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Introduction  

The Wiener model is a series connection of a linear 

dynamic bloc and a memoryless nonlinearity (Fig. 1). When 

both parts are parametric, the identification problem has been 

dealt with using several methods e.g. [1]-[4]. Multi-stage 

methods, involving two or several stages, have been proposed in 

e.g. [4].  

In this paper, the problem of identifying Wiener systems is 

addressed. Unlike many previous works, the model structure of 

the linear subsystem is entirely unknown. Furthermore, the 

system nonlinearity is of arbitrary-shape and can be 

noninvertible. This is only supposed to be well approximated, 

within any subinterval belonging to the working interval, with a 

polynomial of order p and unknown parameters, i.e. 
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The present strategy is allowed to interest a wide range of 

the system nonlinearity. The identification problem amounts to 

determining an accurate estimate of the (nonparametric) 

frequency response )( jG , for a set of frequencies )( 1 m  , 

and the nonlinearity. The present identification method is a two-

stage: the system nonlinearity is identified first, using simple 

constant inputs, and based upon in the second stage to identify 

the linear subsystem. 

The paper is organized as follows: the identification 

problem is formulated in Section 2; the nonlinear operator 

identification is coped with in Section 3; the linear subsystem 

frequency response determination is investigated in Section 4.                                                                                                                                                                                                                                            

 

 

Figure 1. Wiener model structure 

Identification problem statement  

Standard Wiener systems consist of a linear dynamic 

subsystem )(sG  followed in series by a memoryless nonlinear 

element (.)h  (Fig. 1). The above model is analytically 

described by the following equations: 

  

where  )()( 1 sGLtg   is the inverse Laplace transform of 

)(sG ; the symbol * refers to the convolution operation; ( )w t  is 

the internal signal; ( )x t  is the undisturbed output.  

the only measurable signals are the system input v(t) and 

output y(t). The equation error ξ(t) is a zero-mean stationary 

sequence of independent random variables; it accounts for 

external noise, it is supposed to be ergodic (so that arithmetic 

averages can be substituted to probabilistic means whenever this 

is necessary). The linear part is submitted to the following 

assumptions: 

A1. G(s) is BIBO stable (because system identification is carried 

out in open loop). 

The system nonlinearity h(.) is of arbitrary-shape. This latter 

is only supposed to be well approximated, within any 

subinterval belonging to the working interval, with a polynomial 

of order p. 

A2.There exist a given subinterval I such that:  
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, where 

  

 

0 ...
T

pC c c   
 is the coefficients 

vector of (.)h .  

Except for the above assumptions, the system is arbitrary, 

particularly (.)h  can be nonparametric outside of the subinterval 

I and the linear subsystem may have any structure. 

We aim at designing an identification scheme that is able to 

provide a model estimate  ˆˆ ( ), (.)kG j h  that represents well the 

system when. Since ( )w t  and ( )x t  are not measurable, the 

system identification should be fully based upon measurements 

of the input v(t) and the output system y(t). Therefore, the 

considered identification problem does not have a unique 

solution: if the model  ( ), ( )G s h w  represents a solution then, 

any model of the form  ( ) / , ( )G s k h kw  is also a solution 

(where k is any nonzero real). This naturally leads to the 

question: what particular model should we focus on? This 
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question will be answered later. Such a lack of uniqueness, will 

be exploited (in Section 3) to cope with the uncertainty on the 

amplitude of the internal signals ( )w t  and ( )x t . 

System nonlinearity identification 

In this section, we want to treat the problem of identifying a 

set of points belonging to non-linearity. In Section 2 it was 

shown that, if k  is any nonzero real, so any model of the form 

 ( ) / , ( )G s k h kw  is representative of the system. Accordingly, 

the system to be identified is described by the transfer function: 

)0(
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)(

G

sG
sG 

                                                          (2a) 

and the nonlinearity: 

   ( ) (0) ( )h w t h G w t                                         (2b) 

Then, (0) 1G  . Under these conditions, if )(tv  is constant 

then the steady-state undisturbed output ( )x t  depends only on 

the input value and the nonlinearity (.)h . 

The considered Wiener system and satisfying the properties 

2a-2b will be denoted  ( ), (.)G s h . 

Then, the considered system described by Equations 1a-1c 

is excited by simple constant inputs: 

( ) jv t V  for 1j N K                                 (3) 

where the number N is arbitrarily chosen by the user. 

Accordingly, as the linear subsystem ( )G s  is asymptotically 

stable, it follows that the steady-state of the internal signal ( )tw  

is constant i.e. ( )
j

t
t Ww


 , and is written using Equations 1a 

and 2a : 

j jW V  for 1j N K                                 (4) 

In which case, the undisturbed output ( )x t  is also constant 

(in the steady-state) i.e. ( )
j

t
Xx t


 . Then, it readily follows 

from Equations 1b and 4a that 
j

X  the undisturbed output system 

can be expressed as follows:  

 j jX h W  for 1j N K                                      (5) 

Finally, notice that the steady-state undisturbed output 
j

X  

( 1 )j N K  can simply be estimated using the fact that 

)()()( ttwty   and )(t  is zero-mean. Specifically, 
j

W  can 

be recovered by averaging )(ty  on a sufficiently large interval. 

Hence, a number of points of the nonlinear function (.)h  can 

thus be accurately estimated by repeating the above experiment 

successively for 
1V  to 

N
V . 

Note that each input value 
jV  ( 1 )j N K  is kept on during 

rl T  seconds making possible for the output signal to settle down 

within each interval of the form  ( 1) r rj lT jlT
 with 1j N K , 

where 
rT  should be comparable to the system rise time . 

Practically, one can determine a suitable value of N by observing 

any step response of the system. Then, the undisturbed output 

estimates can be given as follows; 

( 1)
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X p y t dt
pT 

 
 for 1j N K                 (6) 

Then, a set of points    , ,( )
j j j j

V V V Xh 
 (with 1j N K ) 

belonging to nonlinearity (.)h  can be accurately estimated.  

On the other hand, these results allow to determine the 

parameters vector 
  

 

0 ...
T

pC c c   
 by exciting by a set of points 

within to the subinterval I. 

Linear subsystem identification 

In this section, an identification method is proposed to 

obtain estimates of the complex gain corresponding to the two 

linear subsystem ( )G s  at the frequencies k ( 0,1, )k  K  

whatever 0 . 

All along this Section, the identified system is submitted to 

a given sine input: 

0( ) sin( )v t v V t                                                            (7) 

where the amplitude 0V  and v0 is any point chosen such 

that: ( )v t I . Let T be the corresponding period )/2( T . 

As the linear subsystem ( )G s  is asymptotically stable with 

unit static gain (using Equation 2a), it follows from Equation 1a 

that the internal signal ( )tw  turns out to be (in steady state): 

 0( ) ( ) sin ( )w t v V G j t                                        (8) 

with  ( ) arg ( )G j   . Also, it is readily obtained using 

assumption A2 and Equations (1b) and (8): 
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The term ( )kw t  in Equation (9) can be developed as follows: 
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where the value of the binomial coefficient k

rC  is given 

explicitly by: 

   !
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                                                             (11)      

Accordingly, it follows from Equation 9-11 that: 
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where the parameters vector 
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 is known. The 

only parameters unknown in the latter equation are the linear 

subsystem parameters (i.e. the modulus gain ( )G j  and the 

phase ( )  ). Finally, it is readily obtained using Equations 1c 

and (12): 
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                                                                                         (13) 

On the other hand, one can notice that the steady-state 

undisturbed output ( )x t  is periodic of same period T as the 

input, and )(t  is a zero-mean ergodic white noise, the effect of 

the latter can be filtered considering the following trans-period 

averaging of the output: 

 
1

1
ˆ ( ) ( 1)

L

L

k

x t y t k T
L 

  
,    Tt 0                        (14) 

for some (large enough) integer L. Finally, the estimates of 

the modulus gain ( )G j  and the phase ( )   can be easily 

obtained using the equations 12-14. 

Conclusion 

The problem of system identification is addressed for 

Wiener systems where the linear subsystem may be parametric 

or not, finite order or not. The system nonlinearity is of 
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arbitrary-shape and can be noninvertible. This is only supposed 

to be well approximated, within any subinterval belonging to the 

working interval, with a polynomial of order p and unknown 

parameters 

The identification problem is dealt with using a two-stage 

approach combining frequency. Data acquisition in presence of 

constant inputs is performed in the first stage following the 

procedure of Section 3. Then, an accurate estimate of a set of 

points belonging to the nonlinearity can be accurately estimated. 

Finally, the transfer function response is identified in the 

second stage using the algorithm described Section 4 and the 

estimator (14). To the author's knowledge no previous study has 

solved the identification problem for a so large class of Wiener 

systems. 
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