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Introduction 

The remarkable progress in the field of fluid dynamics of inviscid and viscous fluids will be found in the informative books of 

Lamb [1], Milne-Thomson [2], Batchelor [3], Landau and Lifshitz [4]. Various hydrodynamic problems and the corresponding 

development of the theories will be found in the monographs of Cowling [5], Ferraro-Plumpton [6], Cabannes [7] and Jeffrey [8]. In the 

area of non -Newtonian fluids the works of Bhatnagar [10] and the work of Joseph [11] are very worthy to mention. A survey 

monograph of non-Newtonian fluid flows of Kapur, Bhatt and Sacheti [9] may also be referred. The flow of visco-elastic fluid between 

two parallel plates under uniform, exponential and periodic pressure gradients has been investigated by Das [12] and Pal and Sengupta 

[13]. Roy, Sen and Lahiri [14] studied the problem of unsteady flow of Rivlin-Ericksen fluid through a rectangular duct under impulsive 

pressure gradient. Bagchi [15] has considered a similar problem through rectangular channel and through two parallel plates with 

transient pressure gradient. Basak and Sengupta [16] studied the unsteady flow of visco-elastic Maxwell fluid through a straight tube 

under uniform magnetic field. Das and Sengupta [17] studied the unsteady flow of conducting viscous fluid through a straight 

rectangular tube. Sengupta and Kundu [18] considered the hydromagnetic unsteady flow of generalised visco-elastic liquid through 

porous media. In this paper the authors have studied the hydromagnetic unsteady flow of visco-elastic Rivlin-Ericksen and Walters fluid 

through a porous media. 

Basic theory and equation of motion 

A conducting viscous incompressible fluid moving in a magnetic field is governed by the following set of equations: 

1. Firstly, we consider Maxwell’s electromagnetic equations which are 
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Where  is the excess electric charge density   and 
e

 are respectively electrical permitivity and magnetic permeability of the 

medium, J


 is the current density, 





 and are electric and magnetic field intensity vectors respectively. When the frequency of the 

applied field is considered low, displacement current is neglected and since no charge separation takes place, 
e

 is also taken zero. So 

we can write 0.  J


. 

2. Secondly, we consider the mechanical equations embodying the effect of the electromagnetic forces as well as other body forces. In 

view of this the Navier-Stokes equation is   
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Where q


 is the velocity of the fluid,   is density, p is pressure, F


 is the body force vector (such as gravity force). 

3. Thirdly, we consider the equation of continuity in cases of uniform field density, in the following form : 

0.  q


 

Again a fluid moving with velocity q


 is subject to a total electric field )( 
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q , thus if  

 be the electrical conductivity, Ohm’s law assumes the form: 
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The mechanical force of electromagnetic origin is perpendicular to the magnetic field, it has no direct influence on the motion 

parallel to the field. When the motion is perpendicular to the field, we can write,  
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In view of this the Navier-Stokes equation becomes: 
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Rivlin-Ericksen Fluid 

Mathematical Formulation 

The visco-elastic fluid of Rivlin-Ericksen type is constituted by the rheological equations,  

 

 

 

 

 

 

Where  ij is the stress tensor, ij is the deviatoric stress tensor, eiij is the rate of strain tensor, 1 is the kinematical co-efficient of visco-

elasticity,  is the co-efficient of viscosity, p represents the hydrodynamic pressure, u1 are the velocity components of the fluid and ij is 

the kronecker delta. From above : 
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Fundamental Navier-Stokes equation of motion is : 

Fq
t

p
dt

dq

Fqp
dt

dq











 

2

1

2

)1( 
1

 i.e.

1







 

Where  is the density, q


is the velocity and F


is the body force of the fluid and 



 
 is the kinematic co-efficient of viscosity. 

Here we study the unsteady flow of visco-elastic fluid of Rivlin-Ericksen type through a porous medium bounded by a rectilinear 

tube under the action of transverse magnetic field B0. We consider the z-axis parallel to the length of the tube whose boundary is given 

by ., byax  The fluid is initially at rest and the effect due to perturbation of the flow and due to induced magnetic field have 

been neglected. 

The Navier-Stokes equation of motion of visco-elastic Rivlin-Ericksen fluid in view of the above assumptions becomes,  

..(1)                                             )())(1(
1

2

0

2

2

2

2

1 W
ky

W

x

W

tz

p

t

W 


































 

Where W(x,y,t)  is the velocity of the fluid  in z-direction, B0(=eH0) is the constant magnetic field perpendicular to the direction of 

the flow,  is the electrical conductivity, e is the magnetic permeability, H0 is the intensity of the transverse magnetic field, k is the 

permeability of the porous media.   

We now introduce the following non-dimensional quantities: 
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Then dropping the primes equation (1) takes the form : 
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where 
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 22

0 aB
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 is the Hartmann number. Due to symmetric condition, the flow is considered in the region x0, y0, with no 

slip boundary condition. The fluid is at rest initially and the flow takes place under the action of time varying pressure gradient. The 

initial and boundary conditions  are : 
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Solution of the problem 

Flow of the fluid under the action of periodic pressure gradient  

We consider the pressure gradient and the local velocity are periodic in time. So we assume: 
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Where P0 is real but W1 is complex. Using (6) from (2) we have: 
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Now, the following finite Fourier cosine transforms are used to find out the solution: 
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Multiplying equation (7) by cos(pmx)cos(pny) and integrating twice w.r.t  x and y in the limit x=0 to x=1 and y=0 to ly  and by 

the boundary conditions (4) and (5) we get : 
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Now, we apply the following inversion formula for finite cosine transform as: 
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Flow of the fluid under the action of transient pressure gradient 

Here we consider the pressure gradient and the local velocity both are transient in time and we assume : 
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Walters Fluid 

Mathematical Formulation 

We are now discussing the unsteady flow of visco-elastic Walters fluid, through a porous media bounded by a rectilinear tube. The 

Navier-Stokes equation of motion of visco-elastic Walters fluid in view of the above assumption becomes: 
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Where W(x,y,t) is the velocity of the fluid in the z-direction. 

Now introducing the non-dimensional quantities and dropping the primes as they were in the Rivlin-Ericksen fluid we get from 

(17),  
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Solution of the problem 

Flow of the fluid under the action of periodic pressure gradient 

We consider the pressure gradient and the local velocity are periodic in time. 

So we assume, 
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Now from equation (18) we have, 
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Thus proceeding similar to Rivlin-Ericksen fluid we get,  
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Flow of the fluid under the action of transient pressure gradient 

Here we assume,  
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Various Cases 

Rivlin-Ericksen Fluid 

Pressure gradient is periodic 

(і) When k is very small, i.e. the medium is highly porous then, velocity is given by,  
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(ііі) In case of steady flow i.e.  0 and for very small k we get, 
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(iv) When  x=0, y=0 and k is very small, 
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Pressure gradient is transient 

(i) When k is very small, i.e. the medium is highly porous then, velocity is given by,  
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 (іі) When k→  i.e. no porosity is offered by the medium then velocity will be, 
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(ііі) In case of steady flow i.e. N=0 and for very small k we get, 
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For k→  we have: 
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(iv) When x=0, y=0 and k is very small, 
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Walters Fluid 

Pressure gradient is periodic 

(і) When k is very small, i.e. the medium is highly porous then, velocity is given by,  
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(іі) When k→ i.e. no porosity is offered by the medium then velocity will be, 
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(iii) In case of steady flow and when k→0 and k→  the velocities will be same as equation (24.1) and (24.2) respectively.  

 

(iv) When  x=0, y=0 and k is very small, 
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Pressure gradient is transient 

(i) When the medium is highly porous then the velocity will be same as equation (26). 

(ii) When k→  i.e. when no porosity is offered by the medium then velocity becomes, 
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(iii) In case of steady flow and when k→0 and k→  the velocities will be same as equation (28.1) and (28.2) respectively.  

(iv) When x=0, y=0 and k is very small, velocity will be same as equation (29). 
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