership 

function can code for a color by giving it a range of hues each 

with different membership value.  Thus, to model the fact that 

the distribution of colors is not uniform on circle of hues, Truck 

in , propose to represent them with trapezoidal or triangular 

Fuzzy Subsets. Several other works have been done in the field 

of none  uniformly distributed scales: for example, Herrera and 

Martinez use Fuzzy Linguistic Hierarchies with more or less 

labels, depending on the desired granularity . 

 
Figure 4. Trapezoidal membership function 

Similarly, associated colors with fuzzy sets. Indeed, for 

each color, they built a Membership Function varying from 0 to 

1. If this function is equal to 1, the corresponding color is a "true 

color". 

Experimental Result 

In this session proposed method results are shown.  

We used MATLAB and fuzzy classifier to simulate the result.  

 
Figure 5. Simulated Output 

Conclusion 

The technology used here is mainly to extend a helping 

hand to medical community. In this paper a study on VBM with 

controls and patients were done. Existing methods limited the 

scope of diagnosis of Alzheimer’s only with thedoctor’s 

expertise. VBM method laid a path for finding the loss in GM. 

This encourages us to subject it to future improvement and 

enhancement that will enrich its contribution. 
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