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Introduction  

During the past four decades, vibration of plates has 

become an important subject in engineering applications. There 

are several papers about plate vibrations in open technical 

literature. Square plates have many engineering applications. 

These are commonly found in spacecrafts, missiles, land base 

vehicles, off-shore platforms, and underwater acoustic 

transducers.  

In recent years, interest in the effect of temperature on solid 

bodies has highly increased because of rapid development in 

space technology, high speed atmospheric flights and in nuclear 

energy applications. Further, in mechanical systems where 

certain parts of machine have to operate under elevated 

temperature, its effect is far from negligible. The reason for this 

is that during heating up period of structures exposed to high 

intensity heat fluxes, the material properties under go significant 

vibrations. Since new materials and alloys are in great use in the 

construction of technically designed structures therefore the 

application of visco-elasticity is the need of the hour.  Plates 

with thickness variability are of great importance in a wide 

variety of engineering applications. 

Leissa [1] gave different models on the vibration of plates. 

Recently, Gupta and Lalit kumar [2] studied Thermal effects on 

the vibration of non-homogeneous visco-elastic rectangular 

plate of linearly varying thickness. Gupta and Anupam Khanna 

[3] discussed thermal effect on vibrations of parallelogram plate 

of linearly varying thickness. A. Khanna, A. Kumar and M. 

Bhatia [4] recently presented an analysis on two dimensional 

thermal effect with two dimensional varying thickness of visco- 

elastic square plate. The effect of thermal gradient on the 

frequencies of an orthotropic plate of linearly varying thickness 

has been discussed by Tomar and Gupta [5]. Vibration of 

rectangular plates by the Ritz method was given by Young [6]. 

Tomar and Gupta [7] discussed the effect of thermal gradient on 

frequencies of an orthotropic rectangular plate whose thickness 

varies in two directions.  

An analysis is presented on the vibration of clamped visco-

elastic rectangular plate with parabolic thickness variations by 

Gupta and Anupam Khanna [8]. Singh and Saxena [9] presented 

an analysis on transverse vibration of rectangular plate with bi-

directional thickness variation. Gupta and Kaur [10] studied the 

effect of thermal gradient on free vibration of visco-elastic 

rectangular plates with linearly thickness variation in both 

directions. Vibration behavior and simplified design of thick 

rectangular plates with variable thickness considered by 

Sasajima, Kakudate and Narita [11]. An interesting analysis of  

the free vibration of rectangular plate is given by Leissa [12]. 

Gupta and Khanna [13-14] discussed the free vibration of 

clamped visco-elastic rectangular plate having bi-direction 

thickness variations.  

It is assumed that the plate is clamped on all the four edges 

and its temperature varies linearly in both the directions. Due to 

temperature variation, we assume that non homogeneity occurs 

in Modulus of Elasticity.  For various numerical values of 

thermal gradient and taper constants; frequency for the first two 

modes of vibration are calculated with the help of latest 

software.  

Equation of Motion 

The governing differential equation of transverse motion of a 

visco-elastic plate of variable thickness in Cartesian co-ordinates 

[1]: 

  
2

2

2

y

2

yx

2

2

x

2

t

w
ρh

y

M

yx

M
2

x

M




















                     (1) 

The expression for Mx, My, Myx are given by 
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where D is visco-elastic operator.  

 
Fig I - Square plate with bending moments 

On substitution the values Mx, My and Myx from equation (2) in 

(1) and taking w, as a product of two function, equal to 

w(x,y,t)=W(x,y)T(t), equation (1) become: 
4 4 4 3 3 3 3
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Here dot denote differentiation with respect to t. taking both 

sides of equation (3) are equal to a constant p
2
 (square of 

frequency), we have 
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      (4) 

Eq. (4) is a differential equation of transverse motion for non-

homogeneous plate of variable thickness. Here, D1 is the 

flexural rigidity of plate i.e. 

          

3 2/12(1 )
1

D Eh v 
         (5) 

and corresponding two-term deflection function is taken as [5]        
2

[( / )( / )(1 / )(1 / )] [ ( / )( / )(1 / )(1 / )]1 2W x a y a x a y a A A x a y a x a y a               

      (6) 

where A1 and A2 are constants to satisfy boundary conditions. 

Assuming that the square plate of engineering material has a 

steady two dimensional linear temperature distribution i.e. 

              
(1 / )(1 / )

0
x a y a   

           (7) 

where τ  denotes the temperature excess above the reference 

temperature at any point on the plate and 0τ  denotes the 

temperature at any point on the boundary of plate and “a” is the 

length of a side of square plate. The temperature dependence of 

the modulus of elasticity for most of engineering materials can 

be expressed in this 

                     
 1-

0
E E 

                 (8) 

where,  E0 is the value of the Young's modulus at reference 

temperature i.e. 0τ   and 
γ

 is the slope of the variation of E 

with τ . The modulus variation (5) become 

              0[1 (1 / )(1 / )]E E x a y a   
          (9) 

where 0(0 1)    
 , thermal gradient. 

It is assumed that thickness also varies parabolic in x- directions 

as shown below: 

             
2 2

0 1(1 / )h h x a 
                         (10) 

where 1 is taper parameters in x- directions respectively and 

h=h0 at x=y=0. 

 
Fig II:- Plate with parabolic varying thickness 

Put the value of E & h from equation (9) & (10) in the equation 

(5), one obtain 
3 2 2 3 2

1 0 0 1[ [1 (1 / )(1 / )] (1 / ) ] /12(1 )D E x a y a h x a v      
   (11)     

Rayleigh-Ritz technique is applied to solve the frequency 

equation. In this method, one requires maximum strain energy 

must be equal to the maximum kinetic energy. So it is necessary 

for the problem under consideration that 

            
* *( ) 0V T                                   (12) 

for arbitrary variations of W satisfying relevant geometrical 

boundary conditions. 

Since the plate is assumed as clamped at all the four edges, so 

the boundary conditions are 

       

W=W, =0,     x=0,ax

W=W, =0,     y=0,a
y                       (13) 

Now assuming the non-dimensional variables as 

/ ,X x a
 

/ ,Y y a
  

/ ,W W a
  /h h a         (14) 

The kinetic energy T* and strain energy V* are [2] 
1 1
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where,   
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Using equations (15) & (16) in equation (12), one get 
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where, 
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and 
1 1

** 2 2

1
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[(1 ) ]T X W dYdX             (19) 

Here,
2 2 2 2 2

0 012 (1 ) /p v a E h  
 is a frequency parameter. 

Equation (19) consists two unknown constants i.e. A1 & A2 

arising due to the substitution of W. These two constants are to 

be determined as follows 

                 
** 2 **( ) / 0nV T A   

   , n=1, 2       (20) 

On simplifying (20), we gets 

                          1 1 2 2 0bn A bn A 
  , n=1, 2         (21) 

where bn1, bn2 (n=1,2) involve parametric constant and the 

frequency parameter. 
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For a non-trivial solution, the determinant of the coefficient of 

equation (21) must be zero. So one gets, the frequency equation 

as 

    

11 12

21 22

0
b b

b b


              (22) 

With the help of equation (22), one can obtains a quadratic 

equation in λ
2 

from which the two values of λ
 2 

can found. These 

two values represent the two modes of vibration of frequency 

i.e. λ1 (Mode1) & λ2 (Mode2) for different values of taper 

constant and thermal gradient for a clamped plate. 

Result and Discussion 

All calculations are carried out with the help of latest Matrix 

Laboratory computer software. Computation has been done for 

frequency of visco-elastic square plate for different values of 

taper constant 1, thermal gradient  , at different points for first 

two modes of vibrations.  

Table 1:- It is clearly seen that value of frequency decreases as 

thermal gradient increases from 0.0 to 1.0 for β1=0, β1=0.4 and 

β1=0.6 for both modes of vibrations. Also, note that frequency 

increases fast as taper parameters (β1) increase from 0.0 to 0.4 

and 0.6 respectively. 

Table 2:- Value of frequency increases with the increment in 

taper parameter β1 for following cases  

i) α= 0.2, iii) α =0.4     ii)   α= 0.8 

Interesting to note that frequency increases with the increment in 

β1 from 0.0 to 1.0. Also, value in case (iii)and (ii) are more than 

from case (i). 

Graph 1:- Frequency Vs Thermal gradient 

 
Conclusion 

So, main aim for our research is to develop a theoretical 

mathematical model for scientists and design engineers so that 

they can make a use of it with a practical approach, for the 

welfare of the human beings as well as for the advancement of 

technology. 

 

 

 

Graph 2:-Frequency Vs Taper constant 

 
Table 1:- Frequency Vs Thermal gradient 

Α 
β1=0.0 β1=0.4 β1=0.6 

Mode1 Mode2 Mode1 Mode2 Mode1 Mode2 

0 140.88 35.99 162.18 41.57 174.40 44.71 

0.2 137.32 35.08 158.74 40.68 171.01 43.82 

0.4 133.65 34.15 155.22 39.77 167.54 42.92 

0.6 129.88 33.19 151.62 38.84 164.00 41.98 

0.8 126.01 32.19 147.92 37.88 160.39 41.03 

1 122.01 31.17 144.15 36.90 156.05 40.07 
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