35695

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

Elixir Appl. Math. 87 (2015) 35695-35701

(1,2)*-FG-Closed and (1,2)*-FG-Open Maps in Fuzzy Bitopological Spases

P.Saravanaperumal¹ and S.Murugesan²

¹Department of Mathematics, SriVidya College of Engineering and Technology, Virudhunagar-626 005, India. ²Department of Mathematics, Sri.S.R.Naidu Memorial College, Sattur-626 203, India.

ARTICLE INFO

Article history: Received: 9 August 2015; Received in revised form: 04 October 2015; Accepted: 09 October 2015;

ABSTRACT

In this chapter, we introduce $(1,2)^*$ -fg-closed maps, $(1,2)^*$ -fg-open maps, $(1,2)^*$ -fg*-closed maps and $(1,2)^*$ -fg*-open maps in Fuzzy bitopological spaces and obtain certain characterizations of these classes of maps. In last section, we introduce $(1,2)^*$ -fg*-homeomorphisms and prove that the set of all $(1,2)^*$ -fg*-homeomorphisms forms a group under the operation composition of functions.

© 2015 Elixir All rights reserved.

Keywords

(1,2)*-fg-closed and (1,2)*-fg -open maps in fuzzy bitopological spaces,
(1,2)*-fg-open maps,
(1,2)*-fg*-open maps,
(1,2)*-fg*-closed maps,
(1,2)*-fg*-closed maps,
(1,2)*-fg*-homeomorphisms.

1.Introduction

Malghan [2] introduced the concept of generalized closed maps in topological spaces. Devi [1] introduced and studied sg-closed maps and gs-closed maps. Recently, Sheik John [6] defined ω -closed maps and studied some of their properties. In this paper, we introduce (1,2)*-fg-closed maps, (1,2)*-fg-open maps, (1,2)*-fg*-closed maps and (1,2)*-fg*-open maps in fuzzy bitopological spaces and obtain certain characterizations of these classes of maps. In last section, we introduce (1,2)*-fg*-homeomorphisms and prove that the set of all (1,2)*-fg*-homeomorphisms forms a group under the operation composition of functions.

1.2.Preliminaries

Definition 1.2.1

A map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

(i) $(1,2)^*$ -g-closed [5] if f(V) is $(1,2)^*$ -g-closed in Y, for every $\tau_{1,2}$ -closed set V of X.

(ii) $(1,2)^*$ -sg-closed [4] if f(V) is $(1,2)^*$ -sg-closed in Y, for every $\tau_{1,2}$ -closed set V of X.

(iii) (1,2)*-gs-closed [4] if f(V) is (1,2)*-gs-closed in Y, for every $\tau_{1,2}$ -closed set V of X.

(iv) $(1,2)^* - \psi$ -closed [3] if f(V) is $(1,2)^* - \psi$ -closed in Y, for every $\tau_{1,2}$ -closed set V of X.

We introduce the following definitions

Definition 1.2.2

- A map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called
- (i) $(1,2)^*$ -fsg-closed if f(V) is $(1,2)^*$ -fsg-closed in Y, for every $\tau_{1,2}$ -closed set V of X.
- (ii) $(1,2)^*$ -fgs-closed if f(V) is $(1,2)^*$ -fgs-closed in Y, for every $\tau_{1,2}$ -closed set V of X.
- (iii) $(1,2)^*-f \psi$ -closed if f(V) is $(1,2)^*-f \psi$ -closed in Y, for every $\tau_{1,2}$ -closed set V of X.

1.3. (1,2)*-fg-CLOSED MAPS

Definition 1.3.1

A map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be $(1,2)^*$ -fg-closed if the image of every $\tau_{1,2}$ -closed set in X is $(1,2)^*$ -fg-closed in Y. **Proposition 1.3.2**

For any $A \leq X$,

- (i) $(1,2)^*$ -g-cl(A) is the smallest $(1,2)^*$ -fg-closed set containing A.
- (ii) A is $(1,2)^*$ -fg-closed if and only if $(1,2)^*$ -g-cl(A) = A.

Proposition 1.3.3

For any two subsets A and B of X,

(i) If $A \le B$, then $(1,2)^*$ -g-cl $(A) \le (1,2)^*$ -g-cl(B).

(ii) $(1,2)^*$ -g-cl(A \cap B) $\leq (1,2)^*$ -g-cl(A) $\cap (1,2)^*$ -g-cl(B).

Proposition 1.3.4

A map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ -fg-closed if and only if $(1,2)^*$ -g-cl(f(A)) $\leq f(\tau_{1,2}$ -cl(A)) for every subset A of X. **Proof**

Suppose that f is (1,2)*-fg-closed and A \leq X. Then $\tau_{1,2}$ -cl(A) is $\tau_{1,2}$ -closed in X and so $f(\tau_{1,2}$ -cl(A)) is (1,2)*-fg-closed in Y. We have $f(A) \leq f(\tau_{1,2}$ -cl(A)) and by Propositions 1.3.2 and 1.3.3, (1,2)*-g-cl(f(A)) $\leq (1,2)^*$ -g-cl($f(\tau_{1,2}$ -cl(A))) = $f(\tau_{1,2}$ -cl(A)). Conversely, let

A be any $\tau_{1,2}$ -closed set in X. Then $A = \tau_{1,2}$ -cl(A) and so $f(A) = f(\tau_{1,2}$ -cl(A)) $\geq (1,2)^*$ -g-cl(f(A)), by hypothesis. We have $f(A) \leq (1,2)^*$ -g-cl(f(A)). Therefore $f(A) = (1,2)^*$ -g-cl(f(A)). That is f(A) is $(1,2)^*$ -fg-closed by Proposition 1.3.2 and hence f is $(1,2)^*$ -g-closed.

Proposition 1.3.5

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a map such that $(1,2)^*$ -g-cl(f(A)) $\leq f(\tau_{1,2}$ -cl(A)) for every subset $A \leq X$. Then the image f(A) of a $\tau_{1,2}$ -closed set A in X is $(1,2)^*$ -fg-closed in Y.

Proof

Let A be a $\tau_{1,2}$ -closed set in X. Then by hypothesis $(1,2)^*$ -g-cl(f(A)) $\leq f(\tau_{1,2}$ -cl(A)) = f(A) and so $(1,2)^*$ -g-cl(f(A)) = f(A). Therefore f(A) is $(1,2)^*$ -fg-closed in Y.

Theorem 1.3.6

A map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ -fg-closed if and only if for each subset S of Y and each $\tau_{1,2}$ -open set U containing f ¹(S) there is an $(1,2)^*$ -fg-open set V of Y such that $S \leq V$ and $f^1(V) \leq U$.

Proof

Suppose f is $(1,2)^*$ -fg-closed. Let $S \leq Y$ and U be an $\tau_{1,2}$ -open set of X such that $f^{-1}(S) \leq U$. Then $V = (f(U^c))^c$ is an $(1,2)^*$ -fg-open set containing S such that $f^{-1}(V) \leq U$.

For the converse, let F be a $\tau_{1,2}$ -closed set of X. Then $f^{-1}((f(F))^c) \le F^c$ and F^c is $\tau_{1,2}$ -open. By assumption, there exists an $(1,2)^*$ -fg-open set V in Y such that $(f(F))^c \le V$ and $f^{-1}(V) \le F^c$ and so $F \le (f^{-1}(V))^c$. Hence $V^c \le f(F) \le f((f^{-1}(V))^c) \le V^c$ which implies $f(F) = V^c$. Since V^c is $(1,2)^*$ -fg-closed, f(F) is $(1,2)^*$ -fg-closed and therefore f is $(1,2)^*$ -fg-closed.

Proposition 1.3.7

If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ -fsg-irresolute $(1,2)^*$ -fg-closed and A is an $(1,2)^*$ -fg-closed subset of X, then f(A) is $(1,2)^*$ -fg-closed in Y.

Proof

Let U be an $(1,2)^*$ -fsg-open set in Y such that $f(A) \leq U$. Since f is $(1,2)^*$ -fsg-irresolute, $f^1(U)$ is an $(1,2)^*$ -fsg-open set containing A. Hence $\tau_{1,2}$ -cl $(A) \leq f^1(U)$ as A is $(1,2)^*$ -fg-closed in X. Since f is $(1,2)^*$ -fg-closed, $f(\tau_{1,2}$ -cl(A)) is an $(1,2)^*$ -fg-closed set contained in the $(1,2)^*$ -fsg-open set U, which implies that $\tau_{1,2}$ -cl $(f(\tau_{1,2}$ -cl $(A))) \leq U$ and hence $\tau_{1,2}$ -cl $(f(A)) \leq U$. Therefore, f(A) is an $(1,2)^*$ -fg-closed set in Y.

The following example shows that the composition of two $(1,2)^*$ -fg-closed maps need not be a $(1,2)^*$ -fg-closed. **Example 1.3.8**

Let (X, τ_1, τ_2) be a fuzzy bitopological space where $X = \{a, b, c\}$.

$$\tau_{1} = 0, 1, \lambda = \frac{1}{a} + \frac{0}{b} + \frac{0}{c}, \mu = \frac{1}{a} + \frac{0}{b} + \frac{1}{c} \quad \text{and } \tau_{2} = \{0,1\}.$$

$$\tau_{12} \text{-closed are} \quad 0, 1, \lambda' = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}, \mu' = \frac{0}{a} + \frac{1}{b} + \frac{0}{c} \quad \text{Then } (1,2)^{*}\text{-fg closed are}$$

$$0, 1, \lambda' = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}, \mu' = \frac{0}{a} + \frac{1}{b} + \frac{0}{c}, \frac{\alpha_{1}}{a} + \frac{\alpha_{2}}{b} + \frac{\alpha_{3}}{c} \quad \text{where } 0 \le \alpha_{1}, \alpha_{2}, \alpha_{3} \le 1, \alpha_{2} \neq 0$$

$$\text{Let } (Y, \sigma_{1}, \sigma_{2}) \text{ be a fuzzy bitopological space where } Y = \{a, b, c\}.$$

$$\sigma_{1} = 0, 1, \lambda = \frac{1}{a} + \frac{0}{b} + \frac{0}{c} \quad \text{and } \sigma_{2} = \{1, 0\}.$$

$$\sigma_{12} \text{-closed are} \quad 0, 1, \lambda' = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}, \quad \text{Then } (1, 2)^{*}\text{-fg closed are}$$

$$0,1,\lambda' = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}, \quad \frac{\alpha_1}{a} + \frac{\alpha_2}{b} + \frac{\alpha_3}{c} \quad \text{where} \quad 0 \le \alpha_1, \alpha_2, \alpha_3 \le 1$$

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity map. Then f is an $(1,2)^*$ -fg-closed map. Let (Z, η_1, η_2) be a fuzzy bitopological space where $Z = \{a, b, c\}$.

$$\eta_{1} = 0, 1, \lambda = \frac{1}{a} + \frac{0.5}{b} + \frac{0}{c} \quad \text{and } \eta_{2} = \{1, 0\}.$$

$$\eta_{12} \text{-closed are} \quad 0, 1, \lambda' = \frac{0}{a} + \frac{0.5}{b} + \frac{1}{c}, \quad \text{Then } (1,2)^{*}\text{-fg closed are}$$

$$0, 1, \lambda' = \frac{0}{a} + \frac{0.5}{b} + \frac{1}{c}, \quad \frac{\alpha_{1}}{a} + \frac{\alpha_{2}}{b} + \frac{\alpha_{3}}{c} \quad \text{where} \quad 0 \le \alpha_{1}, \alpha_{2}, \alpha_{3} \le 1, \alpha_{3} \ne 0$$

.Let $g:(Y,\sigma_1,\sigma_2) \to (Z,\eta_1,\eta_2)$ be the identity map. Then both f and g are $(1,2)^*$ -fg-closed maps but their composition g of $: (X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2) \text{ is not an } (1,2)^* \text{-fg-closed map, since for the } \tau_{12} \text{ closed set } \frac{0}{a} + \frac{1}{b} + \frac{0}{c} \text{ in } X, (g \circ f) (\frac{0}{a} + \frac{1}{b} + \frac{0}{c}) = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{b} + \frac{1}{c} + \frac{1}{b} + \frac{1}{c} + \frac{1$

1 0 which is not and
$$(1,2)^*$$
-fg-closed set in Z.

$\frac{0}{a} + \frac{1}{b} + \frac{0}{c}$

Corollary 1.3.9

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be $(1,2)^*$ -fg-closed and $g: (Y, \sigma_1, \sigma_2) \rightarrow$ (Z, η_1 , η_2) be (1,2)*-fg-closed and (1,2)*-fsgirresolute, then their composition g o f : $(X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ is $(1,2)^*$ -fg-closed.

Proof

Let A be a $\tau_{1,2}$ -closed set of X. Then by hypothesis f(A) is an (1,2)*-fg-closed set in Y. Since g is both (1,2)*-fg-closed and $(1,2)^*$ -fsg-irresolute by Proposition 1.3.5, $g(f(A)) = (g_0 f)(A)$ is $(1,2)^*$ -fg-closed in Z and therefore $g_0 f$ is $(1,2)^*$ -fg-closed.

Proposition 1.3.10

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ be $(1,2)^*$ -fg-closed maps where Y is a T $_{(1,2)^*-g}$ -space. Then their composition g o f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ -fg-closed.

Proof

Let A be a $\tau_{1,2}$ -closed set of X. Then by assumption f(A) is $(1,2)^*$ -fg-closed in Y. Since Y is a T $_{(1,2)^*-g}$ -space, f(A) is $\sigma_{1,2}$ -closed in Y and again by assumption g(f(A)) is $(1,2)^*$ -fg-closed in Z. That is $(g \circ f)(A)$ is $(1,2)^*$ -fg-closed in Z and so $g \circ f$ is $(1,2)^*$ -fgclosed.

Proposition 1.3.11

If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ -fg-closed, $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ is $(1,2)^*$ -fg-closed (resp. $(1,2)^*$ -fg-closed, $(1,2)^*$ -fg-closed) $f \psi$ -closed, (1,2)*-fsg-closed and (1,2)*-fsg-closed) and Y is a T (1,2)*-g-space, then their composition g o f: (X, τ_1 , τ_2) \rightarrow (Z, η_1 , η_2) is $(1,2)^*$ -fg-closed (resp. $(1,2)^*$ -fg-closed, $(1,2)^*$ -f ψ -closed, $(1,2)^*$ -fsg-closed and $(1,2)^*$ -fgs-closed).

Proof

Similar to Proposition 1.3.10.

Proposition 1.3.12

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a $(1,2)^*$ -fuzzy closed map and $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ be an $(1,2)^*$ -fg-closed map, then their composition g o f : $(X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ is $(1,2)^*$ -fg-closed.

Proof

Similar to Proposition 1.3.10.

Remark 1.3.13

If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is an $(1,2)^*$ -fg-closed and $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ is $(1,2)^*$ -fuzzy closed, then their composition need not be an $(1,2)^*$ -fg-closed map as seen from the following example.

Example 1.3.14

Let (X, τ_1, τ_2) be a fuzzy bitopological space where $X = \{a, b, c\}$.

$$\begin{aligned} \tau_{1} &= 0, 1, \lambda = \frac{1}{a} + \frac{0}{b} + \frac{0}{c}, \mu = \frac{0}{a} + \frac{0}{b} + \frac{1}{c} \quad \text{and } \tau_{2} = \{0,1\}. \\ \tau_{12} \text{-closed are} \\ 0,1, \lambda' &= \frac{0}{a} + \frac{1}{b} + \frac{1}{c}, \mu' = \frac{0}{a} + \frac{1}{b} + \frac{0}{c}, \frac{\alpha_{1}}{a} + \frac{1}{b} + \frac{0}{c} \quad \text{Then } (1,2)^{*}\text{-fg closed are} \\ 0,1, \lambda' &= \frac{0}{a} + \frac{1}{b} + \frac{1}{c}, \mu' = \frac{0}{a} + \frac{1}{b} + \frac{0}{c}, \frac{\alpha_{1}}{a} + \frac{\alpha_{2}}{b} + \frac{\alpha_{3}}{c} \quad \text{where } 0 \le \alpha_{1}, \alpha_{2}, \alpha_{3} \le 1, \alpha_{2} \neq 0. \\ \text{Let} (Y, \sigma_{1}, \sigma_{2}) \text{ be a fuzzy bitopological space where } Y = \{a, b, c\}. \end{aligned}$$

$$\sigma_{1} = 0, 1, \lambda = \frac{1}{a} + \frac{0}{b} + \frac{0}{c} \text{ and } \sigma_{2} = \{0, 1\}.$$

$$\sigma_{12}^{-\text{closed are}} = 0, 1, \lambda' = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}, \text{ Then } (1,2)^{*}\text{-fg closed are}$$

$$0,1,\lambda' = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}, \quad \frac{\alpha_1}{a} + \frac{\alpha_2}{b} + \frac{\alpha_3}{c} \quad \text{where } 0 \le \alpha_1, \alpha_2, \alpha_3 \le 1.$$

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity map. Then f is an $(1,2)^*$ -fg-closed map. Let (Z, η_1, η_2) be a fuzzy bitopological space where $Z = \{a, b, c\}$.

$$\eta_1 = 0, 1, \lambda = \frac{1}{a} + \frac{0}{b} + \frac{0}{c}, \mu = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}$$
 and $\eta_2 = \{0, 1\}$

 $\eta_{12}^{\text{-closed are}} 0, 1, \lambda' = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}, \mu' = \frac{1}{a} + \frac{0}{b} + \frac{0}{c}$. Then (1,2)*-fg closed are $0,1, \lambda' = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}, \mu' = \frac{1}{a} + \frac{0}{b} + \frac{0}{c}.$ Let $(Z.\eta_1, \eta_2)$ be the identity map. Then $(1,2)^*$ -fuzzy closed maps but their composition g o f : $(X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ is not an

(1,2)*-fg-closed map, since for the τ_{12} closed set $\frac{0}{a} + \frac{1}{b} + \frac{0}{c}$ in X, (g o f) ($\frac{0}{a} + \frac{1}{b} + \frac{0}{c}$) = $\frac{0}{a} + \frac{1}{b} + \frac{0}{c}$ which is not and (1,2)*-fg-

closed set in Z. **Theorem 1.3.15**

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ be two maps such that their composition $g \circ f: (X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ (Z, n_1, n_2) is an $(1,2)^*$ -fg-closed map. Then the following statements are true.

(i) If f is $(1,2)^*$ -fuzzy continuous and surjective, then g is $(1,2)^*$ -fg-closed.

(ii) If g is $(1,2)^*$ -fg-irresolute and injective, then f is $(1,2)^*$ -fg-closed.

(iii) If f is $(1,2)^*$ -fg-continuous, surjective and (X, τ) is a $(1,2)^*$ -T_{ω}-space, then g is $(1,2)^*$ -fg-closed.

(iv) If g is strongly $(1,2)^*$ -fg-continuous and injective, then f is $(1,2)^*$ -fuzzy closed.

Proof

(i)Let A be a $\sigma_{1,2}$ -closed set of Y. Since f is (1,2)*-fuzzy continuous, f¹(A) is $\tau_{1,2}$ -closed in X and since g o f is (1,2)*-fg-closed, (g o f)($f^{1}(A)$) is (1,2)*-fg-closed in Z. That is g(A) is (1,2)*-fg-closed in Z, since f is surjective. Therefore g is an (1,2)*-fg-closed map.

(ii) Let B be a $\tau_{1,2}$ -closed set of X. Since g o f is (1,2)*-fg-closed, (g o f) (B) is (1,2)*-fg-closed in Z. Since g is (1,2)*-fg-irresolute, g $((g \circ f)(B))$ is $(1,2)^*$ -fg-closed set in Y. That is f(B) is $(1,2)^*$ -fg-closed in Y, since g is injective. Thus f is an $(1,2)^*$ -fg-closed map. (iii) Let C be a $\sigma_{1,2}$ -closed set of Y. Since f is (1,2)*-fĝ-continuous, f¹(C) is (1,2)*-fĝ-closed in X. Since X is a (1,2)*-T_m-space, f¹(C)

is $\tau_{1,2}$ -closed in X and so as in (i), g is an $(1,2)^*$ -fg-closed map.

(iv) Let D be a $\tau_{1,2}$ -closed set of X. Since g o f is (1,2)*-fg-closed, (g o f)(D) is (1,2)*-fg-closed in Z. Since g is strongly (1,2)*-fg-closed in Z. continuous, $g^{-1}((g \circ f)(D))$ is $\sigma_{1,2}$ -closed in Y. That is f(D) is $\sigma_{1,2}$ -closed set in Y, since g is injective. Therefore f is a $(1,2)^*$ -fuzzy closed map.

In the next theorem we show that $(1,2)^*$ -fuzzy normality is preserved under $(1,2)^*$ -fuzzy continuous, $(1,2)^*$ -fg-closed maps. **Theorem 1.3.16**

A set A of X is $(1,2)^*$ -fg-open if and only if $F \le \tau_{1,2}$ -int(A) whenever F is $(1,2)^*$ -fsg-closed and $F \le A$.

Theorem 1.3.17

If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a $(1,2)^*$ -fuzzy continuous, $(1,2)^*$ -fg-closed map from a $(1,2)^*$ -fuzzy normal space X onto a space Y, then Y is $(1,2)^*$ -fuzzy normal.

Proof

Let A and B be two disjoint $\sigma_{1,2}$ -closed subsets of Y. Since f is (1,2)*-fuzzy continuous, f⁻¹(A) and f⁻¹(B) are disjoint $\tau_{1,2}$ -closed sets of X. Since X is $(1,2)^*$ -fuzzy normal, there exist disjoint $\tau_{1,2}$ -open sets U and V of X such that $f^{-1}(A) \leq U$ and $f^{-1}(B) \leq V$. Since f is $(1,2)^*$ -fg-closed, by Theorem 1.3.6, there exist disjoint $(1,2)^*$ -fg-open sets G and H in Y such that $A \le G, B \le H, f^1(G) \le U$ and $f^1(H)$ \leq V. Since U and V are disjoint, $\sigma_{1,2}$ -int(G) and $\sigma_{1,2}$ -int(H) are disjoint $\sigma_{1,2}$ -open sets in Y. Since A is $\sigma_{1,2}$ -closed, A is $(1,2)^*$ -fsgclosed and therefore we have by Theorem 1.3.16, $A \leq \sigma_{1,2}$ -int(G). Similarly $B \leq \sigma_{1,2}$ -int(H) and hence Y is (1,2)*-fuzzy normal.

Analogous to an $(1,2)^*$ -fg-closed map, we have defined an $(1,2)^*$ -fg-open map as follows:

Definition 1.3.18

A map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be an $(1,2)^*$ -fg-open map if the image f(A) is $(1,2)^*$ -fg-open in Y for each $\tau_{1,2}$ -open set A in X.

Proposition 1.3.19

For any bijection $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following statements are equivalent:

(i) $f^1: (Y, \sigma_1, \sigma_2) \rightarrow (X, \tau_1, \tau_2)$ is $(1,2)^*$ -fg-continuous.

(ii) f is $(1,2)^*$ -fg-open map.

(iii) f is $(1,2)^*$ -fg-closed map.

Proof

(i) \Rightarrow (ii). Let U be an $\tau_{1,2}$ -open set of X. By assumption, $(f^{-1})^{-1}(U) = f(U)$ is $(1,2)^*$ -fg-open in Y and so f is $(1,2)^*$ -fg-open.

(ii) \Rightarrow (iii). Let F be a $\tau_{1,2}$ -closed set of X. Then F^c is $\tau_{1,2}$ -open set in X. By assumption, $f(F^c)$ is $(1,2)^*$ -fg-open in Y. That is $f(F^c) =$ $(f(F))^{c}$ is $(1,2)^{*}$ -fg-open in Y and therefore f(F) is $(1,2)^{*}$ -fg-closed in Y. Hence f is $(1,2)^{*}$ -fg-closed.

(iii) \Rightarrow (i). Let F be a $\tau_{1,2}$ -closed set of X. By assumption, f(F) is (1,2)*-fg-closed in Y. But f(F) = (f¹)⁻¹(F) and therefore f¹ is (1,2)*fg-continuous.

Theorem 1.3.20

Assume that the collection of all $(1,2)^*$ -fg-open sets of Y is closed under arbitrary union. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a map. Then the following statements are equivalent:

(i)f is an $(1,2)^*$ -fg-open map.

(ii)For a subset A of X, $f(\tau_{1,2}\text{-int}(A)) \leq (1,2)^*\text{-fg-int}(f(A))$.

(iii)For each $x \in X$ and for each $\tau_{1,2}$ -neighborhood U of x in X, there exists an (1,2)*-fg-neighborhood W of f(x) in Y such that $W \leq 1$ f(U).

Proof

(i) \Rightarrow (ii). Suppose f is (1,2)*-fg-open. Let $A \le X$. Then $\tau_{1,2}$ -int(A) is $\tau_{1,2}$ -open in X and so $f(\tau_{1,2}$ -int(A)) is (1,2)*-fg-open in Y. We have $f(\tau_{1,2}$ -int(A)) \le f(A). Therefore by Proposition 1.3.2, $f(\tau_{1,2}$ -int(A)) \le (1,2)*-g-int(f(A)).

(ii) \Rightarrow (iii). Suppose (ii) holds. Let $x \in X$ and U be an arbitrary $\tau_{1,2}$ -neighborhood of x in X. Then there exists an $\tau_{1,2}$ -open set G such that $x \in G \leq U$. By assumption, $f(G) = f(\tau_{1,2}\text{-int}(G)) \leq (1,2)^*\text{-g-int}(f(G))$. This implies $f(G) = (1,2)^*\text{-g-int}(f(G))$. By Proposition 1.3.2, we have f(G) is $(1,2)^*\text{-fg-open}$ in Y. Further, $f(x) \in f(G) \leq f(U)$ and so (iii) holds, by taking W = f(G).

(iii) \Rightarrow (i). Suppose (iii) holds. Let U be any $\tau_{1,2}$ -open set in X, $x \in U$ and f(x) = y. Then $y \in f(U)$ and for each $y \in f(U)$, by assumption there exists an $(1,2)^*$ -g-neighborhood W_y of y in Y such that $W_y \leq f(U)$. Since W_y is an $(1,2)^*$ -g-neighborhood of y, there exists an $(1,2)^*$ -fg-open set Vy in Y such that $y \in V_y \leq W_y$. Therefore, $f(U) = \bigcup \{V_y : y \in f(U)\}$ is an $(1,2)^*$ -fg-open set in Y. Thus f is an $(1,2)^*$ -fg-open map.

Theorem 1.3.21

A map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ -fg-open if and only if for any subset S of Y and for any $\tau_{1,2}$ -closed set F containing $f^{-1}(S)$, there exists an $(1,2)^*$ -fg-closed set K of Y containing S such that $f^{-1}(K) \leq F$.

Proof

Similar to Theorem 1.3.6.

Corollary 1.3.22

A map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ -fg-open if and only if $f^{-1}((1,2)^*$ -g-cl(B)) $\leq \tau_{1,2}$ -cl($f^{-1}(B)$) for each subset B of Y. **Proof**

Suppose that f is $(1,2)^*$ -fg-open. Then for any $B \le Y$, $f^1(B) \le \tau_{1,2}$ -cl $(f^1(B))$. By Theorem1.3.21, there exists an $(1,2)^*$ -fg-closed set K of Y such that $B \le K$ and $f^1(K) \le \tau_{1,2}$ -cl $(f^1(B))$. Therefore, $f^1((1,2)^*$ -fg-cl $(B)) \le (f^1(K)) \le \tau_{1,2}$ -cl $(f^1(B))$, since K is an $(1,2)^*$ -fg-closed set in Y.

Conversely, let S be any subset of Y and F be any $\tau_{1,2}$ -closed set containing $f^1(S)$. Put $K = (1,2)^*$ -g-cl(S). Then K is an $(1,2)^*$ -fg-closed set and $S \leq K$. By assumption, $f^1(K) = f^1((1,2)^*$ -g-cl(S)) $\leq \tau_{1,2}$ -cl($f^1(S)$) $\leq F$ and therefore by Theorem 1.3.21, f is $(1,2)^*$ -fg-open.

Finally in this section, we define another new class of maps called $(1,2)^*$ -fg*-closed maps which are stronger than $(1,2)^*$ -fg-closed maps.

Definition 1.3.23

A map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be $(1,2)^*$ -fg*-closed if the image f(A) is $(1,2)^*$ -fg-closed in Y for every $(1,2)^*$ -fg-closed set A in X.

Remark 1.3.24

Since every $\tau_{1,2}$ -closed set is an $(1,2)^*$ -fg-closed set we have $(1,2)^*$ -fg*-closed map is an $(1,2)^*$ -fg-closed map. The converse is not true in general as seen from the following example.

Example 1.3.25

Let (Y, σ_1, σ_2) be a fuzzy bitopological space where Y = {a, b, c}.

$$\sigma_{1} = 0, 1, \lambda = \frac{1}{a} + \frac{0}{b} + \frac{0}{c} \quad \text{and } \sigma_{2} = \{0, 1\}.$$

$$\sigma_{12} \text{-closed are} \quad 0, 1, \lambda' = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}, \quad \text{Then } (1,2)^{*} \text{-fg closed are}$$

$$0, 1, \lambda' = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}, , \frac{\alpha_{1}}{a} + \frac{\alpha_{2}}{b} + \frac{\alpha_{3}}{c} \quad \text{where } 0 \le \alpha_{1}, \alpha_{2}, \alpha_{3} \le 1 \cdot$$

$$\text{Let} \left(Z, \eta_{1}, \eta_{2}\right) \text{ be a fuzzy bitopological space where } Z = \{a, b, c\}.$$

$$\eta_{1} = 0, 1, \lambda = \frac{1}{a} + \frac{0, 5}{b} + \frac{0}{c} \quad \text{and } \eta_{2} = \{0, 1\}.$$

$$\eta_{12} \text{-closed are} \quad 0, 1, \lambda' = \frac{0}{a} + \frac{0.5}{b} + \frac{1}{c}, \quad \text{Then } (1, 2)^{*} \text{-fg closed are}$$

$$0,1, \lambda' = \frac{0}{a} + \frac{0.5}{b} + \frac{1}{c}, \frac{\alpha_1}{a} + \frac{\alpha_2}{b} + \frac{\alpha_3}{c} \text{ where } 0 \le \alpha_1, \alpha_2, \alpha_3 \le 1, \alpha_3 \ne 0$$

Let $g:(Y,\sigma_1,\sigma_2) \rightarrow (Z.\eta_1,\eta_2)$ be the identity map. Then g is $(1,2)^*$ -fg closed map but not $(1,2)^*$ -fg*-closed map. Since 1 0 0 is $(1,2)^*$ -fg-closed set in X, but its image under g is 1 0 0 which is not $(1,2)^*$ -fg-closed set in Z.

$$+\frac{b}{b} + \frac{b}{c} + \frac{b$$

Proposition 1.3.26

a

A map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ -fg*-closed if and only if $(1,2)^*$ -g-cl(f(A)) $\leq f((1,2)^*$ -g-cl(A)) for every subset A of X.

Proof

Similar to Proposition 1.3.4.

Analogous to $(1,2)^*$ -fg*-closed map we can also define $(1,2)^*$ -fg*-open map.

Proposition 1.3.27

For any bijection $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following statements are equivalent:

(i) $f^1: (Y, \sigma_1, \sigma_2) \rightarrow (X, \tau_1, \tau_2)$ is $(1,2)^*$ -fg-irresolute.

(ii) f is $(1,2)^*$ -fg*-open map.

(iii) f is $(1,2)^*$ -fg*-closed map.

Proof

Similar to Proposition 1.3.19.

Proposition 1.3.28

If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ -fsg-irresolute and $(1,2)^*$ -fg-closed, then it is an $(1,2)^*$ -fg*-closed map.

Proof

The proof follows from Proposition 1.3.7.

1.4. (1,2)*-Fg*-Homeomorphisms

The notion of $(1,2)^*$ -fuzzy homeomorphisms plays a very important role in fuzzy bitopological spaces. By definition, an $(1,2)^*$ -fuzzy homeomorphism between two fuzzy bitopological spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) is a bijective map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ when f and f^{-1} are $(1,2)^*$ -fuzzy continuous.

We introduce the following definition:

Definition 1.4.1

A bijection $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be

(i) $(1,2)^*$ -fg-homeomorphism if f is both $(1,2)^*$ -fg-continuous and $(1,2)^*$ -fg-open.

(ii) $(1,2)^*$ -fg*-homeomorphism if both f and f¹ are $(1,2)^*$ -fg-irresolute.

We denote the family of all $(1,2)^*$ -fg*-homeomorphisms of a fuzzy bitopological space (X, τ_1, τ_2) onto itself by $(1,2)^*$ -fg*h(X). **Theorem 1.4.2**

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a bijective $(1,2)^*$ -fg-continuous map. Then the following are equivalent:

(i) f is an $(1,2)^*$ -fg-open map.

(ii) f is an $(1,2)^*$ -fg-homeomorphism.

(iii) f is an $(1,2)^*$ -fg-closed map.

Proof

Follows from Proposition 1.3.19.

Proposition 1.4.3

If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ are $(1,2)^*$ -fg*-homeomorphisms, then their composition $g \circ f: (X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ is also $(1,2)^*$ -fg*-homeomorphism.

Proof

Let U be $(1,2)^*$ -fg-open set in (Z, η_1, η_2) . Now, $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) = f^{-1}(V)$, where $V = g^{-1}(U)$. By hypothesis, V is $(1,2)^*$ -fg-open in Y and so again by hypothesis, $f^{-1}(V)$ is $(1,2)^*$ -fg-open in X. Therefore, $g \circ f$ is $(1,2)^*$ -fg-irresolute.

Also for an $(1,2)^*$ -fg-open set G in X, we have $(g \circ f)(G) = g(f(G)) = g(W)$, where W = f(G). By hypothesis f(G) is $(1,2)^*$ -fg-open in Y and so again by hypothesis, g(f(G)) is $(1,2)^*$ -fg-fopen in Z. That is $(g \circ f)$ (G) is $(1,2)^*$ -fg-open in Z and therefore $(g \circ f)^{-1}$ is $(1,2)^*$ -fg-irresolute. Hence $g \circ f$ is a $(1,2)^*$ -fg-homeomorphism.

Theorem 1.4.4

The set $(1,2)^*$ -fg*-h(X) is a group under the composition of maps.

Proof

Define a binary operation $*: (1,2)^*-fg^*-h(X) \times (1,2)^*-fg^*-h(X) \rightarrow (1,2)^*-fg^*-h(X)$ by $f * g = g_0 f$ for all $f, g \in (1,2)^*-fg^*-h(X)$ and $_0$ is the usual operation of composition of maps. Then by Proposition 1.4.3, $g_0 f \in (1,2)^*-fg^*-h(X)$. We know that the composition of maps is associative and the identity map $I : (X, \tau_1, \tau_2) \rightarrow (X, \tau_1, \tau_2)$ belonging to $(1,2)^*-fg^*-h(X)$ serves as the identity element. If $f \in (1,2)^*-fg^*-h(X)$, then $f^1 \in (1,2)^*-fg^*-h(X)$ such that $f \circ f^1 = f^1 \circ f = I$ and so inverse exists for each element of $(1,2)^*-fg^*-h(X)$. Therefore, $((1,2)^*-fg^*-h(X), \circ)$ is a group under the operation of composition of maps.

Theorem 1.4.5

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be an $(1,2)^*$ -fg*-homeomorphism. Then f induces an $(1,2)^*$ -fuzzy isomorphism from the group $(1,2)^*$ -fg*-h(X) on to the group $(1,2)^*$ -fg*-h(Y).

Proof

Using the map f, we define a map $\theta_f : (1,2)^*-fg^*-h(X) \rightarrow (1,2)^*-fg^*-h(Y)$ by $\theta_f(h) = f_0 h_0 f^1$ for every $h \in (1,2)^*-fg^*-h(X)$. Then θ_f is a bijection. Further, for all $h_1, h_2 \in (1,2)^*-fg^*-h(X)$, $\theta_f(h_1 \circ h_2) = f_0(h_1 \circ h_2) \circ f^1 = (f_0 h_1 \circ f^1) \circ (f_0 h_2 \circ f^1) = \theta_f(h_1) \circ \theta_f(h_2)$. Therefore, θ_f is a $(1,2)^*-fuzzy$ homomorphism and so it is an $(1,2)^*-fuzzy$ isomorphism induced by f.

Theorem 1.4.6

 $(1,2)^*$ -fg*-homeomorphism is an equivalence relation in the collection of all bitopological spaces.

Proof

Reflexivity and symmetry are immediate and transitivity follows from Proposition 1.4.3.

Acknowledgment

The authors would like to thank the reviewers for their valuable comments and helpful suggestions for improvement of the original manuscript.

References

[1] Devi, R.: Studies on generalizations of closed maps and homeomorphisms in topological spaces, Ph.D Thesis, Bharathiar University, Coimbatore (1994).

[2] Malghan, S. R.: Generalized closed maps, J. Karnataka Univ. Sci., 27 (1982), 82-88.

[3] Ravi, O., Kamaraj, M., Pandi, A. and Kumaresan, K.: (1,2)*- &-closed and (1,2)*- --open maps in bitopological spaces, International Journal of Mathematical Archive, 3(2) (2012), 586-594.

[4] Ravi, O., Pious Missier, S. and Salai Parkunan, T.: On bitopological (1,2)*-generalized homeomorphisms, Int J. Contemp. Math. Sciences., 5(11) (2010), 543-557.

[5] Ravi, O., Thivagar, M. L. and Jinjinli.: Remarks on extensions of (1,2)*-g-closed maps, Archimedes J. Math., 1(2) (2011), 177-187.

[6] Sheik John, M.: A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September 2002.