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Introduction 

It is claimed that the amount of data required to represent 

signals and images should be decreased by huge factors and then 

be restored the originals exactly. Conventional approaches for 

sampling signals or images follow Shannon‟s Sampling theorem 

which states that to avoid losing information when capturing a 

signal or image, the sampling rate must be at least twice the 

maximum frequency present in the signal. 

In many applications, including digital image and video 

cameras, the Nyquist rate is so high that too many samples 

result, making compression a necessity prior to storage or 

transmission. In other applications, including imaging systems 

like medical scanners and radars and high-speed analog-to-

digital converters, increasing the sampling rate is very 

expensive. 

Compressed Sensing is a novel sensing or sampling 

paradigm that goes against the common wisdom in data 

acquisition. CS theory asserts that one can recover certain 

signals and images from far fewer samples or measurements 

than traditional methods use. It is a simple and efficient signal 

acquisition technique that collects a few measurements about the 

signal of interest and later uses optimization techniques for 

reconstructing the original signal from what appears to be an 

incomplete set of measurements. Accordingly, CS can be seen 

as a technique for sensing and compressing data simultaneously. 

To make this possible, Compressed sensing relies on two 

principles:  

(i) Sparse representation of the signal of interest in some basis, 

and 

(ii) Incoherence between the sensing matrix and the 

representation basis, which pertains to the sensing modality 

sparsity expresses the idea that the “information rate”  of a 

continuous time signal may be much smaller than suggested by 

its band-width, or that a discrete-time signal depends on a 

number of degrees of freedom which is comparably much 

smaller than its (finite) length. More precisely, CS exploits the 

fact that many natural signals are sparse or compressible in the 

sense that they have concise representations when expressed in 

the proper basis ψ. 

Incoherence extends the duality between time and 

frequency and expresses the idea that objects having a sparse 

representation in ψ must be spread out in the domain in which 

they are acquired, just as a Dirac or a spike in the time domain is 

spread out in the frequency domain. Put differently, incoherence 

says that unlike the signal of interest, the sampling/sensing 

waveforms have an extremely dense representation in ψ . 

Introduction to DTMF tones 

Dual-tone multi-frequency signaling (DTMF) is used for 

telecommunication signaling over analog telephone lines in the 

voice-frequency band between telephone handsets and other 

communications devices and the switching center. The version 

of DTMF that is used in push-button telephones for tone dialing 

is known as Touch-Tone. It is the basis for voice 

communications control and is widely used worldwide in 

modern telephony to dial numbers and configure switchboards. 

It is also used in systems such as in voice mail, electronic mail 

and telephone banking. 

Prior to the development of DTMF, numbers were dialed on 

automated telephone systems by means of pulse dialing (Dial 

Pulse or DP in the U.S.) or loop disconnect (LD) signaling, 

which functions by rapidly disconnecting and reconnecting the 

calling party's telephone line, similar to flicking a light switch 

on and off. The repeated interruptions of the line, as the dial 

spins, sounds like a series of clicks. 

Multi-frequency signaling (MF) is a group of signaling 

methods that use a mixture of two pure tone (pure sine wave) 

sounds. Various MF signaling protocols were devised by the 

Bell System and CCITT. Based on using MF by specialists to 

establish long-distance telephone calls, Dual-tone multi-

frequency (DTMF) signaling was developed for the consumer to 
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signal their own telephone-call's destination telephone number 

instead of talking to a telephone operator.  

This paper organized as follows. Section-II describes the 

generation of DTMF tones briefly. Section –III is devoted to 

Compressed sensing of DTMF signals and simulation 

results are given in section-IV. Finally the conclusions and 

future scope is given at the end. 

Generating DTMF Tones 

A DTMF signal consists of the sum of two sinusoids or 

tones with frequencies taken from two mutually exclusive 

groups called Low frequency group (LFG) and High frequency 

group (HFG) as shown in table 1. 

Table 1. DTMF signal frequencies 
 

 

 

 

 

 

These frequencies were chosen to prevent any harmonics 

from being incorrectly detected by the receiver as some other 

DTMF frequency. Each pair of tones contains one frequency of 

the low group and one frequency of the high group and 

represents a unique symbol.  

The frequencies allocated to the push-buttons of the 

telephone pad are shown in Fig 1. 

 

Fig 1. Representation of telephone push button. 

From four frequencies of lower group and three frequencies 

of higher group, a total of twelve combinations are formed and 

thus represents twelve symbols; '1', '2', '3', '4', '5', '6', '7', '8', '9', 

'*', '0', '#'. Table.2 represents the corresponding frequencies of 

these symbols. 

Therefore the DTMF signal for a particular tone is obtained 

by the sum of two sinusoids with corresponding frequency 

combinations and are shown in Table 3. 

Compressed Sensing of DTMF Signals 

Here it was proposed to use Discrete Cosine Transform 

(DCT) as basis function. Each of the DTMF signal generated by 

a key on the touch tone telephone pad are sampled at a Sampling 

frequency of 40000Hz  for a period of 1/8 th of a second, that 

results a total of 5000 samples for each DTMF signal. Because 

the two frequencies of each DTMF tone are incommensurate, 

the signal does not fall exactly within the space spanned by the 

DCT basis functions, and so there are a few dozen significant 

nonzero coefficients. 

In the sensing mechanism, sensing of a signal f(t) generated 

by pressing of any key on the telephone pad, is defined as the 

process of collecting some measurements about f(t) by 

correlating  f(t) with the mentioned sensing waveforms {φj(t)}, 

i.e., the basis function DCT. 

 

Table 2.  Frequency combinations of different symbols 

Symbol 
Frequency 

combinations 

„1‟ 697 1209 

„2‟ 697 1336 

„3‟ 697 1477 

„4‟ 770 1209 

„5‟ 770 1336 

„6‟ 770 1477 

„7‟ 852 1209 

„8‟ 852 1336 

„9‟ 852 1477 

„*‟ 941 1209 

„0‟ 941 1336 

„#‟ 941 1477 

 

Table 3. DTMF signals for the frequency combinations of 

the 12 symbols 
Symbol DTMF tone 

„1‟ ( ) sin(2 (697) ) sin(2 (1209) )f t t t    

„2‟ ( ) sin(2 (697) ) sin(2 (1336) )f t t t    

„3‟ ( ) sin(2 (697) ) sin(2 (1477) )f t t t    

„4‟ ( ) sin(2 (770) ) sin(2 (1209) )f t t t    

„5‟ ( ) sin(2 (770) ) sin(2 (1336) )f t t t    

„6‟ ( ) sin(2 (770) ) sin(2 (1477) )f t t t    

„7‟ ( ) sin(2 (852) ) sin(2 (1209) )f t t t    

„8‟ ( ) sin(2 (852) ) sin(2 (1336) )f t t t    

„9‟ ( ) sin(2 (852) ) sin(2 (1477) )f t t t    

„*‟ ( ) sin(2 (941) ) sin(2 (1209) )f t t t    

„0‟ ( ) sin(2 (941) ) sin(2 (1336) )f t t t    

„#‟ ( ) sin(2 (941) ) sin(2 (1477) )f t t t    

   
,j jx y   

   for  j = 1, 2, . . . ,m 

   That is, we simply correlate the object we wish to acquire 

with the waveforms ϕj(t ). Fig 2 shows The random samples of 

the signal generated by a single key “A” and its inverse DCT. 

     Let „A‟ denote the m× n sensing matrix with the vectors 

ϕ1, ϕ2,…ϕm as rows, the process of recovering  f ∈  R
n
 from y 

= Af ∈  R
m
 is ill-posed in general when m < n, i.e there are 

infinitely many candidate signals f‟ for which  A f‟ = y. 

   Accordingly, the equation for xj can be rewritten in matrix 

form as 

x y 
 

where the jth row of the sensing matrix Φ ∈  R
m×n

 is the 

discrete representation of the jth sensing function φj(t), and  

y ∈  R
n
 is the discrete representation of y(t). 

   For a single tone, the matrix A can be constructed by 

extracting m rows from the n-by-n DCT matrix 

( ( , ));D dct eye n n
 

     
( ,:)A D k

 
where k is the vector of indices used for the sample b. The 

resulting linear system, Ax = b, is m-by-n, which is 500-by-

5000. There are 10 times as many unknowns as equations. To 

reconstruct the signal, we need to find the solution to Ax = b 

that minimizes the L1 norm of x. This is a nonlinear 

optimization problem, and one of the several MATLAB based 

Low frequency group High frequency group 

697 Hz 1209 Hz 

770 Hz 1336 Hz 

852 Hz 1477Hz 

941 Hz  
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programs, chosen to solve it is L1-magic, written by Justin 

Romberg and Emmanuel Candès. 

The upper plot in Fig  3 shows the resulting solution, x. It is 

observed that it has relatively few large components and that it 

closely resembles the DCT of the original signal. Moreover, the 

discrete cosine transform of x, shown in the lower plot, closely 

resembles the original signal. If audio was available, it would be 

possible to hear that the two commands sound(f) and  

sound(dct(x)) are nearly the same. 

The process is repeated for all the keys on the telephone pad 

which results the similar reconstruction of the original tone 

signal. The Goertzel algorithm is well suited for this 

reconstruction of all the dual tone frequencies. Fig 3 shows the 

estimated DTMF tones in a telephone pad with The Goertzel 

algorithm. 

Simulation Results  

The concept of compressive sensing is first applied to a 

single tone frequency and is simulated for intermediate results 

on MATLAB software. The corresponding simulation results for  

sampled signal and its reconstructed signal for that single tone 

are shown in Fig 2 and Fig 3 respectively. 

The similar approach of a single tone is applied to the group 

of DTMF signal, where the reconstructed signals are estimated 

using Goertzel algorithm. The corresponding results for sampled 

signal and its estimation are shown in Fig 4 and Fig 5 

respectively. 

 

 
Fig 1. The random samples of the signal generated by a 

single key “A” and its Inverse DCT 

 

 
Fig 2. The L1 solution to a single tone signal that is nearly 

equal to the original 

Conclusion & Scope of Improvement 

Conclusions 

The mechanism of Compressive sensing, as is well known, 

reduces the number of measurements for representing a signal 

and makes the system underdetermined. While reconstructing 

the original signal from these less number of measurements, 

they should preserve the originality of the signal. In this point of 

view, using L1 minimization algorithms is the best choice 

compared to L2 minimization. The L1 computation is practical 

because it can be posed as a linear programming problem and 

solved with the traditional simplex algorithm or modern interior 

point methods. 
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Fig 3. Estimated DTMF tones in a telephone pad with 

Goertzel algorithm 
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Fig 4. Estimation of corresponding frequencies of each 

DTMF tone using Goertzel algorithm 
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Scope of Improvement  

Compressed sensing provides wider scope for improvement 

by sensing and compression of a signal of interest of any 

application. Here a DTMF signal is taken which is the basis for 

voice communication, but the similar concept can be applied to 

any type of signals where compression makes it efficient. 

The DCT basis function was worked out effectively in our 

concept for compressing and reconstructing the signal. For 

better representation with fewer computations, one can work 

with Wavelet Transform. 

References 

[1] Cleve Moler, “Magic” Reconstruction: Compressed Sensing, 

MathWorks News&Notes (2010) 

[2] E. Candès, J. Romberg, and T. Tao, “Stable signal recovery 

from incomplete and inaccurate measurements,” Commun. Pure 

Appl. Math., vol. 59, no. 8, pp. 1207–1223, 2006. 

[3] E. Candès and T. Tao, “Near optimal signal recovery from 

random projections: Universal encoding strategies?,” IEEE 

Trans. Inf. Theory, vol. 52, no. 12, pp. 5406–5425, Dec. 2006. 

[4] Emmanuel Candès, Justin Romberg, and Terence Tao, 

“Robust uncertainty principles: Exact signal reconstruction from 

highly incomplete frequency information,” IEEE Transactions 

on Information Theory, 52(2): 489 - 509, February 2006 

[5] David Donoho. “Compressed Sensing,” IEEE Transactions 

on Information Theory, 52(4): 1289 - 1306, April 2006 

[6] Richard G. Baraniuk, “Compressive Sensing”, lecture notes, 

IEEE Signal Processing Magazine, pp. 118-124, July 2007. 

[7] J. Tropp and A.C. Gilbert, “Signal recovery from partial 

information via orthogonal matching pursuit,” Apr. 2005. 

http://www-personal.umich.edu/~jtropp/papers/TG06-Signal- 

Recovery.pdf 

[8] Candès, Emmanuel J., and Michael B. Wa-kin. 2008. An 

introduction to compressive sampling.  IEEE Signal Processing 

Magazine 25(2):21–30. 

[9] MacKenzie, Dana, Compressed sensing makes every pixel 

count. In What‟s Happening in the Mathematical Sciences, Vol. 

7. Providence, R.I.: American Mathematical Society, 2009. 

http://authors.library.caltech.edu/4792/1/CANieeetit06.pdf
http://authors.library.caltech.edu/4792/1/CANieeetit06.pdf
http://www-stat.stanford.edu/~donoho/Reports/2004/CompressedSensing091604.pdf

