
Redouane Esbai and Mohammed Erramdani/ Elixir Comp. Engg. 87 (2015) 35584-35590

35584

Introduction

In recent years many organizations have begun to consider

MDA as an approach to design and implement enterprise

applications.

The central idea of MDA is to separate the platform

independent design from the platform specific implementation

of applications delaying as much as possible the dependence on

specific technologies [1]. The MDA uses models as first class

entities, enabling the definition and automatic execution of

transformations between models and from models to code. The

creation of meta-models for specifying modeling languages is a

basic task in MDA. Models in MDA are the key artifacts in all

phases of development and are mostly expressed with Unified

Modeling Language (UML). Also the specification of

transformations between models, are called model-to-model

(M2M) transformations, and from model to code, are called

model-to-text (M2T) transformations. The main advantage of

this approach of software development is that MDA tools enable

these transformations to be specified and executed

automatically, using supporting languages and tools for MDA.

In software engineering, inversion of control (IoC) is a

programming technique in which object coupling is bound at run

time by an assembler object and is typically not known at

compile time using static analysis.

Inversion of control as a design guideline serves the

following purposes:

• There is a decoupling of the execution of a certain task from

implementation.

• Every module can focus on what it is designed for.

• Modules make no assumptions about what other systems do

but rely on their contracts.

• Replacing modules has no side effect on other modules.

In a recent work [2], the authors have developed a source and a

target meta-model. The first was a PIM meta-model specific to

class diagrams. The second was a PSM meta-model for MVP

(Model-View-Presenter) web applications (particularly GWT),

then they have elaborated transformation rules using the

approach by modeling. The purpose of our contribution is to

produce and generate automatically an IoC and DAO PSM

model, from the class diagram. In this case, we elaborate a

number of transformation rules using the approach by modeling

and MOF 2.0 QVT, as transformation language, to permit the

generation of an XML file that can be used to produce the

required code of the target application. The advantage of this

approach is the bidirectional execution of transformation rules.

This paper is organized as follows: related works are

presented in the second section, the third section defines the

MDA approach, and the fourth section presents IoC model and

its implementation as a framework. The transformation language

MOF 2.0 QVT is the subject of the fifth section. In the sixth

section, we present the UML, DI and DAO meta-models. In the

seventh section, we present the transformation rules using MOF

2.0 QVT from UML source model to the IoC target.

Relaed Works

Many researches on MDA and generation of code have

been conducted in recent years. The most relevant are

[3][4][5][6][7][8][9][10][11][12][13][14][15][20][36][38][39].

In [20] Bennitt, et al., allows code generation from models

to aspects in AspectJ, a java implementation of aspect-oriented

programming (AOP). The transformation among models is

accomplished by means of Extensible Markup Language (XML)

specifications and meta-models of XML and AspectJ. The code

is generated from the XML specifications and the aspects are

controlled in the system by throwing and handling exceptions.

The authors of the work [3] show how to generate JSPs and

JavaBeans using the UWE [4], and the ATL transformation

language [5][36]. Among future works cited, the authors

considered the integration of AJAX into the engineering process

of UWE.

Two other works followed the same logic and have been the

subject of two works [6][7]. A meta-model for Ajax was defined

using AndroMDA[37] tool. The generation of Ajax code has

been illustrated by an application CRUD (Create, Read, Update,

and Delete) that manages people.

ABSTRACT

The continuing evolution of business needs and technology makes applications more

demanding in terms of development, maintenance, usability and management. To cope with

this complexity, various frameworks and patterns are integrated for producing stable,

maintainable and testable code. Given this diversity of solutions, the generation of a code

based on UML models has become important. This paper presents, after establishing the

different meta-models, the application of the MDA (Model Driven Architecture) to generate,

from the UML model, the Code following the Ioc (Inversion of Control) and Dao (Data

Acces Object) patterns. The model-to-model transformations are also clearly and formally

established by using the standard MOF 2.0 QVT (Meta-Object Facility 2.0 Query-View-

Transformation) as transformation language. The transformation rules defined in this paper

can generate, from the class diagram, an XML file containing the Business and the Data

Access package. This file can be used to generate the necessary code of an architecture

overview of IoC and DAO patterns.

 © 2015 Elixir All rights reserved.

Elixir Comp. Engg. 87 (2015) 35584-35590

Computer Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

Model-To-Model Transformation with approach by modeling:

From UML to IoC Application model
Redouane Esbai and Mohammed Erramdani

MATSI Laboratory, ESTO, Mohammed First University, Oujda, Morocco.

ARTICLE INFO

Article history:

Received: 18 August 2015;

Received in revised form:

26 September 2015;

Accepted: 03 October 2015;

Keywords

MDA,

Model-To- Model,

Tranformation Rules,

Inversion of Control.

Tele:

E-mail addresses: es.redouane@gmail.com

 © 2015 Elixir All rights reserved

Redouane Esbai and Mohammed Erramdani/ Elixir Comp. Engg. 87 (2015) 35584-35590

35585

Meliá, Pérez and Díaz propose in [8] a new approach called

OOH4RIA which proposes a model driven development process

that extends OOH methodology. It introduces new structural and

behavioral models in order to represent a complete RIA and to

apply transformations that reduce the effort and accelerate its

development. In another work [9] they present a tool called

OIDE (OOH4RIA Integrated Development Environment) aimed

at accelerating the RIAs development through the OOH4RIA

approach which establishes a RIA-specific model-driven

process.

The Web Modeling Language (WebML) [10] is a visual

notation for specifying the structure and navigation of legacy

web applications. The notation greatly resembles UML class and

Entity-Relation diagrams. Presentation in WebML is mainly

focused on look and feel and lacks the degree of notation needed

for AJAX web user interfaces [11][12].

Nasir, Hamid and Hassan [13] have presented an approach

to generate a code for the dotNet application Student

Nomination Management System. The method used is WebML

and the code was generated by applying the MDA approach, but

the creation was not done according to the dotNet MVC2 logic.

This paper aims to rethink and complete the work presented

in [2][14], by applying the standard MOF 2.0 QVT to develop

the transformation rules aiming at generating the DI and DAO

target model.

Model Driven Architecture (MDA)

In November 2000, OMG, a consortium of over 1 000

companies, initiated the MDA approach. The key principle of

MDA is the use of models at different phases of application

development. Specifically, MDA advocates the development of

requirements models (CIM), analysis and design (PIM) and code

(PSM).

The MDA architecture [16] is divided into four layers. In

the first layer, we find the standard UML (Unified Modeling

Language), MOF (Meta-Object Facility) and CWM (Common

Warehouse Meta-model). In the second layer, we find a standard

XMI (XML Metadata Interchange), which enables the dialogue

between middlewares (Java, CORBA, .NET and web services).

The third layer contains the services that manage events,

security, directories and transactions. The last layer provides

frameworks which are adaptable to different types of

applications namely Finance, Telecommunications, Transport,

medicine, E-commerce and Manufacture, etc.).

The major objective of MDA [1] is to develop sustainable

models; those models are independent from the technical details

of platforms implementation (JavaEE, .Net, PHP or other), in

order to enable the automatic generation of all codes and

applications leading to a significant gain in productivity. MDA

includes the definition of several standards, including UML

[17], MOF [18] and XMI [19].

The IoC pattern

In traditional programming, the flow of the business logic is

determined by objects that are statically assigned to one another.

With inversion of control, the flow depends on the object graph

that is instantiated by the assembler and is made possible by

object interactions being defined through abstractions. The

binding process is achieved through dependency injection,

although some argue that the use of a service locator also

provides inversion of control.

In an article written in early 2004, Martin Fowler asked

what aspect of control is being inverted. He concluded that it is

the acquisition of dependent objects that is being inverted. Based

on that revelation, he coined a better name for inversion of

control: dependency injection [21].

In other words, Dependency Injection (DI) is a worthwhile

concept used within applications that we develop. Not only can

it reduce coupling between components, but it also saves us

from writing boilerplate factory creation code over and over

again. Many frameworks that implements DI pattern have

emerged, among them: Spring [27], Symfony dependency

injection [29], Spring.NET [28], EJB [31], PicoContainer [30].

(We have used some Spring classes in our source meta-model).

In object-oriented programming, there are several basic

techniques to implement inversion of control. These are:

1. using a factory pattern

2. using a service locator pattern

3. using a dependency injection of any given below type:

• a constructor injection

• a setter injection

• an interface injection

IoC in Spring framework

In Spring framwork, the Inversion of Control (IoC)

principle is implemented using the Dependency Injection (DI)

design pattern.

The Spring IoC container allows defining, mostly in XML

but also through Java annotations, so-called beans, which are

(usually named) instances of a Java type that is managed and

configured by the Spring framework.

Figure 3 presents the Spring IoC meta-model. Spring IoC

manages the different Beans. In this meta-model, a bean

instantiation can take three forms different depending on the

given task:

1. An instantiated bean constructor using a java constructor;

2. A bean factory-class uses a class with a static factory method

to retrieve an instance.

3. A factory-bean class uses a non-static factory method in

another bean.

A bean specification may include the constructor arguments

can uses are a constructor values or a factory method

parameters. Otherwise, each bean specification may include

properties containing values to be set by using the setters’

method or directly on fields. Values can be referenced to another

beans or be either a basis or again beans.

The Spring IoC defines four supported collection types: list,

set, map, and props. Each of them allows both setting static

values and references to other beans within the context... except

for props. There doesn't seem to be a way to set a reference

when using props. Each property may take form of one or

several lists, props, or reference. These property forms are:

Property: Represents a data type.

Props: This can be used to inject a collection of name-value

pairs where the name and value are both Strings.

Prop: Represents a property from the properties of the properties

file.

Value: Represents the value of property or many properties.

Reference: Represents the reference of an element.

List: This helps in wiring ie injecting a list of values, allowing

duplicates.

Approach by modeling

Currently, the models’ transformations can be written

according to three approaches: The approach by Programming,

the approach by Template and the approach by Modeling.

The approach by Modeling is the one used in the present

paper. It consists of applying concepts from model engineering

to models’ transformations themselves.

The objective is modeling a transformation, to reach

perennial and productive transformation models, and to express

their independence towards the platforms of execution.

Redouane Esbai and Mohammed Erramdani/ Elixir Comp. Engg. 87 (2015) 35584-35590

35586

Consequently, OMG elaborated a standard transformation

language called MOF 2.0 QVT [32]. The advantage of the

approach by modeling is the bidirectional execution of

transformation rules. This aspect is useful for the

synchronization, the consistency and the models reverse

engineering [33].

Figure 1. Spring IoC Meta-model

Figure 2 illustrates the approach by modeling. Models

transformation is defined as a model structured according to

MOF 2.0 QVT meta-model. The MOF 2.0 QVT meta-model

expresses some structural correspondence rules between the

source and target meta-model of a transformation [34]. This

model is a perennial and productive model that is necessary to

transform in order to execute the transformation on an execution

platform.

Figure 2. Approach by Modeling

MOF 2.0 QVT

Transformations models are at the heart of MDA, a standard

known as MOF 2.0 QVT being established to model these

changes. This standard defines the meta-model for the

development of transformation model.

The QVT standard has a hybrid character (declarative /

imperative) in the sense that it is composed of three different

transformation languages (see Figure 3).

The declarative part of QVT is defined by Relations and

Core languages, with different levels of abstraction. Relations

are a user-oriented language for defining transformations in a

high level of abstraction. It has a syntax text and graphics. Core

language forms the basic infrastructure for the declaration part;

this is a technical language of lower level determined by textual

syntax. It is used to specify the semantics of Relations language

in the form of a Relations2Core transformation. The declarative

vision comes through a combination of patterns, source and

target side to express the transformation.

The imperative QVT component is supported by

Operational Mappings language. The vision requires an explicit

imperative navigation as well as an explicit creation of target

model elements. The Operational Mappings language extends

the two declarative languages of QVT, adding imperative

constructs (sequence, selection, repetition) and constructs in

OCL edge effect.

The imperative style languages are better suited for complex

transformations including a significant algorithm component.

Compared to the declarative style, they have the advantage of

optional case management in a transformation. For this reason,

we chose to use an imperative style language in this paper.

Finally, QVT suggests a second extension mechanism for

specifying transformations invoking the functionality of

transformations implemented in an external language Black

Box.

Figure 3. The QVT Structure

This work uses the QVT-Operational mappings language

implemented by Eclipse modeling [35].

OCL (Object Constraint Language)

Object Constraint Language (OCL) is a formal language

used to describe expressions on UML models.

These expressions typically specify invariant conditions that

must hold for the system being modeled or queries over objects

described in a model. Note that when the OCL expressions are

evaluated, they do not have side effects. OCL expressions can be

used to specify operations / actions that, when executed, do alter

the state of the system. UML modelers can use OCL to specify

application-specific constraints in their models.

In MOF 2.0 QVT, OCL is extended to Imperative OCL as

part of QVT Operational Mappings.

Imperative OCL added services to manipulate the system

states (for example, to create and edit objects, links and

variables) and some constructions of imperative programming

languages (for example, loops and conditional execution). It is

used in QVT Operational Mappings to specify the

transformations.

QVT defines two ways of expressing model

transformations: declarative and operational approaches.

The declarative approach is the Relations language where

transformations between models are specified as a set of

relationships that must hold for successful transformation.

The operational approach allows either defining

transformations using a complete imperative approach or

complementing the relational transformations with imperative

operations, by implementing relationships.

Imperative OCL adds imperative elements of OCL, which

are commonly found in programming languages like Java. Its

semantics are defined in [32] by a model of abstract syntax. The

complete abstract syntax ImperativeOCL is shown in Figure 4.

Redouane Esbai and Mohammed Erramdani/ Elixir Comp. Engg. 87 (2015) 35584-35590

35587

The most important aspect of the abstract syntax is that all

expression classes must inherit OclExpression.

OclExpression is the base class for all the conventional

expressions of OCL. Therefore, Imperative Expressions can be

used wherever there is OclExpressions.

Figure 4. Imperative Expressions of ImperativeOCL

UML, DI and DAO meta-models

To develop the algorithm of transformation between the

source and target model, we present in this section, the different

meta-classes forming the UML source meta-model and the IoC

target meta-model. The meta-model source structure simplified

UML model based on a package containing the data types and

classes. These classes contain properties typed and characterized

by multiplicities (upper and lower). The classes contain

operations with typed parameters. Figure 5 shows the source

meta-model:

Figure 5. Simplified UML meta-model

DI and DAO target meta-models

Our target meta-model is composed of two essential part.

Figure 6 illustrates the first part of the target meta-model.

This meta-model represents a simplified version of the

DAO pattern. It presents the different meta-classes to express

the concept of DAO contained in the DaoPackage:

Figure 6. Simplified meta-model of DaoPackage

 CrudProjectPackage: represents the project package. This

meta-class is connected to the meta-class DaoPackage,

BusinessPackage and UIPackage.

 DaoPackage: represents package which contains the different

meta-classes to express the concept of DAO.

 IDao: represents the concept of Dao interface containing the

methods definition to create, retrieve, update, and delete data

in the database.

 DaoImpl: expresses the concept of Dao implementation, all

methods to create, retrieve, update, and delete data in the

database are implemented in this meta-class.

 Pojo: represents the concept of pojo. The latter extends the

meta-class Class. The Pojos represents objects in the area of

application. These objects communicate with the tables of

relational database.

Figure 7 illustrates the second part of target meta-model.

This meta-model is the business model of the application to be

processed. In our case, we opted for components such as DI

pattern. Here, we present the different meta-classes to express

the concept of DI contained in the Business Package.

Figure 7. Simplified meta-model of a BusinessPackage

This meta-model structures the models representing the

business logic of the target application.

Redouane Esbai and Mohammed Erramdani/ Elixir Comp. Engg. 87 (2015) 35584-35590

35588

 BusinessPackage: represents the package which contains the

different meta-classes to express the concept of the business

logic of target application.

 IService: represents the concept of service interface

containing the methods definition.

 ServiceImpl: expresses the concept of service implementation

containing the methods representing in IDao meta-class and

declared in IService meta-class.

 IDao: (already seen at the DaoPackage meta-model)

 Pojo: (already seen at the DaoPackage meta-model)

The Process of Transforming UML Source Model to IoC

Target Model

CRUD operations (Create, Read, Update, and Delete) are

most commonly implemented in all systems. That is why we

have taken into account in our transformation rules these types

of transactions.

We first developed ECORE models corresponding to our

source and target meta-models, and then we implemented the

algorithm using the transformation language QVT Operational

Mappings.

To validate our transformation rules, we conducted several

tests. For example, we considered the class diagram (see Figure

8). After applying the transformation on the UML model,

composed by the class Employee, we generated the target model

(see Figure 10).

Figure 8. UML instance model

Transformation rules

By source model, we mean model containing the various

classes of our business model. The elements of this model are

primarily classes.

Main algorithm

input umlModel:UmlPackage

output crudModel:CrudProjectPackage

begin

 create CrudProjectPackage crud

 create DaoPackage daoPackage

 for each e source model

 x = transformationRuleOnePojo(e)

 link x to dp

 x = transformationRuleOneIDao(e)

 link x to dp

 x= transformationRuleOneDaoImpl(e)

 link x dp

 end for

 create BusinessPackage bp

 for each e source model

 x = transformationRuleTwoIService(e)

 link x to bp

 x= transformationRuleTwoSrviceImpl(e)

 link x to bp

 end for

 create ApplicationContext applicationContext;

 link applicationContext to crud

 link dp to crud

 link bp to crud

 create object ApplicationContext applicationContext;

 return crud

end

function

transformationRuleOnePojo(e:Class):Pojo

begin

 create Pojo pj

 pj.name = e.name

 pj.attributes = e.properties

 return pj

end

function

transformationRuleOneIDao(e:Class):IDao

begin

 create IDao idao

 idao.name = 'I'+e.name+ 'Dao'

 idao.methods= declaration of e.methods

 return idao

end

function

transformationRuleOneDaoImpl(e:Class):DaoImpl

begin

 create DaoImpl daoImpl

 daoImpl.name = e.name+ 'DaoImpl'

 for each e1 DaoPackage

 if e1.name = 'I'+e.name+ 'Dao'

 put e1 in interfaces

 end if

 end for

 link interfaces to daoImpl

 return daoImpl

end

function

transformationRuleTwoIService(e:Class):IService

begin

 create IService iservice

 iservice.name = 'I'+e.name+ 'Service'

 iservice.methods = declaration of e.methods

 return iservice

end

function

transformationRuleTwoServiceImpl(e:Class):ServiceImpl

begin

 create ServiceImpl serviceImpl

 serviceImpl.name = e.name+ 'ServiceImpl'

for each e1 BusinessPackage

 if e1.name = 'I'+e.name+ 'Service'

 put e1 in interfaces

 end if

end for

 link interfaces to ServiceImpl

 return ServiceImpl

end

Figure 9 represents the first part of the code of the

transformation of UML model source to IoC target model.

Redouane Esbai and Mohammed Erramdani/ Elixir Comp. Engg. 87 (2015) 35584-35590

35589

Figure 9. A transformation code UML2CRUD

The transformation uses, in entry, a model of the UML type

named umlModel, and in output a model of the IoC named

crudModel.

The entry point of the transformation is the method ‘main’.

This method makes the correspondence between all the elements

of the UMLPackage type of the input model and the element of

the CrudProjectPackage type of the output model.

The objective of the second part of this code is to transform

a UML package into CrudProjectPackage, by creating the

elements of type package ‘Dao’ and ‘Business’. It is a question

of transforming each class of package UML IService and

ServiceImpl in the Business package and to Pojo, IDao and

DaoImpl in the Dao package, without forgetting to give names

to the different packages and creating the Spring

ApplicationContext.

Result

Figure 10 shows the result after applying the transformation

rules.

Figure 10. Generated PSM IoC model

The first element in the generated PSM model is

CrudFactory that contains ApplicationContext.xml file, DAO

Package and Business Package.

The second element in the generated PSM model is

DaoPackage which includes three DAOs’ interfaces, three

DAOs’ implementations and three Pojos’ objects that contains

their attributes and correspond to the three objects ‘city’,

‘employee’ and ‘department’. The last element in the generated

PSM model is BusinessPackage which contains three services’

interfaces that contains methods with their parameters and their

implementations.

Conclusion and perspectives

In this paper, we applied the MDA to generate, from the

UML class diagram, the code following the DI and DAO

patterns for a SpringIoC Framework.

After modeling, we have defined the traceability links

between the UML source meta-model and SpringIoC target

meta-model already obtained. The algorithm execution of QVTo

transformations allow browsing all transformation rules and

generate Spring framework PSM model respecting the

architecture of DI and DAO patterns. The generated SpringIoC

PSM model is an EMF model. This file can be used to produce

automatically the necessary target application code. Finally, the

algorithm of transformation manages all CRUD operations.

Moreover, it can be re-used with any kind of methods

represented in the UML class diagram.

In the future, we plan to generate a code from the generated

SpringIoC model by applying the model-to-Text (M2T)

transformations. Our objective is to facilitate more and more the

applications development. In other hand, we can extend this

method for considering other frameworks like JPA, JBossSeam

and DotNet.

References
[1] Pastor, O.,Molina J.C, Model-Driven Architecture in

Practice: A Software Production Environment Based on

Conceptual Modeling (New York: Springer-Verlag, 2007).

[2] Esbai, R., Erramdani, M., Mbarki, S., Model-Driven

Transformation for GWT with approach by Modeling:From

UML model to MVP web applications, International Review on

Computers and Software (I.RE.CO.S.), Vol. 9. n. 9, pp. 1612-

1620, September 2014.

[3] Koch, N., Transformations Techniques in the Model-Driven

Development Process of UWE, Proceeding of the 2nd

International Workshop Model-Driven Web Engineering, Palo

Alto (Page: 3 Year of publication: 2006 ISBN: 1-59593-435-9).

[4] Kraus, A., Knapp, A., Koch N., Model-Driven Generation

of Web Applications in UWE. Proceeding of the 3rd

International Workshop on Model-Driven Web Engineering,

CEUR-WS, Vol. 261, 2007

[5] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., ATL: A

model transformation tool. Science of Computer Programming-

Elsevier Vol. 72, n. 1-2: pp. 31-39, 2008.

[6] Distante, D., Rossi, G., Canfora, G., Modeling Business

Processes in Web Applications: An Analysis Framework. In

Proceedings of the The 22nd Annual ACM Symposium on

Applied Computing (Page: 1677, Year of publication: 2007,

ISBN: 1-59593-480-4).

[7] Gharavi, V., Mesbah, A., Deursen, A. V., Modelling and

Generating AJAX Applications: A Model-Driven Approach,

Proceeding of the7th International Workshop on Web-Oriented

Software Technologies, New York, USA (Page: 38, Year of

publication: 2008, ISBN: 978-80-227-2899-7)

[8] Meliá S., Gómez J., Pérez P., Díaz O., A Model-Driven

Development for GWT-Based Rich Internet Applications with

http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-261/paper03.pdf
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-261/paper03.pdf
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Jouault:Fr=eacute=d=eacute=ric.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Allilaire:Freddy.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kurtev:Ivan.html

Redouane Esbai and Mohammed Erramdani/ Elixir Comp. Engg. 87 (2015) 35584-35590

35590

OOH4RIA, Proceedings of ICWE '08. Eighth International

Conference on, Yorktown Heights, NJ, (Page: 13, Year of

publication: 2008, ISBN: 978-0-7695-3261-5).

[9] Meliá S., Gómez J., Pérez S., Diaz O. Facing Architectural

and Technological Variability of Rich Internet Applications.

IEEE Internet Computing, vol. 99, pp.30-38, 2010.

[10] S. Ceri, P. Fraternali, and A. Bongio. Web modeling

language (WebML): a modeling language for designing web

sites. Computer Networks, vol. 33(1-6) pp137–157, 2000.

[11] Preciado J. Carlos, M. Linaje, S. Comai, and F. Sanchez-

Figueroa. Designing Rich Internet Applications with Web

engineering methodologies. Proceedings of the 9th IEEE

International Symposium on Web Site Evolution

(WSE’07)(Page: 23 Year of publication: 2007).

[12] Trigueros M. L., J. C. Preciado, and F. S´anchez-Figueroa.

A method for model based design of Rich Internet Application

interactive user interfaces. In ICWE’07: Proceedings of the 7th

International Conference Web Engineering (page: 226 Year of

publication: 2007).

[13] Nasir, M.H.N.M., Hamid, S.H., Hassan, H., WebML and

.NET Architecture for Developing Students Appointment

Management System, Journal of applied science, Vol. 9, n. 8,

pp. 1432-1440, 2009

[14] Esbai. R, Erramdani, M., Mbarki, S., Arrassen. I, Meziane.

A. and Moussaoui. M., Model-Driven transformation with

approach by modeling: From UML to N-tiers Web Model,

International Journal of Computer Science Issues (IJCSI) , Vol.

8, Issue 3, May 2011, ISSN (Online): 1694-0814

[15] Esbai. R, Erramdani, M., Mbarki, S., Arrassen. I, Meziane.

A. and Moussaoui. M., Transformation by Modeling MOF 2.0

QVT: From UML to MVC2 Web model, InfoComp - Journal of

Computer Science, vol. 10, no. 3, p. 01-11, September of 2011,

ISSN 1807-4545.

[16] Miller, J., Mukerji, J., al. MDA Guide Version 1.0.1 (OMG,

2003).

[17] UML Infrastructure Final Adopted Specification, version

2.0, September 2003, http://www.omg.org/cgi-bin/doc?ptc/03-

09-15.pdf

[18] Meta Object Facility (MOF), version 2.0 (OMG, 2006)

[19] XML Metadata Interchange (XMI), version 2.1.1 (OMG,

2007),

[20] J. Bennett, K. Cooper and L. Dai, "Aspect-Oriented Model-

Driven Skeleton Code Generation: A Graph-Based

Transformation Approach, Science of Computer Programming-

Elseiver. vol. 75, no. 8, (2010), pp. 689-725.

[21] Fowler, M., Inversion of Control Containers and the

Dependency Injection pattern

(http://martinfowler.com/articles/injection.html)

[22] Echo2 source web site (http://echopoint.sourceforge.net/)

[23] Harris, Robert; Warner, Rob, The Definitive Guide to SWT

and JFACE (1st ed.), (Apress, 2004).

[24] Vaadin Framework web site (https://vaadin.com/home)

[25] ZK framework web site (http://www.zkoss.org)

[26] Nucleo .NET framework web site

(http://nucleo.codeplex.com/)

[27] Spring Source Web Site (http://www.springsource.org/).

[28] SpringNet Web Site(http://www.springframework.net/).

[29] Symfony open-Source PHP Web Framework Site

(http://www.symfony- project.org/

[30] PicoContainer. http://www.picocontainer.org/

[31] Panda, D., Rahman, R., Lane, D., EJB3 in action (Manning

co., 2007).

[32] Meta Object Facility (MOF) 2.0

Query/View/Transformation (QVT), Version 1.1 (OMG, 2009).

[33] Czarnecki, K., Helsen, S., Classification of Model

Transformation Approaches, Proceedings of the 2nd

OOPSLA’03 Workshop on Generative Techniques in the

Context of MDA. Anaheim (Year of publication: 2003).

[34] Philip Langer, Manuel Wimmer, Gerti Kappel, Model-to-

Model Transformations By Demonstration, Theory and Practice

of Model Transformations, LNCS Volume 6142, 2010, pp 153-

167 (Springer Berlin Heidelberg, 2010)

[35] Eclipse modeling, http://www.eclipse.org/modeling/.

[36] Jouault, F. Kurtev, I.: Transforming models with ATL. In:

Bruel, J.-M. (ed.) MoDELS 2005, LNCS, vol. 3844, pp. 128-

138. Springer, Heidelberg (2006)

[37] AndroMDA web site (http://www.andromda.org/).

[38] Dennis Wagelaar,Viviane Jonckers, Explicit Platform

Models for MDA, Model Driven Engineering Languages and

Systems, LNCS Volume 3713, 2005, pp 367-381 (Springer

Berlin Heidelberg, 2005).

[39] Kevin Lano,Shekoufeh Kolahdouz-Rahimi, Model-Driven

Development of Model Transformations, Theory and Practice of

Model Transformations, LNCS Volume 6707, 2011, pp 47-61,

(Springer Berlin Heidelberg 2011).

http://scialert.net/asci/ascidetail.php?doi=jas.0000.7950.7950&kw=
http://scialert.net/asci/ascidetail.php?doi=jas.0000.7950.7950&kw=
http://scialert.net/asci/ascidetail.php?doi=jas.0000.7950.7950&kw=

