
Abdul Kareem A. Najem AL-ALoosy/ Elixir Inform. Tech. 87 (2015) 35852-35854 35852

Introduction

Random number generation algorithms are very important

in many practical applications of the cryptographic. Although,

all of these algorithms are deterministic and produce sequences

of numbers that are not statistically random, but the algorithm

produces sequences pass many reasonable tests of randomness,

such numbers are referred to as pseudorandom numbers [1].

One of the most important applications used the PRN is the

stream cipher, in which ciphertext output is produced bit-by-bit

or byte-by-byte from a stream of plaintext input, where the

PRNG used instead of True Random Number Generator

(TRNG) because: i) The sender need only to deliver the key (or

the seed), which is typically 54 or 128 bit, to receiver in the

secure fashion. ii) It able to generate much faster than the true

random number generator.

The necessarily compatible requirements for a sequence of

random number [1] and [2]

1. Next random bit must be forward and backward

unpredictable, where in both cases we cannot determine the next

or previous bits from knowledge for any generated values.

2. Random bit stream appear random even though it is

deterministic and must pass the statistical tests of randomness

(e.g. NIST 800-22 test suite [3])

3. The same random bit stream must not be able to be

reproduced

Chaotic systems can provide those requirements, where the main

characteristics of chaotic systems are [4] and [5]:

 Dynamical systems that highly sensitive to initial condition,

i.e. a small differences in initial conditions cause unpredicted

output.

 Noise-like behaviour, a small differences in initial conditions

cause unpredicted output

 Unstable periodic orbits with long periods

Due to these features, chaotic systems are extensively

incorporated into encryption systems as a random generator [2]

and [6-9], or block cipher application [10].

On the other hand, Artificial Neural Network (ANN)

represents highly nonlinear systems able to handle noisy data

and fault tolerance and difficult decrypting by brute-force attack

[11], make it more suitable choice in cryptosystem. So we can

find several application of neural network in cryptosystem like

PRNG [12], Image and data encryption [13], Public key

generation [14], Block cipher [15], and many other applications

can be reviewed in [16] and [17].

The goal of this work is to implement the proposed PRNG

based Chaotic Neural Network using Matlab and test the

performance of the proposed generator using NIST 800-22 test

suite. The rest of the paper is organized as follows: related

works in section 2, PRNG structure using chaotic neural

network given in section 3, at last the system implementation

and conclusions given in sections 4 and 5 respectively. Just a

mouse-click at one of the menu options will give you the style

that you want.

Related Work

The major weakness of the most present random number

generators is linearity. In other words, if we obtained portion of

a random sequence, the successive numbers may be calculated

using the associated linear function [17]. We can find different

applications of the neural network in cryptography in [18]; this

review gives some examples of highly nonlinear PRNGs and

some applications of different neural networks architecture in

cryptography.

Singla et al. [5] merged the features and strengths of chaos

and neural network are combined to design a pseudo-random

binary sequence generator. The statistical performance was

examined against the NIST SP800-22 randomness tests. The

results of investigations are promising and depict its relevance

for cryptographic applications.

The structure of artificial neural network was used as a key

as a solution of synchronization in cryptography [11]. The

proposed method was employed for text, audio and image data.

The results were compared with k nearest neighbor and wavelet

transforms and showed that his algorithm faster than the others

with 100% decryption accuracy.

Yayik and Kutlu [12], proposed a neural network-based

pseudo-random numbers. The performance of this generator was

tested for randomness using National Institute of Standard

Technology (NIST) randomness tests. After they built two

identical ANNs, one for non-linear encryption was modeled

using relation building functionality. The encrypted data was

Tele:

E-mail addresses: ali.m.sagheer@gmail.com

 © 2015 Elixir All rights reserved

ABSTRACT

In this work, a neural network with chaos activation function has been applied as a pseudo-

random number generator (PRNG). Chaotic neural network (CNN) is used because of its

noise like behaviour which is important for cryptanalyst to know about the hidden

information as it is hard to predict. A suitable adaptive architecture was adopted to generate

a binary number and the result was tested for randomness using National Institute of

Standard Technology (NIST) randomness tests.Although the applications of CNN in

cryptography have less effective than traditional implementations, this is because these

systems need large numbers of digital logic or even a computer system. This work will focus

on applications that can use the proposed system in an efficient way that minimize the

system complexity.

 © 2015 Elixir All rights reserved.

Elixir Inform. Tech. 87 (2015) 35852-35854

Information Technology

Available online at www.elixirpublishers.com (Elixir International Journal)

PRNG Implementation Based on Chaotic Neural Network (CNN)
Abdul Kareem A. Najem AL-ALoosy

Information Systems Department, College of Computer Science and Information Technology, Anbar University, Ramadi, Anbar, Iraq.

ARTICLE INFO

Article history:

Received: 10 September 2015;

Received in revised form:

15 October 2015;

Accepted: 21 October 2015;

Keywords

Chaotic Neural Network,

Pseudo-Random Number Generator

(PRNG),

Neural Network.

Abdul Kareem A. Najem AL-ALoosy/ Elixir Inform. Tech. 87 (2015) 35852-35854 35853

decrypted with the second neural network using decision-

making functionality.

A recurrent neural network was used to design a symmetric

cipher able to resisting different attacks [18]. The weight

distribution of the hidden layers was totally depends on the

original key. The proposed system supports variable key and

block length.

In this work a PRNG using the CNN, as described in [5],

was implemented using Matlab, at same time several programs

was built to test the generator performance based on the NIST

SP800-22 [3].

PRNG Based on CNN

In this section the proposed PRNG architecture will discuss.

Figure 1 shows the general structure of the proposed system.

The network consists of 4 layers: input layer, the first hidden

layer, the second hidden layer and the output layer. The function

of each layer (or so called forward computation) given by:

Figure 1. Proposed PRNG architecture

Input Layer

The input for this network is 64 bits represent the seed (P =

64 bit) of the PRNG, and the output of this layer given by:

 (1)

 (2)

 (3)

Hidden Layer 1

 (4)

 (5)

 (6)

Hidden Layer 2

 (7)
 (8)

 (9)

Output Layer

 (10)
 (11)

 (12)

Normalize the output

(13)

Where W0(8×8), W1(4×8), W2(2×4), W3(1×2) are weight

matrices < 1; B0(8×1), B1(4×1), B2(2×1), B3(1×1) are Bias

vectors < 1; Q0(8×1), Q1(4×1), Q2(2×1), Q3(1×1) are Control

parameters 0.4 < q < 0.6; and 0 < n0, n1, n2, n3 <=10 number

of iteration 1 <= n <= 10.

All these values are initialized using 64 bit key as describe in the

next section

Key Generator and Initial Values

A 64 bit key with a 1-D chaotic cubic map used to generate

the initial values of the CNN. As described in the following

algorithm:
1) K = K1 K2 K3 K4

Where Ki is a 16- bit component of the key K (64 bit)
2) Calculate the initial condition:

3) (14)

4) Calculate the state of the cubic map:

 (15)

Where is control parameter (= 2.59) and x(k)is the

state (0 <= x(k) <=1).

Backward Adaptation

The only adapted values are the control parameter matrices

Qi by [5]:

Proposed Algorithm Implementation

The proposed generator was implemented and evaluated

using Matlab programming, where the general steps given by:
1. Input K and calculate x form (eqs 14 and
15):

Where:

2. Initialize matrices based on value of x
Weight matrices:

W0(8*8),W1(4*8),W2(2*4),W3(1*2)

Bias vectors:

B0(8*1),B1(4*1),B2(2*1),B3(1*1)

Control parameters:

Q0(8*1),Q1(4*1),Q2(2*1),Q3(1*1)

Layer iteration:

n0, n1, n2, n3

Where Wi > 0; Bi and Qi<1; 1≤ni≤10

3. Input Seed (P = 64 bit)
4. Operate the neural network to calculate
the Op (Forward Computation)

5. Update the values of (Q0, Q1, Q3, and Q4)
6. Repeat steps 4, 5 and 6 to obtain the PRN
sequence of desired length.

Performance Evaluation

In this section, the performance of the system was measured

which include: the 0/1 balance test and the NIST Randomness

tests.

5.1 0/1 Balance Test

The function named (BalanceTest.m) based on Matlab used to

count number of ones and compute the average as shown in

table 1. The equality distribution measures are found close to

50% shown in that the proposed generator satisfy the equality

distribution property.

Table 1. Equality distribution of the PRNG

Sequence Length Count of 1s %age

1000 510 51

10000 5175 51.75

20000 10226 51.13

50000 25420 50.84

100000 50525 50.52

200000 101153 50.58

500000 252176 50.44

 (25)

Abdul Kareem A. Najem AL-ALoosy/ Elixir Inform. Tech. 87 (2015) 35852-35854 35854

NIST Randomness Test

Many of the statistical test suite proposed by NIST [18]

implemented using Matlab programming language

(NISTtest.m). The randomness results of the proposed generator

for first 1000 and 10000 bits are listed in table 2. According to

Singla et. al. [5], this generator passes all the NIST tests for

100,000 samples. But for my simulation results the sequence of

generated bits didn’t pass all these tests for 1000 and even 10000

bits, it failed in at least one p-value. But most of my tests output

the p-values obtained were greater than 0.01, which ensures the

high randomness of the generated sequence.

Conclusions

After implementation of the PRNG base on CNN using

Matlab and perform several statistical tests on the generated

binary sequence, I can summarize the main pros of this

algorithm into:

1. This generator uses the high sensitivity and randomness

property of chaotic functions (Piece-wise linear chaotic map).

2. The four-layer Neural Network increase the nonlinear

complexity of the generator.

3. The key space proposed in this simulator is (128 bit) where:

the 64 bit Key used to initialize the network components. And

the 64 bit Seed used as an input to the network.

4. According to Singla et. al. [18] and my implementation of

some of the NIST randomness tests, this generator passes most

of the NIST tests.

5. The generated sequence pass equality distribution (equal

numbers of 0’s and 1’s) i.e. Uniform distributed.

6. It satisfy the two necessary compatible requirements for a

sequence of random number (Randomness and unpredictability)

While the main cons of the proposed generator in my point of

view:

1. This scheme is not efficient because of the relatively large

number of iteration steps involved in its implementation.

2. Difficult hardware implementation.

3. The learning rate, which has critical effect of the neural

network performance, didn’t adopt in this architecture. This

makes the weight adaptation relatively unstable or oscillated.

4. It’s difficult to estimate the period of the sequence, because

the number of iterations in each layer depends on the initial

conditions, which is generated by the key. In other words, the

key and seed values effect on the performance of the generator.

References

[1] W. Stallings, Cryptography and Network Security: Principles

and Practice, 5th Edition, Pearson Education Inc., 2011.

[2] Ü. Güler and S. Ergün, “A high speed, fully digital IC

random number generator,” International Symposium on

Circuits and Systems (ISCAS 2010), Paris, France. May 30-June

2, 2010.

[3] A. Rukhin, et al. "A Statistical Test Suite for Random and

Pseudo-random Number Generators for Cryptographic

Applications”, NIST Special Publication 800-22, 2001.

[4] S. Chatzidakis, P. Forsberg, and L. H. Tsoukalas, “Chaotic

neural networks for intelligent signal encryption,” IEEE 5th

International Conference on Information, Intelligence, Systems

and Applications, IISA 2014.

[5] P. Singla, P. Sachdeva, and M. Ahmad, “A chaotic neural

network based Cryptographic pseudo-random sequence design,”

4th International Conference on Advanced Computing &

Communication Technologies, ACCT '14, 2014.

[6] F. Hsiao, Y. Tsai, K. Hsieh and Z. Lin, “Fuzzy Control for

Exponential H∞ Synchronization of Chaotic Cryptosystems

Using an Improved Genetic Algorithm,” 11th IEEE International

Conference on Control & Automation (ICCA), Taichung,

Taiwan. June 18-20, 2014.

[7] S. Behnia, A. Akhavan, A. Akhshani, and A. Samsudin ,“ A

novel dynamic model of pseudo random number generator,”

Journal of Computational and Applied Mathematics 235 (2011)

3455–3463.

[8] A. Akhshani, A. Akhavan, A. Mobaraki, S.-C. Lim, and Z.

Hassan, “Pseudo random number generator based on quantum

chaotic map,” Commun Nonlinear Sci Numer Simulat 19 (2014)

101–111.

[9] A. S. Mansingka, A. G. Radwan, and K. N. Salama, “ Fully

digital 1-D, 2-D and 3-D multiscroll chaos as hardware pseudo

random number generators,” 55th IEEE International Midwest

Symposium on Circuits and Systems (MWSCAS) Circuits and

Systems (MWSCAS), pp 1180-1183. August 2012.

[10] Shiguo Lian, “A block cipher based on chaotic neural

networks,” Neurocomputing 72, pp. 1296–1301, 2009.

[11] Ö. F. Ertuğrul, “A Novel Approach to Synchronization

Problem of Artificial Neural Network in Cryptography,”

American Association for Science and Technology, AASCIT

Communications, Volume 1, Issue 2, pp. 27-32, July 2014.

[12] A. Yay and Y. Kutlu, “Neural network based

cryptography,” Neural Network World 24 (2), 177-192, 2014.

[13] S. D. Joshi, V. R. Udupi, and D. R. Joshi, “A novel neural

network approach for digital image data encryption/decryption,”

IEEE International Conference on Power, Signals, Controls and

Computation (EPSCICON), June 2012.

[14] S. Jhajharia, S. Mishra, and S. Bali, “Public key

cryptography using neural networks and genetic algorithms,”

IEEE 6th International Conference on Contemporary Computing

(IC3), pp. 137-142. Aug. 2013.

[15] P. Kotlarz and Z. Kotulski, “Neural network as a

programmable block cipher,” Advances in Information

Processing and Protection, pp 241-250, 2007.

[16] A. A. El-Zoghabi, A. H. Yassin, and H. H. Hussien,

“Survey report on cryptography based on neural network,”

International Journal of Emerging Technology and Advanced

Engineering, vol. 3, Issue 12, Dec 2013.

[17] A. G. Bafghi, R. Safabakhsh, and B. Sadeghiyan, “Finding

the differential characteristics of block ciphers with neural

networks,” Information Sciences 178, pp. 3118–3132, 2008.

[18]M. Arvandi, S. Wu and A. Sadeghian, “On the use of

recurrent neural networks to design symmetric ciphers,” IEEE

Computational Intelligence Magazine, vol. 3, no. 2, pp. 42-53,

May 2008.

Table 2. Some of NIST Randomness Tests

Randomness Test p-values(1000) p-values(10000)

Frequency Test 0.5271 0.2327

Block Frequency Test 0.3857 0.6882

Run Test 0.4786 0.2135

Longest Run of Ones in a Block 0.7532 0.0210

Discrete Fourier Transform 0.5617 0.1989

http://link.springer.com/search?facet-author=%22Piotr+Kotlarz%22
http://link.springer.com/search?facet-author=%22Zbigniew+Kotulski%22

