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Introduction  
The space-time ‘  ‘is the proper performance measure for the flow reactors. It is defined as the actual time required to process 

one reactor volume of feed measured at specified conditions and has the unit of time. 

For a steady-state plug flow reactor, the space-time is evaluated by the expression given by O. Levenspiel [11], as; 
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Where XA is the degree of conversion, which is the ratio of moles of reactant converted; to the moles of reactant initially present. 

For an unimolecular type 
thn  order reaction (n 0,1 ) and constant density system; equation (1.1) may be written as         
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For a constant density system, we have 

A A0 AC C (1 x ) 
                                                    …… (1.3) 

Thus, equation (1.2) takes the form  
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Equation (1.4) on further simplification yields  
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              …… (1.6) 
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                          …… (1.7) 

For, XA=1; equation (1.6) and equation (1.7) gives unsatisfactory results and are thus worked upon further. 

Thus, Hypergeometric series serves as the best mathematical tool to deal with this situation. 

We now express equation (1.6) and equation (1.7) in terms of Hypergeometric function. 

Representation in Terms of Hypergeometric function 

The Hypergeometric function is defined by A.R. Forsyth [4], as 

2 3( 1) ( 1) ( 1)( 2) ( 1)( 2)
F( , ; ;x) 1 x x x ....

1. 1.2. ( 1) 1.2.3. ( 1)( 2)

              
        

         
f

 
                                                                                            …… (2.1) 

 n 1
A n n A0F(n 1,a;a;x ) k C (n 1) 1    f

                   ..… (2.2) 

Similarly, equation (1.7) can be expressed in terms of Hypergeometric function as 
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                  …… (2.3) 

Left Hand Side of equation (2.2) and equation (2.3) represents Hypergeometric function. 

But both of these equations have an undetermined element ‘a’ and ‘b’ which are needed to be determined to proceed further. 

Determination of ‘a’ and ‘b’ 

To determine ‘a’ and ‘b’ for equation (2.2) and equation (2.3) respectively; we use the concept that [3], in Hypergeometric 

function F( , ; ;x)    , ‘ ’ is not negative and, ‘ ’ and ‘ ’ can be interchanged without affecting the value ofF( , ; ;x)   . 

As we are working here for the case of almost complete conversion; we will take, 

Ax 1
 

Then for  Ax 1  ,  F( , ; ;x)    converges when 

   
And diverges when  

    
Determination of ‘a’ 

From equation (2.2) we have 

 n 1
A n n A0F(n 1,a;a;x ) k C (n 1) 1    f

            …… (2.2) 

Case 1 

If AF(n 1,a;a;x )f 
is convergent. Then 

a  (n-1) +a  
n 1                                …… (3.1.1) 

Also if (n-1) and ‘a’ are interchanged, then in this case it may be written as 

 a n -1                    …… (3.1.2) 

Since in equation (2.2) we had  

a     
So now we have, 

n 1      
n 1 0    
n 1                                …… (3.1.3) 

Equations (3.1.1) and equation (3.1.3) are contradictory in nature. Thus we discard this case and move to the next case. 

Case 2 

If AF(n 1,a;a;x )f 
is divergent. Then 

a  (n-1) +a  
n 1                                        …… (3.1.4) 

Also if (n-1) and ‘a’ are interchanged, then in this case it may be written as 

 a n -1                                  …… (3.1.5) 

Since in equation (2.2) we had  

a     
So now we have, 

n 1      
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n 1 0    
n 1                                   …… (3.1.6) 

From equation (3.1.4) and equation (3.1.6) we get 

n 1  
This also signifies three results: 

(i) Equation (2.2) is to be used when n 1  

(ii)a n -1 , in equation (2.2) 

(iii) Series involved in equation (2.2) is divergent in nature. 

Determination of ‘b’ 

From equation (2.3) we have 
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      …… (2.3) 

Case 1 

If AF(1 n,b;b;x )f 
 is convergent. Then 

b (1 n) b    
n 1                                   …… (3.2.1) 

Also if (1 n)  and ‘b’ are interchanged, then in this case it may be written as 

b (1 n)                            …… (3.2.2) 

Since in equation (2.3) we had 
b     

So now we have 

1 n      
1 n 0    
n 1                           …… (3.2.3) 

Equations (3.2.1) and equation (3.2.3) are contradictory in nature. Thus we discard this case and move to the next case. 

Case 2 

If AF(1 n,b;b;x )f 
 is divergent. Then 

b (1 n) b    
n 1                                   …… (3.2.4) 

Also if (1 n)  and ‘b’ are interchanged, then in this case it may be written as 
b (1 n)                             …… (3.2.5) 

Since in equation (2.3) we had 

b     
So now we have 

1 n      
1 n 0    
n 1                              …… (3.2.6) 

From equation (3.2.4) and equation (3.2.6) we get 

n 1  
This also signifies three results: 

(i) Equation (2.3) is to be used when n 1  

(ii) b (1 n)  , in equation (2.3) 

(iii) Series involved in equation (2.3) is divergent in nature. 

After determination of ‘a’ and ‘b’ we may proceed further with equation (2.2) and equation (2.3). 

Gauss’s π-function  for Ax =1 

When x is made unity in F( , ; ;x)   it is denoted by 1F ( , ; )    and its value is given in terms of Gauss’s function ; 

given by A.R. Forsyth [3] as      

1

( 1) ( 1)
F ( , ; )

( 1) ( 1)

       
     

                               …… (4.1) 

For n 1  

In this case, equation (2.2) has to be used 

 n 1
A n n A0F(n 1,a;a;x ) k C (n 1) 1    f

               …… (2.2) 

For XA=1, equation (2.2) becomes 
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 n 1
1 n n A0F (n 1,a;a) k C (n 1) 1    

                 …… (4.2.1) 

Using result (4.1) and equation (3.1.5) in equation (4.2.1) we get 

1

(n 2) ( n)
F (n 1,a;a)

( 1) ( 1)

    
   

                                    …… (4.2.2) 

Now we establish relationships between space times for two, different ordered reactions. 

Consider the unimolecular type 
thu ordered and 

thv ordered two different reactions. 

Here, 
u,v n  
u v  
u v                                     …… (4.2.3) 

For 
thu ordered reaction, equation (4.2.2) becomes 

1
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u u A0k C (u 1) 1   

                                 …… (4.2.4) 

Similarly for 
thv ordered reaction, equation (4.2.2) becomes 
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F (v 1,a;a)

( 1) ( 1)

    
   

     

 v 1
v v A0k C (v 1) 1   

                                …… (4.2.5) 

Dividing equation (4.2.4) by equation (4.2.5) 
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…… (4.2.6) 

Using equation (4.2.3) in equation (4.2.6) and generalizing in terms of Gamma function of Euler, we obtain 
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  .... (4.2.7) 

Equation (4.2.7) is applicable for any real positive value of ‘u’ which is greater than unity. 

Also in equation (4.2.7); ‘ ’ is always smaller than ‘u’; which would not be the case when equation (4.2.6) is expressed in terms 

of ‘v’. Thus, equation (4.2.7) is most generalized expression relating space times for two different ordered unimolecular reactions for 

order greater than unity. 

For n 1  
In this case, equation (2.3) has to be used 

 
A n 1

n n A0

1
F(1 n,b;b;x )

k C (n 1) 1
f


 

  
   …… (2.3) 

For Ax 1 , equation (2.3) becomes 

 
1 n 1

n n A0

1
F (1 n,b;b)

k C (n 1) 1
 

  
  …… (4.3.1) 

Using result (4.1) and equation (3.2.5) in equation (4.3.1) we get 

1

(n 2) ( n)
F (1 n,b;b)

( 1) ( 1)

    
   

       …… (4.3.2) 

Now we establish relationships between space times for two, different ordered reactions. 

Consider the unimolecular type 
thy ordered and 

thw ordered two different reactions. 

Here, 
y,w n  
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y w  
y w                                         …… (4.3.3) 

For 
thy ordered reaction, equation (4.3.2) becomes 
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( 1) ( 1)
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                    …… (4.3.4) 

Similarly for 
thw ordered reaction, equation (4.3.2) becomes 
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( 1) ( 1)
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          …… (4.3.5) 

Dividing equation (4.3.4) by equation (4.3.5) 
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              …… (4.3.6) 

Using equation (4.3.3) in equation (4.3.6) and generalizing in terms of Gamma function of Euler, we obtain 
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      .... (4.3.7) 

Equation (4.3.7) is applicable for any real positive value of ‘y’ which is less than unity. 

Also in equation (4.3.7); ‘ ’ is always smaller than ‘y’; which would not be the case when equation (4.3.6) is expressed in terms 

of ‘w’. Thus, equation (4.3.7) is the most generalized expression relating space times for two different ordered unimolecular  reactions 

for order less than unity. 

Results and Conclusion 

The relationships between space times for two different ordered reactions are thus dealt by equation (4.2.7) when n>1 and (4.3.7) 

whenn<1. 

By definition of gamma function we know that (z) has simple poles at 

z 0, 1, 2, 3,....     
and is non-analytic at these points. 

In equation (4.2.7), a case may arise that ‘u’ and ‘ ’ simultaneously posses an integer value. This in turn gives rise to non-

analyticity of gamma function. 

Following two methods are preferred to deal with this situation. 

Weiestrass definition of Gamma Function  

According to Weiestrass [4],  

z

z n

n 1

1 z
ze 1 e

(z) n

 





  
   

    


                   … (5.1.1) 

Where 


= Euler’s constant; defined as 

e
n

1 1 1
lim 1 ..... log n

2 3 n

 
       

       …… (5.1.2) 

From equation (5.1.1)  
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    …… (5.1.3) 



Anshaj Ronghe/ Elixir Chem. Engg. 88 (2015) 36516-36522 

 
36521 

nn
z 1

n
0

t
(z) lim 1 t dt

n





 
   

 
                   …… (5.1.4) 

Equation (5.1.4) may be satisfactorily used to evaluate (z) very close to the simple poles. 

In equation (5.1.4) if 

Re(z) 0  
Then it reduces to Euler’s gamma function, 

t z 1

0

(z) e t dt


   

                     …… (5.1.5) 

 

Further Reduction of equation (4.2.7) 

From equation (4.2.7) we have 
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       .... (4.2.7) 

As a special case, when u and v are positive integers greater than unity. The equation (4.2.7) can be reduced to, 
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1 v 1
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(u 1) (m)
k C (u 1) 1
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                     ….. (5.2.1) 

Equation (5.2.1) also proves to be a valid tool to deal with this case. 

In equation (4.3.7) no such case arises and it is most generalized form to deal with reactions with order less than unity. 

Further Discussions 
F( , ; ;x)   satisfies the differential equation 

2

2

d w x(1 ) dw
w 0

x(1 x) dx x(1 x)dx

     
   

                  …… (6.1) 

Equation (6.1) is called Hypergeometric Differential equation 

At x=1; the function 

x(1 )
P(x)

x(1 x)

    
  

  
And 

Q(x)
x(1 x)

 
  

   
are both non- analytic. 

Thus, x=1 is regular singular point of equation (6.1) with exponents; 

 0 andγ-α-β . 

So, we attempt to find the solution of equation (6.1) in neighborhood of x=1 by making the substitution 
1 x    in equation (6.1). 

 

The solution comes out to be, 

   w AF , ; 1;1 x B 1 x F( , ; 1;1 x)


               
 

                                                                                                        …… (6.2) 

Equation (6.2) is the linear combination of two solutions of equation (6.1) 

Equation (6.2) can be used for further analysis of equation (2.2) and equation (2.3) for conversion very close to the complete 

conversion. 
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