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Introduction 

For the analysis and synthesis of single and coupled 

microstripline several investigators have developed various 

models based on pure TEM-mode, Quasi-TEM mode and Non-

TEM mode. Microstripline has been analyzed by many 

investigators. Most of the initial work was based on the pure 

TEM or Quasi-TEM analysis. Based on this approach Wheeler 

derived the characteristic impedance and propagation 

parameters. Numerical methods adopted by Stenelhalfer and 

Sylvester have yielded most accurate results. Non-TEM analysis 

for determining dispersion in microstrip has been adopted by 

many investigators. Mitra et al. Thomas G.Bryant and J.A.Weiss 

used hybrid modes and numerical methods, while Getsinger and 

E.J.Delinger have given results based on simplified circuit 

models. 

 
Methods of Microstrip Analysis 

For both the single and coupled line methods of analysis 

may be divided into three groups basically. First is quasi static 

method. This analysis is adequate for designing circuits at 

frequency below X-band (8 GHz), where the strip width and 

height of the substrates are not longer than the wavelength in the 

substrate. Second is called dispersion method in which the 

deviation from the TEM-mode is accounted for quasi 

empirically. The third group is hybrid method; the account is to 

be taken for the modes of propagation. Most important and 

common models are: 

 Conformal transformation model 

 Coupled analysis model 

 Hybrid analysis model 

 Numerical analysis by relaxation model 

 Even and odd-mode models, which is the outcome of the 

coupled line model. 

Conformal Transformation Model 

In case of lower frequency range wave propagation along 

the microstripline has been considered to be a pure TEM-mode 

by H.A.Wheeler. The characteristic impedance is given by: 

 Zp = 1/ VpC 

 Where, Vp = phase velocity of the wave 

 C = capacitance per unit length of the line 

By the use of set of conformal transformation the microstrip 

geometry is first converted into parallel plate geometry. For 

calculating capacitance real and imaginary parts of an analytic 

function of a complex variable satisfy the Laplace equation. In 

electrostatics the electric potential V(x,y) and the flux Ф(x,y) of 

the displacement vector D( = ϵE) also have the same properties.  

    ∇ 
2
V(x, y) = 0 and ∇  

2
f(x, y)=0 

-∂v/∂x = ∂φ/∂y  and -∂v/∂y = ∂φ/∂x 
Transformation Used In Single Microstripline Analysis 

Conformal transformation suited for analyzing microstrip 

geometry had been proposed by H.A.Wheeler and the parallel 

strip geometry has analyzed by using Schwartz-Christoffel 

transformation defined by: 

dZ/dt = f‟(t) = A/(t – r1)α1 (t – r2)α2……………………………… (t – rk)αk 

Where  Z = (x + jy) 

 t = (r + jw) are complex variables. 
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A is complex constant and r1, r2, ………etc are real finite 

numbers. 

Microstrip geometry can be obtained by inserting a plane of 

symmetry half way between the two strips and effect of the 

dielectric substrate has been also discussed by Wheeler. Figure 

shows the electric and magnetic field configuration. 

 
Using different methods Wheeler has obtained the following 

transformation for the microstrip geometry: 

Z-plane to t-plane transformation 

 Z = JP + t – 2tanh
-1

(t/v) 

t-plane to W-plane transformation 

 t = Vtanh(w/z) 

Characteristic Impedance 

The line capacitance for one quarter of a profile is equal to 

that for complete the profile and may be expressed in terms of M 

as: 

(C / ∈o ) (w /2h) = (n + 1 + ln [2π ((m/π)+ 0.94) ]/n) 
 

Where n = πw/2d 

Hence the characteristic impedance Zo of the parallel stripline 

may be written as: 

Zo / (n2h /w) = m /  (m + 1 + ln(2π(m/π) - 0.94)) 

Where μ = intrinsic impedance for free space = 377 Ω 

The impedance of wide strip (w >> d) is given as: 

Zo=((n/2π)(√2/(∈r))+ 1) [ln(8h/w)+ ((w/2h)
2
8) 

       -((∈r-      1)/(∈r+1) ) < ln(π/2)+ (1/(∈r) ln(4/π
2
) 

For the narrow strip case (w << d) the impedance is: 

Zo = (n/√∈r)(h/w)[1 + (h/πw) (2ln4 + (1 + (1/6)r)         

ln(πe((w/2h) + 0.94)/2 + ((1/∈r) – (1/∈r)) ln(eπ
2
/10)]

-1
 

Effective Dielectric Constant 

The effective dielectric constant is a weighted mean of the 

dielectric constants of the two materials. If two dielectric 

materials in the capacitor are replaced by a material with a 

dielectric constant equal to the effective dielectric constant, the 

values of the capacitance remains unchanged. There are two 

cases of mixed dielectrics: 

 The dielectric boundaries are located along the flux lines, and 

the configuration may be considered as two capacities with 

different dielectric in parallel. 

 The dielectric boundaries are along the potential contours and 

the configuration may be considered as two capacitors are in 

series.  

For capacitors that are partially filled with a dielectric and 

remaining parts filled with air is that of effective filling fraction 

and related with effective dielectric constant as: 

∈reff  = (1 - q) + q ∈r – 1 + (∈r - 1) 

In case of parallel combination q is identical with the actual 

filling fraction and in general the volume occupied by dielectric 

can be divided into an equivalent parallel volume Vp and an 

equivalent series volume Vs. Vd is the volume occupied by the 

dielectric out of a total volume V1 the actual filling fraction q is 

given as: 

  q = Vd/V 

The parallel part of the filling fraction is 

 q ‟‟ = (Vd – Vs)/V 

 q „‟ = q „ – Vs/V 

For small values of Vs series volume is only 1/ϵr times as 

effective as Vp. The effective filling fraction is therefore given 

as: 

 q = q „‟ + (q – q „‟)/ϵr 

 q = q „/ϵr + [1 – (1/ϵr)] q „‟ 

Model for Microstripline Coupler 

In addition to K.C.Gupta, S.K.Kaul, Bhat and Bhartia, 

P.Selvester, Karage and Haddad have developed models for 

coupled microstripline transmission systems. The method of 

analysis is taken into account the coupling between quasi TEM-

mode along the microstripline and TM10 surface wave mode on 

the dielectric substrate with the metallization on the bottom 

surface reported by Hartwig et al and Jan et al. They assumed 

that a strong coupling exists between the two modes. At upper 

cut-off frequency (fU) the phase velocity of the quasi TEM-mode 

along the microstripline is equal to the phase velocity of TM10 

surface on the substrate. At frequency below fL, the effective 

dielectric constant for the coupled modes is obtained in terms of 

effective dielectric constant of the uncoupled modes by using the 

coupled mode theory. 

∈reff1,2 = [(√∈reff 0 + √∈reff TM)/2 ± √(∈r 1,2 ∈r 2,1) + 

(√∈reff 0 - √∈reff TM)
2
/4)]

2 

Where,  

∈r 1,2 / ∈m = ∈2,1 /∈m = Coupling Coefficient between        

the modes  

And    ∈m= (√∈reff0 - ∈reff)TM 
Coupling coefficient is given as, 

∈21 2 = 0.22(√∈r – 1)2(w/h)3/4(f/fl)4/3 
This model may be used up to a frequency of 0.5 GHz. 

Model for the Analysis of Microstripline Coupler for Even 

and Odd-Modes 

Because of the coupling of electromagnetic fields a pair of 

coupled line can support two different modes of propagation. 

The velocity of propagation of these two modes is equal when 

the lines are embedded in a homogeneous dielectric medium. 

The effective dielectric constants and the phase velocities are not 

equal for these modes. This non-synchronous feature 

deteriorates the performance of the circuits. The even and odd 

mode method is the most convenient method to describe the 

behavior of symmetrical coupled lines. Here phase velocity 

along a coupled pair of lines is expressed in terms of two modes 

corresponding to an even and odd symmetry about a plane 

which can be replaced by a magnetic and electric wall for the 

purpose of analysis. 
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Even mode forward coupling 

 
Odd mode reverse coupling 

Here the dotted line indicates the symmetry plane. If equal 

in phase voltages are applied to the ports 1 and 2 a maximum 

voltage occurs along line of symmetry, hence the junction may 

be open circuited at the symmetry line without affecting the field 

distribution and a magnetic wall may be located at this plane. If 

two equal and opposite voltages are applied to port 1 and 2, the 

voltage at the line of symmetry will be zero. Hence a short 

circuit may be located in the symmetry plane without affecting 

the field distribution. For each mode the analysis reduces to that 

of a two port network. By superposition the sum of two modes is 

equivalent to a single voltage applied to port 1. The two coupled 

mode lines are terminated by input and output lines of 

characteristic impedance Zo. For couples to be matched at all 

frequencies it is necessary that the input impedance Zin at the 

port 1 be always equal to Zo. Superposing these two modes the 

input impedance is expressed as: 

Zin = (E1o + E1e) / (I1o + I1e) 

 

Where,  I1o = (E/Zo) + Z1o 

  I1e = (E/Zo) + Z1e 

  E1o = (EZ1o/Zo) + Z1o 

  E1e = (EZ1o/Zo) + Z1e 

Where Z1e and Z1o are the input impedances for the coupled 

lines under the even and odd-modes excitation respectively. 

Using transmission line equation it can be shown that: 

Z1e = Zoe (Zo+ JZoetanθe) / (Zoe + JZoetanθe) 

Z1o=Zoo (Zov+ JZootanθo) / (Zoo  + JZootanθo) 

Where Zoe and Zoo are even and odd-mode characteristic 

impedances of the coupled lines respectively. 

Өe and Өo are the electrical length of the micro strip. For even 

and odd modes: 

Өe = 2πfL/Vpe 

Өo = 2πfL/Vpo 

Where L is the physical length of the coupled lines and Vpe and 

Vpo are the phase velocities for the two modes. 

If E1, E2, E3 and E4 are the voltages appearing at the four ports 

and re and ro and Te and To are reflection and transmission 

coefficients. Then, 

 E1 = E (re + ro)/2 

 E2 = E (re – ro)/2 

 E3 = E (Te - To)/2 

 E4 = E (Te + To)/2 

The transmission and reflection coefficients are expressed 

in terms of transfer matrices, relates input voltage and current to 

the output voltage and current by the relation. 

 
 

Using matched condition it can be shown that, 

 

Γe= -Γo= [{J(Zoe/Zoo)
1/2

- (Zoo/Zoe)
1/2

} sinθ]/Ʃ 

And   

Γe= Γo = 2/ Ʃ 

Ʃ = 2cosθ + J[√(Zoe/Zoo) + √(Zoo/Zoe)]sinθ 

 
Then from above equations, we get 

E1 = E3 = 0 

E2/E = JcSinθ/{√(1 – c
2
)} Cosθ + JSinθ 

E4/E = √(1 – c
2
)/{ √(1 – c

2
)}Cosθ + JSinθ 

Where, 

C = {(Zoe/Zoo) – 1}/{(Zoe/Zoo) + 1}  

   = Coupling Coefficient 
The coupling is maximum when Ө = π/2, that is the section 

of the micro strip is one quarter wavelength long. C is the non- 

band voltage coupling. E1 and E2 are out of phase of 90
0
 at all 

frequencies. 

Coupled Mode Approach 

In this approach the wave propagation is expressed in terms 

of the modes of propagation on individual uncoupled lines 

modified by the coupling due to mutual capacitances and 

inductances. This is applicable to symmetric and asymmetric 

coupled lines. In the mode of analysis the voltages on the line is 

written in terms of the currents on both lines and the self and 

mutual impedances. Similarly the current is written in terms of 

voltages and admittance. Elimination of currents or voltages 

yields the coupled equation. The solution of these coupled 

equations determines the propagation constants for the two 

modes. 
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Discussion and Conclusion 

The above study reveals that a model is developed for the 

study of single and coupled microstripline structures in both 

even and odd-modes. Numerical methods adopted by the 

Stenelhalfer and Sylvester works and applied satisfactorily. The 

topic discussed above provides useful guidelines for the design 

of different microstripline structures such as: Coupler, 

Directional Coupler, Isolator, Circulators etc. These results are 

also very useful for the study of reflection and transmission co-

efficient of the microstripline coupler in case of both even and 

odd-modes of propagation. 
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