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1.Introduction  
Malghan [2] introduced the concept of generalized closed maps in topological spaces. Devi [1] introduced and studied sg-closed 

maps and gs-closed maps. Recently, Sheik John [6] defined  -closed maps and studied some of their properties. In this paper, we 

introduce (1,2)*-fg-closed maps, (1,2)*-fg-open maps, (1,2)*-fg*-closed maps and (1,2)*-fg*-open maps in fuzzy bitopological spaces 

and obtain certain characterizations of these classes of maps. In last section, we introduce (1,2)*-fg*-homeomorphisms and prove that 

the set of all (1,2)*-fg*-homeomorphisms forms a group under the operation composition of functions.  

1.2.Preliminaries 

Definition 1.2.1 

A map f : (X, 1, 2)  (Y, 1, 2) is called 

(i)  (1,2)*-g-closed [5] if f(V) is (1,2)*-g-closed in Y, for every 1,2-closed set V of X. 

(ii)  (1,2)*-sg-closed [4] if f(V) is (1,2)*-sg-closed in Y, for every 1,2-closed set V of X. 

(iii)  (1,2)*-gs-closed [4] if f(V) is (1,2)*-gs-closed in Y, for every 1,2-closed set V of X. 

(iv)  (1,2)*- -closed [3] if f(V) is (1,2)*- -closed in Y, for every 1,2-closed set V of X. 

We introduce the following definitions 

Definition 1.2.2 

A map f : (X, 1, 2)  (Y, 1, 2) is called 

(i)  (1,2)*-fsg-closed if f(V) is (1,2)*-fsg-closed in Y, for every 1,2-closed set V of X. 

(ii)  (1,2)*-fgs-closed  if f(V) is (1,2)*-fgs-closed in Y, for every 1,2-closed set V of X. 

(iii)  (1,2)*-f -closed  if f(V) is (1,2)*-f -closed in Y, for every 1,2-closed set V of X. 

1.3. (1,2)*-fg-CLOSED MAPS 

Definition 1.3.1 

A map f : (X, 1, 2)  (Y, 1, 2) is said to be (1,2)*-fg-closed if the image of every 1,2-closed set in X is  (1,2)*-fg-closed in Y. 

Proposition 1.3.2 

For any A ≤ X, 

(i)   (1,2)*-g-cl(A) is the smallest (1,2)*-fg-closed set containing A. 

(ii) A is (1,2)*-fg-closed if and only if (1,2)*-g-cl(A) = A. 

Proposition 1.3.3 

For any two subsets A and B of X, 

(i)  If A ≤ B, then (1,2)*-g-cl(A) ≤ (1,2)*-g-cl(B). 

(ii)  (1,2)*-g-cl(A  B)  ≤ (1,2)*-g-cl(A)  (1,2)*-g-cl(B). 

Proposition 1.3.4 

A map f : (X, 1, 2)  (Y, 1, 2) is (1,2)*-fg-closed if and only if  (1,2)*-g-cl(f(A)) ≤  f(1,2-cl(A)) for every subset A of  X. 

Proof  

Suppose that f is (1,2)*-fg-closed and A ≤  X. Then 1,2-cl(A) is 1,2-closed in X and so f(1,2-cl(A)) is (1,2)*-fg-closed in Y. We 

have f(A) ≤ f(1,2-cl(A)) and by Propositions 1.3.2 and 1.3.3, (1,2)*-g-cl(f(A)) ≤ (1,2)*-g-cl(f(1,2-cl(A))) = f(1,2-cl(A)).Conversely, let 
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A be any 1,2-closed set in X. Then A = 1,2-cl(A) and so f(A) = f(1,2-cl(A)) ≥ (1,2)*-g-cl(f(A)), by hypothesis. We have f(A) ≤ 

(1,2)*-g-cl(f(A)). Therefore f(A) = (1,2)*-g-cl(f(A)). That is f(A) is (1,2)*-fg-closed by Proposition 1.3.2  and hence f is (1,2)*-g-

closed. 

Proposition 1.3.5 

Let  f : (X, 1, 2)  (Y, 1, 2) be a map such that (1,2)*-g-cl(f(A)) ≤  f(1,2-cl(A)) for every subset A  ≤ X. Then the image f(A) 

of a 1,2-closed set A in X is (1,2)*-fg-closed in Y. 

Proof 

Let A be a 1,2-closed set in X. Then by hypothesis (1,2)*-g-cl(f(A)) ≤  f(1,2-cl(A)) = f(A) and so (1,2)*-g-cl(f(A)) = f(A).  

Therefore f(A) is (1,2)*-fg-closed  in Y. 

Theorem 1.3.6 

A map f : (X, 1, 2)  (Y, 1, 2) is  (1,2)*-fg-closed if and only if for each subset S of Y and each 1,2-open set U containing f
-

1
(S) there is an (1,2)*-fg-open set V of Y such that S ≤ V and f

-1
(V) ≤ U. 

Proof 

Suppose f is (1,2)*-fg-closed. Let S ≤ Y and U be an 1,2-open set of X such that f
-1

(S) ≤ U. Then V = (f(U
c
))

c
  is an (1,2)*-fg-

open set containing S such that  f
-1

(V) ≤  U. 

For the converse, let F be a 1,2-closed set of X. Then f
-1

((f(F))
c
) ≤ F

c 
and  F

c 
 is 1,2-open. By assumption, there exists an (1,2)*-fg-

open set V in Y such that   (f(F))
c
 ≤ V and f

-1
(V) ≤ F

c
 and so F ≤ (f

-1
(V))

c
. Hence V

c
 ≤ f(F) ≤  f((f

-1
(V))

c
) ≤ V

c
 which implies f(F) = V

c
. 

Since V
c
 is (1,2)*-fg-closed, f(F) is (1,2)*-fg-closed and therefore  f is (1,2)*-fg-closed.  

Proposition 1.3.7 

If f : (X, 1, 2)  (Y, 1, 2)   is (1,2)*-fsg-irresolute   (1,2)*-fg-closed and A is an (1,2)*-fg-closed subset of X, then f(A) is 

(1,2)*-fg-closed in Y. 

Proof 

Let U be an (1,2)*-fsg-open set in Y such that f(A) ≤ U. Since f is (1,2)*-fsg-irresolute, f
-1

(U) is an (1,2)*-fsg-open set containing 

A. Hence 1,2-cl(A) ≤  f
-1

(U) as A is (1,2)*-fg-closed in X. Since f is (1,2)*-fg-closed, f(1,2-cl(A)) is an (1,2)*-fg-closed set contained 

in the (1,2)*-fsg-open set U, which implies that 1,2-cl(f(1,2-cl(A))) ≤ U and hence 1,2-cl(f(A)) ≤ U. Therefore, f(A) is an (1,2)*-fg-

closed set in Y. 

The following example shows that the composition of two (1,2  )*-fg-closed maps need not be a (1,2)*-fg-closed. 

Example 1.3.8 

Let  21,, X  be a fuzzy bitopological space where X = {a, b, c}. 

cbacba

101
,

001
,1,01  

  and 2 = {0,1}.  

12 -closed are

cbacba

010
',

110
',1,0  

 . Then (1,2)*-fg closed are 

cbacbacba

321,
010

',
110

',1,0


 
where 0,1,,0 2321   . 

Let  21,, Y  be a fuzzy bitopological space where Y = {a, b, c}. 

cba

001
,1,01  

  and 2 = {1,0}.  

12 -closed are
,

110
',1,0

cba


 .Then (1,2)*-fg closed are  

 

cbacba

321,,
110

',1,0


 
 where  1,,0 321   . 

 Let f : (X, 1, 2)  (Y, 1, 2) be the identity map. Then f is an (1,2)*-fg-closed map. 

 Let  21,, Z  be a fuzzy bitopological space where Z = {a, b, c}. 

cba

05.01
,1,01  

  and 2 = {1, 0}.  

12 -closed are
,

15.00
',1,0

cba


 .Then (1,2)*-fg closed are  

 

cbacba

321,
15.00

',1,0


 
where 0,1,,0 3321   . 
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.Let  21,,: Yg  21,. Z be the identity map.  Then both f and g are (1,2)*-fg-closed maps but their composition g  f 

: (X, 1, 2)  (Z, 1, 2) is not an (1,2)*-fg-closed map, since for the 
12  closed set  

cba

010


in X, (g  f) (

cba

010


) = 

cba

010


 which is not and (1,2)*-fg-closed set in Z. 

Corollary 1.3.9 

Let f : (X, 1, 2)  (Y, 1, 2) be (1,2)*-fg-closed and g : (Y, 1, 2)     (Z, 1, 2) be (1,2)*-fg-closed and (1,2)*-fsg-

irresolute, then their composition g  f : (X, 1, 2)  (Z, 1, 2) is (1,2)*-fg-closed. 

Proof  

Let A be a 1,2-closed set of X. Then by hypothesis f(A) is an (1,2)*-fg-closed set in Y. Since  g is both (1,2)*-fg-closed and 

(1,2)*-fsg-irresolute by Proposition 1.3.5, g(f(A)) = (g  f) (A) is (1,2)*-fg-closed in Z and therefore g  f is (1,2)*-fg-closed. 

Proposition 1.3.10 

Let f : (X, 1, 2)  (Y, 1, 2) and g : (Y, 1, 2)  (Z, 1, 2) be (1,2)*-fg-closed maps where Y is a T (1,2)*-g-space. Then their 

composition g  f : (X, 1, 2)  (Y, 1, 2)  is  (1,2)*-fg-closed. 

Proof 

Let A be a 1,2-closed set of X. Then by assumption f(A) is (1,2)*-fg-closed in Y. Since Y is a T (1,2)*-g-space, f(A) is 1,2-closed in 

Y and again by assumption g(f(A)) is  (1,2)*-fg-closed in Z. That is (g  f) (A) is (1,2)*-fg-closed in Z and so  g  f is  (1,2)*-fg-

closed.  

Proposition 1.3.11 

If f : (X, 1, 2)  (Y, 1, 2)  is (1,2)*-fg-closed,  g : (Y, 1, 2)   (Z, 1, 2) is (1,2)*-fg-closed (resp. (1,2)*-fg-closed, (1,2)*-

f -closed, (1,2)*-fsg-closed and (1,2)*-fgs-closed) and Y is a T (1,2)*-g-space, then their composition g  f : (X, 1, 2)  (Z, 1, 2) is 

(1,2)*-fg-closed (resp. (1,2)*-fg-closed, (1,2)*-f -closed, (1,2)*-fsg-closed and (1,2)*-fgs-closed). 

Proof 

Similar to Proposition 1.3.10. 

Proposition 1.3.12 

Let f : (X, 1, 2)  (Y, 1, 2) be a  (1,2)*-fuzzy closed map and  g : (Y, 1, 2)   (Z, 1, 2)  be an (1,2)*-fg-closed map, then 

their composition g  f : (X, 1, 2)   (Z, 1, 2)  is (1,2)*-fg-closed. 

Proof 

Similar to Proposition 1.3.10. 

Remark 1.3.13 

If f : (X, 1, 2)  (Y, 1, 2) is an (1,2)*-fg-closed  and  g : (Y, 1, 2)    (Z, 1, 2) is (1,2)*-fuzzy closed, then their 

composition need not be an (1,2)*-fg-closed map as seen from the following example. 

Example  1.3.14 

 Let  21,, X  be a fuzzy bitopological space where X = {a, b, c}. 

cbacba

100
,

001
,1,01  

  and 2 = {0,1}.  

12 -closed are

cbacba

010
',

110
',1,0  

 .Then (1,2)*-fg closed are  

 

cbacbacba

321,
010

',
110

',1,0


 
where 0,1,,0 2321   . 

Let  21,, Y  be a fuzzy bitopological space where Y = {a, b, c}. 

cba

001
,1,01  

  and 2 = {0,1}.  

12 -closed are
,

110
',1,0

cba


 .Then (1,2)*-fg closed are  

 

cbacba

321,,
110

',1,0


 
where 1,,0 321   . 

  Let f : (X, 1, 2)  (Y, 1, 2) be the identity map. Then f is an (1,2)*-fg-closed map. 

 Let  21,, Z  be a fuzzy bitopological space where Z = {a, b, c}. 

cbacba

110
,

001
,1,01  

  and 2 = {0,1}.  
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12 -closed are

cbacba

001
',

110
',1,0  

 .Then (1,2)*-fg closed are  

.
001

',
110

',1,0
cbacba

 
 

Let  21,. Z be the identity map.  Then (1,2)*-fuzzy closed maps but their composition g  f : (X, 1, 2)  (Z, 1, 2) is not an 

(1,2)*-fg-closed map, since for the 
12  closed set  

cba

010


in X, (g  f) (

cba

010


) = 

cba

010


 which is not and (1,2)*-fg-

closed set in Z. 

Theorem 1.3.15 

Let f : (X, 1, 2)  (Y, 1, 2)   and g : (Y, 1, 2)   (Z, 1, 2)  be two maps such that their  composition  g  f : (X, 1, 2)  

(Z, 1, 2)  is an (1,2)*-fg-closed map. Then the following statements are true. 

(i) If f is (1,2)*-fuzzy continuous and surjective, then g is (1,2)*-fg-closed. 

(ii) If g is (1,2)*-fg-irresolute and injective, then f is (1,2)*-fg-closed. 

(iii) If f is (1,2)*-fĝ-continuous, surjective and (X, ) is a (1,2)*-T-space, then g is (1,2)*-fg-closed. 

(iv) If g is strongly (1,2)*-fg-continuous and injective, then f is (1,2)*-fuzzy closed. 

Proof 

(i)Let A be a 1,2-closed set of  Y. Since f is (1,2)*-fuzzy continuous, f
-1

(A) is 1,2-closed in X and since g  f is (1,2)*-fg-closed, (g  

f)( f
-1

(A)) is (1,2)*-fg-closed in Z. That is g(A) is (1,2)*-fg-closed in Z, since f is surjective. Therefore g is  an (1,2)*-fg-closed map. 

(ii)  Let B be a 1,2-closed set of X. Since g  f is (1,2)*-fg-closed, (g  f) (B) is (1,2)*-fg-closed in Z. Since g is (1,2)*-fg-irresolute, g
-

1
((g  f)(B)) is (1,2)*-fg-closed set in Y. That is f(B) is (1,2)*-fg-closed in Y, since g is injective. Thus f is an (1,2)*-fg-closed map. 

(iii)  Let C be a 1,2-closed set of  Y. Since f is (1,2)*-fĝ-continuous, f
-1

(C) is (1,2)*-fĝ-closed in X. Since X is a (1,2)*-T-space, f
-1

(C) 

is 1,2-closed  in X and so as in (i), g is an (1,2)*-fg-closed map.  

(iv)  Let D be a 1,2-closed set of  X. Since  g  f is (1,2)*-fg-closed,   (g  f)(D) is (1,2)*-fg-closed in Z. Since g is strongly (1,2)*-fg-

continuous, g
-1

((g  f)(D)) is 1,2-closed in Y. That is f(D) is 1,2-closed set in Y, since g is injective. Therefore f  is a  (1,2)*-fuzzy 

closed map. 

      In the next theorem we show that (1,2)*-fuzzy normality is preserved under (1,2)*- fuzzy continuous, (1,2)*-fg-closed maps. 

Theorem  1.3.16 

A set A of X is (1,2)*-fg-open if and only if F ≤ 1,2-int(A) whenever F is (1,2)*-fsg-closed and F ≤  A. 

Theorem 1.3.17 

If f : (X, 1, 2)  (Y, 1, 2) is a (1,2)*-fuzzy continuous, (1,2)*-fg-closed map from a (1,2)*-fuzzy normal space  X onto a space 

Y, then Y is (1,2)*-fuzzy normal. 

Proof 

Let A and B be two disjoint 1,2-closed subsets of Y. Since f is (1,2)*-fuzzy continuous, f
-1

(A) and f
-1

(B) are disjoint 1,2-closed 

sets of X. Since X is (1,2)*-fuzzy normal, there exist disjoint 1,2-open sets U and V of X such that f
-1

(A) ≤ U and f
-1

(B) ≤ V. Since f is 

(1,2)*-fg-closed, by Theorem 1.3.6, there exist disjoint (1,2)*-fg-open sets G and H in Y such that A ≤ G, B ≤ H,  f
-1

(G) ≤ U and f
-1

(H) 

≤ V. Since U and V are disjoint, 1,2-int(G) and 1,2-int(H) are disjoint 1,2-open sets in Y. Since A is 1,2-closed, A is (1,2)*-fsg-

closed and therefore we have by Theorem 1.3.16, A  ≤ 1,2-int(G). Similarly   B ≤ 1,2-int(H) and hence Y is (1,2)*-fuzzy normal. 

Analogous to an (1,2)*-fg-closed map, we have defined an (1,2)*-fg-open map as follows: 

Definition 1.3.18 

A map f : (X, 1, 2)  (Y, 1, 2) is said to be an (1,2)*-fg-open map if the image f(A) is (1,2)*-fg-open in Y for each 1,2-open 

set A in X. 

Proposition 1.3.19 

For any bijection f : (X, 1, 2)  (Y, 1, 2), the following statements are equivalent: 

(i) f
-1  

: (Y, 1, 2) (X, 1, 2)  is (1,2)*-fg-continuous. 

(ii) f is (1,2)*-fg-open map. 

(iii) f is (1,2)*-fg-closed map. 

Proof 

(i)  (ii). Let U be an 1,2-open set of X. By assumption, (f
-1

)
-1

(U) = f(U) is (1,2)*-fg-open in Y and so f is (1,2)*-fg-open. 

(ii)  (iii). Let F be a 1,2-closed set of X. Then F
c
 is 1,2-open set in X. By assumption, f(F

c
) is (1,2)*-fg-open in Y. That is f(F

c
) = 

(f(F))
c
 is (1,2)*-fg-open in Y and therefore f(F) is (1,2)*-fg-closed in Y. Hence f is (1,2)*-fg-closed. 

(iii)  (i). Let F be a 1,2-closed set of X. By assumption, f(F) is (1,2)*-fg-closed in Y. But f(F) = (f
-1

)
-1

(F) and therefore f
-1

 is (1,2)*-

fg-continuous. 

Theorem  1.3.20 

Assume that the collection of all (1,2)*-fg-open sets of Y is closed under arbitrary union. Let f : (X, 1, 2)  (Y, 1, 2) be a 

map. Then the following statements are equivalent: 

(i)f is an (1,2)*-fg-open map. 

(ii)For a subset A of X, f(1,2-int(A)) ≤ (1,2)*-fg-int(f(A)). 

(iii)For each x  X and for each 1,2-neighborhood U of x in X, there exists an (1,2)*-fg-neighborhood W of f(x) in Y such that W ≤ 

f(U). 
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Proof  

(i)  (ii). Suppose f is (1,2)*-fg-open. Let A ≤ X. Then 1,2-int(A) is 1,2-open in X and so f(1,2-int(A)) is (1,2)*-fg-open in Y. We 

have f(1,2-int(A)) ≤  f(A). Therefore by Proposition 1.3.2,  f(1,2-int(A)) ≤ (1,2)*-g-int(f(A)). 

(ii)  (iii). Suppose (ii) holds. Let x  X and U be an arbitrary 1,2-neighborhood of x in X. Then there exists an 1,2-open set G such 

that x  G ≤ U. By assumption, f(G) = f(1,2-int(G)) ≤ (1,2)*-g-int(f(G)). This implies f(G) = (1,2)*-g-int(f(G)). By Proposition 1.3.2, 

we have f(G) is (1,2)*-fg-open in Y. Further, f(x)  f(G) ≤ f(U) and so (iii) holds, by taking W = f(G). 

(iii)  (i). Suppose (iii) holds. Let U be any 1,2-open set in  X, x  U and f(x) = y. Then y  f(U) and for each y  f(U), by 

assumption there exists an (1,2)*-g-neighborhood Wy of y in Y such that Wy ≤ f(U). Since Wy is an (1,2)*-g-neighborhood of y, there 

exists an (1,2)*-fg-open set Vy in Y such that y  Vy ≤ Wy. Therefore, f(U) =  {Vy : y  f(U)} is an (1,2)*-fg-open set in Y. Thus f 

is an (1,2)*-fg-open map. 

Theorem 1.3.21 

A map  f : (X, 1, 2)  (Y, 1, 2) is (1,2)*-fg-open if and only if   for any subset  S of Y and for any 1,2-closed set F containing 

f
-1

(S), there exists an (1,2)*-fg-closed set K of Y containing S such that  f
-1

(K) ≤ F. 

Proof 

Similar to Theorem 1.3.6. 

Corollary 1.3.22 

A map f : (X, 1, 2)  (Y, 1, 2) is (1,2)*-fg-open if and only if     f
-1

( (1,2)*-g-cl(B)) ≤ 1,2-cl(f
-1

(B)) for each subset B of Y. 

Proof 

Suppose that f is (1,2)*-fg-open. Then for any B ≤ Y, f
-1

(B) ≤ 1,2-cl(f
-1

(B)). By Theorem1.3.21, there exists an (1,2)*-fg-closed 

set K of Y such that B ≤ K and   f
-1

(K) ≤ 1,2-cl(f
-1

(B)). Therefore, f
-1

( (1,2)*-fg-cl(B)) ≤ (f
-1

(K)) ≤ 1,2-cl(f
-1

(B)), since K is an  (1,2)*-

fg-closed set in Y. 

Conversely, let S be any subset of Y and F be any 1,2-closed set containing     f
-1

(S). Put K = (1,2)*-g-cl(S). Then K is an (1,2)*-

fg-closed set and S ≤ K. By assumption, f
-1

(K) = f
-1

( (1,2)*-g-cl(S)) ≤ 1,2-cl(f
-1

(S)) ≤ F and therefore by Theorem 1.3.21, f is (1,2)*-

fg-open. 

Finally in this section, we define another new class of maps called (1,2)*-fg*-closed maps which are stronger than (1,2)*-fg-

closed maps. 

Definition 1.3.23 

A map f : (X, 1, 2)  (Y, 1, 2) is said to  be (1,2)*-fg*-closed  if the image f(A) is  (1,2)*-fg-closed in Y for every (1,2)*-fg-

closed set A in X. 

Remark  1.3.24 

Since every 1,2-closed set is an (1,2)*-fg-closed set we have (1,2)*-fg*-closed map is an (1,2)*-fg-closed map. The converse is 

not true in general as seen from the following example. 

Example  1.3.25 

Let  21,, Y  be a fuzzy bitopological space where Y = {a, b, c}. 

cba

001
,1,01  

  and 2 = {0,1}.  

12 -closed are
,

110
',1,0

cba


 .Then (1,2)*-fg closed are  

 

cbacba

321,,
110

',1,0


 
where 1,,0 321   . 

  Let  21,, Z  be a fuzzy bitopological space where Z = {a, b, c}. 

cba

05,01
,1,01  

  and 2 = {0,1}.  

12 -closed are
,

15.00
',1,0

cba


 .Then (1,2)*-fg closed are  

 

cbacba

321,
15.00

',1,0


 
where 0,1,,0 3321   . 

Let  21,,: Yg  21,. Z be the identity map. Then g  is (1,2)*-fg closed  map but not (1,2)*-fg*-closed map. 

Since

cba

001


is (1,2)*-fg-closed  set in X, but its image under  g is 

cba

001


 which is not (1,2)*-fg-closed set in Z.  

Proposition 1.3.26 

A map f : (X, 1, 2)  (Y, 1, 2)  is (1,2)*-fg*-closed if and only if  (1,2)*-g-cl(f(A)) ≤ f( (1,2)*-g-cl(A))  for every subset A of 

X. 

Proof 

Similar to  Proposition  1.3.4. 
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Analogous to (1,2)*-fg*-closed map we can also define (1,2)*-fg*-open map. 

Proposition 1.3.27 

For any bijection f : (X, 1, 2)  (Y, 1, 2), the following statements are equivalent: 

(i) f
-1  

: (Y, 1, 2) (X, 1, 2)  is (1,2)*-fg-irresolute. 

(ii) f is (1,2)*-fg*-open map. 

(iii) f is (1,2)*-fg*-closed map. 

Proof 

Similar to  Proposition  1.3.19. 

Proposition 1.3.28 

If  f : (X, 1, 2)  (Y, 1, 2) is (1,2)*-fsg-irresolute and  (1,2)*-fg-closed, then it is an (1,2)*-fg*-closed map. 

Proof 

The proof  follows from   Proposition 1.3.7. 

1.4. (1,2)*-Fg*-Homeomorphisms 

The notion of (1,2)*-fuzzy homeomorphisms plays a very important role in fuzzy bitopological spaces. By definition, an (1,2)*-

fuzzy homeomorphism between two fuzzy bitopological spaces (X, τ1, τ2) and (Y, σ1, σ2) is a bijective map f : (X, τ1, τ2)  (Y, σ1, σ2) 

when f and f
-1 

are (1,2)*-fuzzy continuous.  

We introduce the following definition: 

Definition 1.4.1 

A bijection f : (X, τ1, τ2)  (Y, σ1, σ2) is said to be 

(i) (1,2)*-fg-homeomorphism if f is both (1,2)*-fg-continuous and (1,2)*-fg-open. 

(ii)  (1,2)*-fg*-homeomorphism if both f and f
-1

 are (1,2)*-fg-irresolute. 

We denote the family of all (1,2)*-fg*-homeomorphisms of a fuzzy bitopological space (X, τ1, τ2) onto itself by (1,2)*-fg*h(X). 

Theorem  1.4.2 

Let f : (X, τ1, τ2)  (Y, σ1, σ2) be a bijective (1,2)*-fg-continuous map. Then the following are equivalent:  

(i) f is an (1,2)*-fg-open map.  

(ii) f is an (1,2)*-fg-homeomorphism.  

(iii) f is an (1,2)*-fg-closed map. 

Proof 

Follows from Proposition 1.3.19. 

Proposition 1.4.3 

If f : (X, τ1, τ2)  (Y, σ1, σ2)  and g : (Y, σ1, σ2)  (Z, 1, 2) are (1,2)*-fg*-homeomorphisms, then their  composition  g  f : (X, 

τ1, τ2)  (Z, 1, 2) is also (1,2)*-fg*-homeomorphism. 

Proof 

Let U be (1,2)*-fg-open set in (Z, 1, 2). Now, (g  f)
-1

(U) = f
-1

(g
-1

(U)) =   f
-1

(V), where V = g
-1

(U). By hypothesis, V is (1,2)*-

fg-open in Y and so again by hypothesis, f
-1

(V) is (1,2)*-fg-open in X. Therefore, g  f is (1,2)*-fg-irresolute. 

Also for an (1,2)*-fg-open set G in X, we have (g  f)(G) = g(f(G)) = g(W), where W= f(G). By hypothesis f(G) is (1,2)*-fg-open 

in Y and so again by hypothesis, g(f(G)) is (1,2)*-fg-fopen in Z. That is (g  f) (G) is (1,2)*-fg-open in Z and therefore (g  f)
-1

 is 

(1,2)*-fg-irresolute. Hence g  f is a (1,2)*-fg*-homeomorphism. 

Theorem 1.4.4 

The set (1,2)*-fg*-h(X) is a group under the composition of maps. 

Proof 

Define a binary operation  : (1,2)*-fg*-h(X)  (1,2)*-fg*-h(X)  (1,2)*-fg*-h(X) by f  g = g  f for all f, g  (1,2)*-fg*-h(X) 

and  is the usual operation of composition of maps. Then by Proposition 1.4.3, g  f   (1,2)*-fg*-h(X). We know that the 

composition of maps is associative and the identity map I : (X, τ1, τ2)   (X, τ1, τ2) belonging to (1,2)*-fg*-h(X) serves as the identity 

element. If f  (1,2)*-fg*-h(X), then f
-1

  (1,2)*-fg*-h(X) such that f  f
-1 

= f
-1

  f  = I and so inverse exists for each element of  

(1,2)*-fg*-h(X). Therefore, ( (1,2)*-fg*- h(X), ) is a group under the operation of composition of maps. 

Theorem 1.4.5 

Let f : (X, τ1, τ2)  (Y, σ1, σ2) be an (1,2)*-fg*-homeomorphism. Then f induces an (1,2)*-fuzzy isomorphism from the group 

(1,2)*-fg*-h(X) on to the group (1,2)*-fg*-h(Y). 

Proof 

Using the map f, we define a map f : (1,2)*-fg*-h(X)  (1,2)*-fg*-h(Y) by f(h) = f  h   f
-1

  for every  h  (1,2)*-fg*-h(X). 

Then f  is a bijection. Further, for all h1, h2   (1,2)*-fg*-h(X), f  (h1  h2) =  f  (h1  h2)  f
-1

 = (f  h1  f
-1

)  (f  h2   f
-1

) = f(h1)  

f(h2). Therefore,  f is a (1,2)*-fuzzy homomorphism and so it is an (1,2)*-fuzzy isomorphism induced  by f. 

Theorem 1.4.6 

 (1,2)*-fg*-homeomorphism is an equivalence relation in the collection of all bitopological spaces. 

Proof 

Reflexivity and symmetry are immediate and transitivity follows from Proposition 1.4.3. 
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