Available online at www.elixirpublishers.com (Elixir International Journal)

Vibrational Spectroscopy

Elixir Vib. Spec. 88 (2015) 36195-36209

Experimental and Computational Study on Molecular Structure, Natural Bond Orbital Analysis, Vibrational and Electronic Investigations of 1h-1,2,4-Triazole-3-Thiol and 2-Amino-1,3,4-Thiadiazole

P. Dinesh

Department of Physics, Jairams Arts & Science College, Karur - 639 003, India.

ARTICLE INFO

Article history: Received: 14 September 2015; Received in revised form: 28 October 2015; Accepted:03 November 2015;

Keywords

HTZT, ATDZ, HOMO, LUMO, FT-IR, NMR.

ABSTRACT

The FT-IR and FT-Raman spectra of 1h-1,2,4-triazole-3-thiol (HTZT) and 2-amino-1,3,4thiadiazole (ATDZ) have been measured in the regions 400-4000 and 50 - 3500 cm-1 respectively. Utilizing the observed FT-IR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the title compounds were carried out. The vibrational frequencies which were determined experimentally are compared with those theoretical frequencies from force field calculation based on B3LYP/6-311++G(d,p) method. Stability of the compound arising from hyperconjugative interactions and charged localization has been analysed using natural bond orbital analysis. The 1H and 13C nuclear magneticresonance (NMR) chemical shifts of the compounds were calculated by the gauge independentatomic orbital (GIAO) method and compared with experimental results. HOMO-LUMO analyses have been done for the title compounds.

© 2015 Elixir All rights reserved.

Introduction

Recently, more attention has been focused on 1,2,4-triazole and 1,3,4-thiadiazole derivatives due to their usefulness in different areas of biological activities and as industrial intermediates. 1,2,4-triazole derivatives are known to exhibit antimicrobial [1-5], antitubercular [6], anticancer [7,8], anticonvulsant [9] anti-inflammatory and analgesic properties [10]. The arrangement of three basic nitrogen atoms in triazole ring induces the antiviral activities in the compounds containing triazole ring [11]. A series of 1,2,4-triazole derivatives have been extensively employed in agriculture as herbicides [12]. Certain 1,2,4-triazole also find applications in the preparation of photographic plates, polymers and as analytical agents [13]. The mercapto-substituted 1,2,4-triazole ring systems have been studied rather well, and so for a great variety of biological activities have been reported for them, such as antibacterial [14], antifungal [15-17], anticancer [18], anti HIV [19], etc.,

The 1,3,4-thiadiazole-2-amino derivate are mainly of great pharmacological and medicinal interest because they exhibit a wide range of anticancer activity [20-25], together with in vivo conditions [26-28], and the mechanism of action attributed to each derivative are strongly depending on the type of modifications of 1,3,4-thiadiazole ring [29-31]. To the best of our knowledge, no detailed spectroscopic investigation has been made on the title compound consideration of the above factors motivated us to undertake this detailed spectroscopic investigation.

The aim of the present work is to describe and characterized the molecular structure, vibrational spectra, electronic quantum chemical investigation and chemical shifts on the title compounds such as 1h-1,2,4-triazole-3-triazole-3-thiol (HTZT) and 2-amino-1,3,4-thiadiazole (ATDZ). For this purpose, geometry optimization of both titled structures and its corresponding frequencies were calculated by using the DFT/B3LYP and DFT/LSDA combinations. The molecular force fields were calculated by using a generalized valence force field (GVFF) together with the SQM methodology [32]. It is also planned to have theoretical determination of atomic charges, HOMO-LUMO energy gaps, thermodynamic properties and NBO analysis of the title compound using DFT methods.

Experimental

The fine polycrystalline sample of 1h-1,2,4-triazole-3-thiol (HTZT) and 2-amino-1,3,4-thiadiazole (ATDZ) were purchased from commercial sources and they were used as such without further purification. The room temperature Fourier transform infrared spectra of the title compound was measured in the region 4000-400 cm⁻¹ at a resolution of ± 1 cm⁻¹ using a JASCO FT/IR-6300 spectrometer. KBr pellets were used in the spectral measurements. Boxcar apodization was used for 250 averaged interferograms collector for both the sample and background.

The FT-Raman spectrum of the title compound was recorded on a BRUKER RFS 100/S model interferometer equipped with FRA-106 FT-Raman accessory in the 3500-50 cm¹ Stokes region using the 1064 nm line of Nd:YAG laser for excitation, operating at 150 mW power. The reported wave numbers are believed to be accurate within $\pm 4 \text{ cm}^{-1}$.

Computational details

The entire calculations are performed at B3LYP levels using GAUSSIAN 09W [33] program package, invoking gradient geometry optimization [34]. Initial geometry generated from standard geometrical parameters was minimized without any constraint in the potential energy surface at B3LYP level, adopting the standard 6-311++G(d,p) basis set, for better description of polar bonds of acid groups. The optimized structural parameters are used in the vibrational frequency calculations at DFT levels to characterize all stationary points as minima. Then vibrationally averaged nuclear positions of title compounds were used for harmonic-vibrational frequency calculations resulting in IR and Raman frequencies together with intensities and Raman depolarization ratios. We have utilized the

gradient corrected density functional theory [35] with the Becke's three-parameter hybrid functional (B3) [36] for the exchange part and the Lee-Yang-Parr (LYP) correlation function [37], accepted as a cost-effective approach, for the computation of molecular structure, vibrational frequencies and energies of optimized structures.By combining the results of the GAUSSVIEW program [38] with symmetry considerations, vibrational frequency assignments were made with a high degree of accuracy. There is always some ambiguity in defining internal coordination. However, the defined coordinate forms complete set and matches quite well with the motions observed using the GAUSSVIEW program.

Detailed description of vibrational modes can be given by means of normal coordinate analysis (NCA). For this purpose, the full set of standard internal coordinates of HTZT and ATDZ were defined in Tables 1 and 2.

Table 1. Definition of internal coordinates of 1h-1,2,4triazole-3-thiol

No(i)	S ymbol	Туре	Definition
Stretc	hing		
1	Ri	C-S	C3-S7
2-5	Ri	C-N	C3-N2, C3-N4, C5-N4, C5-N1
6	Pi	N-N	N1-N2
7	Di	C-H	С5-Н9
8	Ti	N-H	N1-H6
9	Qi	S-H	S7-H8
Bendir	ng		
10-14	βi	Ring	N1-N2-C3, N2-C3-N4, C3-N4-C5, N4-C5-
			N1, C5-N1-N2
15	αί	NNH	N2-N1-H6
16	αί	CNH	C5-N1-H6
17-18	γi	NCH	N1-C5-H9, N4-C5-H9
19-20	δi	NCS	N2-C3-S7, N4-C3-S7
21	θi	CSH	С3-S7-H8
Out-of	f-plane ber	nding	
22	ωi	N-H	H6-N1-N2-C5
23	ωi	C-H	H9-C5-N1-N4
24	ωi	C-S	S7-C3-N2-N4
25	ωi	S-H	H8-S7-C3-(N2,N4)
Torsio	n		
26-30	τί	τRing	N1-N2-C3-N4, N2-C3-N4-C5, C3-N4-C5-
			N1, N4-C5-N1-N2, C5-N1-N2-C3

For numbering of atoms refer Fig.1

Table 2. Definition of internal coordinates of 2-amino-1,3,4-

thiadiazole	
unawazore	

No(i)	Symbol	Туре	Definition
Stretch	ing		
1-2	Ri	C-S	S1-C2, S1-C5
3-5	Ri	C-N	C2-N3, C5-N4, C2-N6
6	Pi	N-N	N3-N4
7	Di	C-H	С5-Н9
8-9	Ti	N-H	N6-H7, N6-H8
Bending	3		
10-14	βi	Ring	S1-C2-N3, C2-N3-N4, N3-N4-C5, N4-
			C5-S1, C5-S1-C2
15-16	αί	NCH	N4-C5-H9
	αί	SCH	S1-C5-H9
17-18	γi	CNH	C2-N6-H8, C2-N6-H8
19	бі	HNH	H7-N6-H8
Out-of-	plane bend	ing	
20	ωi	C-H	H9-C5-N4-S1
21	ωi	C-N	N6-C2-S1-N3
Torsion			
22-26	τί	τRing	S1-C2-N3-N4, C2-N3-N4-C5, N3-N4-
			C5-S1, N4-C5-S1-C2, C5-S1-C2-N3

For numbering of atoms refer Fig.2

From these, a non-redundant set of local symmetry coordinates were constructed by suitable linear combination of internal coordinates are summarized in Tables 3 and 4.

Table	3	. Definition	of	local	symmetry	coordinates	of	1h
		1	2	A_trie	zola_3_thia	1		

	1,4,4	-11 12/010-3-11101
No	Symbol ^a	Definition ^b
1	CS	R ₁
2-5	CN	r ₂ , r ₃ , r ₄ , r ₅
6	NN	P ₆
7	СН	D ₇
8	NH	T ₈
9	SH	Q9
10	R bend 1	$\beta_{10}+a(\beta_{11}+\beta_{14})+b(\beta_{12}+\beta_{13})$
11	R bend 2	$(a-b) (\beta_{11}-\beta_{14}) + (1-a) (\beta_{12}-\beta_{13})$
12	bNH	$(\alpha_{15}-\alpha_{16})/\sqrt{2}$
13	bCC	$(\gamma_{17}-\gamma_{18})/\sqrt{2}$
14	bCS	$(\delta_{19} - \delta_{20})/\sqrt{2}$
15	bSH	θ_{21}
16	ωNH	ω ₂₂
17	ωCH	ω ₂₃
18	ωCS	ω ₂₄
19	ωSH	ω ₂₅
20	τR torsion 1	$b(\tau_{26}+\tau_{30}) + a(\tau_{27}+\tau_{29}) + \tau_{28}$
21	τR torsion 2	$(a-b) (\tau_{30} - \tau_{26}) + (1-a) (\tau_{29} - \tau_{27})$
	a_Car	$1449 h - C_{22} 729$

a=Cos 144°, b=Cos 72°

^a The internal coordinates used her are defined in Table 1. ^b These symbols are used for description of normal modes by PED in

Table 6

 Table 4. Definition of local symmetry coordinates of 2amino-1,3,4-thiadiazole

No	Symbol ^a	Definition ^b
1-2	CS	R ₁ , R ₂
3-5	CN	r_3, r_3, r_5
6	NN	P ₆
7	CH	D ₇
8	NH2 ss	$(T_8 + T_9) / \sqrt{2}$
9	NH2ass	$(T_8 - T_9)/\sqrt{2}$
10	R bend 1	$\beta_{10} + a(\beta_{11} + \beta_{14}) + b(\beta_{12} + \beta_{13})$
11	R bend 2	(a-b) $(\beta_{11}-\beta_{14}) + (1-a)(\beta_{12}-\beta_{13})$
12	bNH	$(\alpha_{15} - \alpha_{16})/\sqrt{2}$
13	bCN	γ_{17}, γ_{18}
14	NH2rock	$(\gamma_{17} - \gamma_{18})/\sqrt{2}$
15	NH2twist	$(\gamma_{17} + \gamma_{18})/\sqrt{2}$
16	NH2sciss	$(2 \pi_{19} - \pi_{17} + \pi_{18}) / \sqrt{2}$
17	NH2wag	δ ₁₉
18	ωCH	ω ₂₀
19	ωCN	ω ₂₁
20	τR torsion 1	$b(\tau_{22}+\tau_{26}) + a(\tau_{23}+\tau_{25}) + \tau_{24}$
21	τ R torsion 2	(a-b) $(\tau_{26} - \tau_{22}) + (1-a) (\tau_{25} - \tau_{23})$
	a=Co	os 144°, b=Cos 72°

 $a=\cos 144^\circ$, $b=\cos 72^\circ$

^a The internal coordinates used her are defined in Table 2. ^b These symbols are used for description of normal modes by PED in Table 6.

Results and discussion

Molecular Geometry

Molecular modeling is a powerful technique which describing the mechanism of interaction and/or following up physical changes in many systems and molecules. Molecular modeling simulates structures and reactions numerically, based in full or in part on the fundamental laws of physics [39,40]. The first task for the computational work is to determine the

optimized geometrics of the studied molecule. The energetically most stable optimized geometry obtained by B3LYP/6-311++G(d,p) method and the scheme of numbering the atoms of the molecules HTZT and ATDZ are shown in Figs 1 and 2, respectively.

Fig 1. Optimized molecular structure of 1h-1,2,4-triazole-3thiol along with numbering of atom

Molecular symmetry can predict or explain many molecular chemical properties such as dipole moment and allowed spectroscopic transitions. The optimized structural parameters bond length and bond angle for the thermodynamically preferred geometry of HTZE and ATDZ determined at B3LYP/6-311++G(d,p) and LSDA/6-311++G(d,p) methods are presented. In accordance with atom numbering scheme of the molecules shown in Figs 1 and 2 from the data shown in Table 5, it is seen that both B3LYP and LSDA methods of theory in general estimate same values of bond lengths and angles.

Vibrational Assignments

The 21 normal modes of HTZT and ATDZ are distributed among the symmetry species as

1'3N - 6 = 15A' + 6A''

In agreement with Cs symmetry. The A' modes are stretching and in-plane vibrations while A" modes are correspond to out-of-plane vibrations. The combined FT-IR and FT-Raman spectra of the title compounds under investigation are shown in Figs 3-6.

Fig 3. Observed FT-IR Spectra of 1h-1,2,4-triazole-3-thiol

Fig 4. Observed FT-Raman spectra of 1h-1,2,4-triazole-3thiol

Fig 5. Observed FT-IR Spectra of 2-amino-1,3,4-thiadiazole The observed and calculated frequencies using B3LYP and LSDA method using 6-311++G(d,p) along with their relative intensities, probable assignments and potential energy distribution (PED) of HTZT and ATDZ are summarised in Tables 6 and 7, respectively.

C-H Vibrations

The hetero aromatic structure shows the presence of C-H stretching vibrations in the region for the ready identification of C-H stretching vibration [41]. In this region, bands are not affected appreciably by the nature of the substituent. In aromatic, compounds, C-H in-plane bending frequencies appear

in the range of 1300-1000 cm⁻¹ and C-H out-of-plane bending vibration in the range 1000-750 cm⁻¹ [41, 42]. Heterocyclic compound containing C-H vibration absorption bands are usually weak, in many cases it is too weak for detection.

Fig 6. Observed FT-Raman spectra of 2-amino-1,3,4thiadiazole

The assignments of carbon-hydrogen stretching modes are straight forward on the basis of the scaled *ab initio* predicted frequencies as well "group frequencies". In the present work the FT-IR and FT-Raman vibrational frequencies observed at 3100 and 3081 cm⁻¹ for HTZT and FTIR band at 3093 cm⁻¹ for ATDZ have been assigned to C-H Stretching vibrations, respectively, these modes were computed at 3106 and 3109 cm⁻¹ by the B3LYP/6-311++G(d,p) and LSDA/6-311++G(d,p) method, respectively. These are pure modes since their PED contribution 100%. The C-H in-plane and out-of-pane bending vibrations have also been identified and presented in Tables 6-7 respectively for HTZT and ATDZ.

NH₂Vibrations

One can expect six internal modes of vibrations for NH₂ group of atoms, namely, the asymmetric stretching, symmetric stretching, the symmetric planar deformation or scissoring, the anti-symmetric planar deformation or rocking, the symmetric non-planar deformation or wagging, and the anti-symmetric non-planar deformation or torsion modes of vibrations. According to Scorates [43], the frequencies of amino group appear around 3500-3300 cm⁻¹ for NH₂ stretching 1700-1600 cm⁻¹ for scissoring and 1150-900cm⁻¹ for rocking deformations. NH₂ asymmetric and symmetric stretching fundamentals of ATDZ have been observed, in FT Raman and FTIR band at 3320, 3319 and 3112 cm⁻¹, respectively. The scaled NH₂ asymmetric stretching modes are calculated at 3322 and 3317 cm^{-1} by B3LYP/6-311++G(d,p) and LSDA/6-311++G(d,p), respectively. The scaled NH₂ symmetric stretching modes are calculated at 3116 and 3113 cm⁻¹ by B3LYP/6-311++G(d,p) and LSDA/6-311++G(d,p), respectively. These are used range of appearance for NH₂ stretching vibration [44, 45] in addition, the NH₂ group has scissoring, rocking, wagging and torsional modes of vibration. The NH₂ scissoring frequency is found at 1624 and cm⁻¹ by B3LYP/6-311++G(d,p)and 1617 LSDA/6-311++G(d,p), respectively and they match with the FT-IR and FT-Raman bands observed at 1620 and 1613 cm⁻¹. The NH₂ rocking mode is assigned in the FT-IR band at 1023 cm⁻¹. It is consistent with the computed wave numbers of 1025 and 1021 cm-1 by B3LYP and LSDA methods. The NH₂ wagging predicted at 890 and 886 cm⁻¹ by B3LYP and LSDA are in very

good agreement with the observed range at 898 and 909 cm⁻¹ in the FT-IR and FT-Raman spectra respectively. The twisting modes predicted by B3LYP and LSDA methods are in good agreement with the recorded value and presented in Tables 6 and 7.

S-H Vibrations

Many earlier workers [45,48] studied the position of S-H stretching absorption band and able to show that a number of mercaptons butyl, propyl and isoamyl mercaptons gave a well-defined but rather a weak absorption in the region 2650-2550 cm⁻¹. Accordingly, in the present study, the FTIR band at 2688 cm⁻¹ would be assigned to the S-H stretching fundamental of HTZT. The respective peaks for in-plane and out-of-plane bending vibrations of these groups are listed in Table 6. *C-S Vibrations*

The absorption of C-S group with other substituent's usually appears between 1250 and 1020 cm⁻¹ [43]. Consideration of these factors leads to assign the FTIR and FT-Raman bands at 1176 and 1180 cm⁻¹ in HTZT to C-S vibration. The in-plane and out-of-plane bending vibration of C-S group were also found well within the characteristic region.

The C-S stretching bands [45,48] are observed in the range $800 \pm 130 \text{ cm}^{-1}$, usually with moderate intensity. In the present study, the FT-Raman and FTIR bands at 654 and 616 cm⁻¹ are assigned to C-S stretching vibration for ATDZ the scaled computed wave number for this vibration are 650, 649, 613 and 612 cm⁻¹ by B3LYP and LSDA method with 6-311++G(d,p) basis sets, which is in good agreement with the recorded spectral data.

C-N Vibrations

One expects to find infrared absorption and Raman scattering as a result of these vibrations in the region 1600-1050 cm⁻¹ [49]. In the present study, the band observed at 1481, 1414, 1324, 1261 and 1281 cm⁻¹ in FTIR and FT-Raman are assigned to C-N stretching vibration for HTZT. Similarly, the FT-Raman and FTIR bands observed at 1499, 1345, 1338and 1146 cm⁻¹ are attributed to C-N stretching vibration for ATDZ. The in-plane and out-of-plane vibration of ATDZ are shown in Table 7.

Thermodynamic parameters

In addition to the vibrational assignments, several calculated thermodynamic parameters of HTZT and ATDZ employing B3LYP and LSDA methods with 6-311++G(d,p) basis set are presented in Table 8. The Self-consistent field (SCP) energy, zero point vibrational energies (ZPVE), rotational constant, enthalpy and entropy as well as heat capacity for molecular systems were also determined.

Dipole moment reflects the molecular charge distribution and is given as a vector in three dimensions. Therefore it can be used as descriptor to depict the charge movement across the molecule. Direction of the dipole moment vector in a molecule depends on the centres of positive and negative charges. Dipole moments are strictly determined for neutral molecules. For charged systems, its value depends on the choice of origin and molecular orientation. The larger total dipole moment of HTZT and ATDZ molecule is due to the formation of intra molecular hydrogen bonding and steric interaction between the substituents. The temperature dependence of thermodynamic properties heat capacity at constant (Cp), entropy (S) and enthalpy change (Δ Ho-T) for both the compounds were also B3LYP/6-311++G(d,p) determined by and LSDA/6-311++G(d,p) methods and are listed in Table 9.

50177	3	6	1	9	9	
-------	---	---	---	---	---	--

		unuu	iuzoie		
	1h-1,2,4-tria	zole-3-thiol		2-amino-1,3,	4-thiadiazole
Value	B3LYP	LSDA	Value	B3LYP	LSDA
	6-311++G(d,p)	6-311++G(d,p)		6-311++G(d,p)	6-311++G(d,p)
	Bond Length (Å)		Bond Length (Å)
N1-N2	1.36	1.34	S1-C2	1.76	1.74
N1-C5	1.35	1.34	S1-C5	1.76	1.74
N1-H6	1.01	1.02	C2-N3	1.30	1.31
N2-C3	1.32	1.32	C2-N6	1.37	1.35
C3-N4	1.37	1.35	N3-N4	1.37	1.34
C3-S7	1.77	1.74	N4-C5	1.29	1.29
N4-C5	1.32	1.32	C5-H9	1.08	1.09
C5-H9	1.08	1.09	N6-H7	1.01	1.02
S7-H8	1.35	1.36	N6-H8	1.01	1.02
	Bond Angle (<i>'</i>)		Bond Angle (<i>'</i>)
N2-N1-C5	110.33	110.75	C2-S1-C5	85.42	85.67
N2-N1-H6	119.89	119.72	S1-C2-N3	114.00	113.63
C5-N1-H6	129.78	129.54	S1-C2-N6	122.48	123.12
N1-N2-C3	101.79	101.81	N3-C2-N6	123.41	123.18
N2-C3-N4	115.16	114.99	C2-N3-N4	112.81	113.02
N2-C3-S7	121.13	121.39	N3-N4-C5	113.47	113.82
N4-C3-S7	123.72	123.63	S1-C5-N4	114.30	113.85
C3-N4-C5	102.74	102.85	S1-C5-H9	121.65	121.68
N1-C5-N4	109.99	109.60	N4-C5-H9	124.05	124.47
N1-C5-H9	123.76	123.95	C2-N6-H7	113.52	114.51
N4-C5-H9	126.26	126.45	C2-N6-H8	117.65	119.60
C3-S7-H8	93.52	91.93	H7-N6-H8	114.33	116.57

Table 5. Optimized geometrical parameters (bond lengths and bond angles) of 1h-1,2,4-triazole-3-thiol and 2-amino-1,3,4-thiadiazole

Table 6. The observed(FTIR and FT-Raman) and calculated (Unscaled and Scaled) frequencies using B3LYP and LSDA/6-311++G (d,p) and B3LYP/6-311++G (d, p) along with their probable assignments and potential energy distribution of 1h-1,2,4triazole-3-thiol

		Observ	/ed	Calculated	Calculated frequencies (cm ⁻¹)							Assignments along
S.No	Symmspecies	Freque	ncy	B3LYP/6-	311++G(d	l,p)		LSDA/ 6-3	311++G(d	,p)		with PED (%)
		(cm ⁻¹)										
		FT-	FT-	Unscaled	Scaled	IR	Raman	Unscaled	Scaled	IR	Raman	
		IR	Raman			Intensity	Intensity			Intensity	Intensity	
1	A'	3329	-	3654	3340	9.54	848.33	3553	3333	7.90	738.46	NH(100)
2	A'	3100	3081	3251	3106	27.61	119.12	3180	3109	32.11	95.63	CH(100)
3	A'	2688	-	2689	2688	8.60	503.35	2631	2680	9.03	592.35	SH(99)
4	A'	1562	-	1527	1565	0.20	1142.52	1507	1553	0.15	981.74	NN(96)
5	A'	1481	-	1471	1484	82.71	79.58	1445	1479	77.05	91.90	CN(94)
6	A'	1414	-	1401	1416	13.65	8.95	1401	1415	13.68	11.46	CN(94)
7	A'	1324	-	1311	1326	7.43	9.97	1332	1329	7.06	19.85	CN(94)
8	A'	1261	1281	1262	1264	16.49	2.89	1256	1260	18.82	2.30	CN(94)
9	A'	1176	1180	1162	1178	23.13	253.53	1173	1174	25.07	324.26	CS(91)
10	A'	-	1096	1090	1094	4.23	256.98	1095	1099	8.61	142.89	Rbend 1(80),
												bCH(17)
11	A'	1038	-	997	1028	13.48	71.47	985	1033	8.70	119.05	bNH(78),
												Rbend2(15)
12	A'		1001	983	996	28.72	179.47	967	991	19.31	241.76	bCH(75), CN(21)
13	A'	949	-	929	941	5.74	133.83	885	939	20.52	83.08	Rbend2(73),
												bNH(19)
14	Α″	848	-	849	848	49.32	361.84	797	832	19.32	385.50	ωNH(69),ωCS(21)
15	A'	-	742	732	740	71.03	337.71	724	737	92.47	224.47	bCS(63), SH(23)
16	A'	671	-	664	668	46.83	544.18	659	661	46.15	672.44	bSH(61),
												Rbend(17)
17	Α″	581	-	521	572	22.98	147.98	559	594	11.71	135.92	τ R torsion 1(59),
												ωCH(10)
18	Α″	-	464	486	469	88.72	52.42	498	459	100.52	82.19	ωCH(57), ωNH(25)
19	Α″	-	291	293	294	0.53	323.71	284	287	4.26	347.86	ωCS(59), ωCH(27)
20	A″	-	261	256	259	1.32	190.61	253	258	2.60	225.50	τ R torsion 2(57)
21	Α"	-	183	174	178	103.65	150.49	186	180	106.40	193.88	ωSH(55), τ R
												torsion 1(23)

B3LYP/6-311++G (d, p) along with their probable assignments and potential energy distribution of 1h-1,2,4-triazole-3-thiol.

		Obsei	ved	Calculate	d fre quen	cies (cm ⁻¹)						
S.No	Symmspecies	Frequ	ency	B3LYP/6-	311++G(d	l,p)		LSDA/ 6-3	311++G(d	,p)		Assignments
		(cm ⁻¹)	-									along
		FT-	FT-	Unscaled	Scaled	IR	Raman	Unscaled	Scaled	IR	Raman	with PED (%)
		IR	Raman			Intensity	Intensity			Intensity	Intensity	
1	A'	3319	3320	3675	3322	9.64	466.34	3626	3317	9.05	474.92	NH2ass(100)
2	A'	3112	-	3566	3116	41.45	78.54	3501	3113	68.05	153.57	NH2ss(10)
3	A'	3099	-	3233	3099	1.67	1401.21	3169	3095	1.98	1617.64	CH(100)
4	A'	1620	1613	1643	1624	160.59	243.19	1599	1617	196.19	136.69	NH2sciss(98)
5	A'	1518	-	1534	1526	6.94	303.42	1509	1514	5.12	62.00	NN(96)
6	A'	-	1499	1486	1496	32.06	406.10	1476	1491	3.22	714.92	CN(94)
7	A'	1338	1345	1333	1340	81.97	75.24	1312	1333	20.27	30.26	CN(94)
8	A'	1219	-	1243	1222	7.08	958.00	1232	1225	11.13	927.46	Rbend 1(80),
												CN(17)
9	A'	1146	-	1136	1140	16.19	1734.42	1132	1138	26.68	1673.03	CN(93)
10	A'	1023	-	1030	1025	24.55	28.03	1017	1021	18.35	20.62	NH2rock(76)
11	A″	898	909	888	890	27.02	216.70	871	886	26.60	196.01	NH2wag(70)
12	A'	786	-	776	784	36.14	56.23	751	780	22.11	94.52	R bend 2(67),
												ch(21)
13	A'	768	-	741	762	1.40	296.74	725	760	14.86	91.58	bCH(63), R bend
												2(23)
14	A'	-	654	646	650	3.55	367.91	648	649	4.54	455.08	CS(85)
15	Α'	616	-	631	613	92.62	105.56	611	612	75.27	141.57	CS(83)
16	A'	-	593	586	590	20.26	363.22	575	586	22.05	434.33	bCH(61), R bend
												2(23)
17	Α"	580	-	573	582	168.34	366.22	570	579	13.99	97.72	ωCH(59)
18	A″	519	-	515	517	153.00	152.22	434	522	352.55	304.34	τ Rtorsion1(57),
												ωCN(12)
19	A″	-	380	365	361	0.48	206.73	356	359	3.87	231.25	ωCN(57)
20	A″	-	304	294	290	51.24	217.61	286	289	77.05	270.66	τRtorsion 2(55),
												ωCH(19)
21	A″	-	195	261	202	43.18	58.52	257	220	65.07	60.09	NH2twist(60)

Table 7. The observed(FTIR	and FT-Raman)	and calculated (Unse	caled and Scaled)	frequencies	using B3LYP and	LSDA/6-
311++G (d,p) and B3LYP/6-31	1++G (d, p) along	g with their probable	assignments and	potential er	nergy distribution	of 2-amino
		1,3,4-thiadia	zole			

The Fig. 7-9 depicts the correlation of heat capacity at constant pressure (Cp), entropy (S) and enthalpy change (Δ H^o-T) with temperature along with the correlation equations. From, Table 9, one can find that the entropies, heat capacities and enthalpy changes are increasing with temperature ranging from 100 to 1000 K due to the fact that the molecular vibrational intensities increase with temperature. The thermodynamic parameters increase steadily with temperature, for the both title compounds.

The corresponding relations between entropy, heat capacity and enthalpy with temperature are given below.For HTZT,the corresponding equations are

B3LYP S^0_m $=-2.49031 + 0.084926 T + 51.084125 x 10^{-5}T^{2} (R^{2} =$ 0.99964) $C^{0}_{\ p,m}=$ -2.78153 + 0.063453 T + 4.113404 x 10^{-5}T^{2} (R^{2}=0.99930) $\Delta H_m^0 = 1.65022 + 0.0111735 \text{ T} - 0.698028 \text{ x} 10^{-5} \text{T}^2 (\text{R}^2 = 1.65022 \text{ m}^2)$ 0.99953) LSDA S_{m}^{0} = -2.48257 + 0.085053 T + 50.93828564 x 10⁻⁵T² (R² = 0.99968) $C^{0}_{\ p,m}$ = -2.83361 + 0.064214 T + 4.0069752 x 10 $^{5}T^{2}$ (R² = 0.99951) $\Delta H_m^0 = 1.65022 + 0.0111735 \text{ T} - 0.698028 \text{ x} 10^{-5} \text{T}^2 (\text{R}^2 = 1.65022 \text{ } \text{ m}^2)$ 0.99953) For ATDZ, the corresponding equations are **B3LYP** $S_{m}^{0} = -2.5560 + 0.086679 T + 49.9867724 x 10^{-5}T^{2} (R^{2} = -2.5560 + 0.086679 T + 49.9867724 x 10^{-5}T^{2})$ 0.99988) $C^{0}_{\ p,m}$ = -3.40702 + 0.0702103 T + 3.132124 x 10^{-5}T^{2} (R^{2} = 0.099880) $\Delta H^0_{\ m} = \ 1.61721 \ + \ 0.01202766 \ T \ - \ 0.9033524 \ x \ 10^{-5} T^2 \ (R^2 =$ 0.99935) LSDA $S^0_{\ m}$ = -2.67677 + 0.088796 T + 49.8391457 x 10^{-5}T^2 (R^2 = 0.99985) $C_{p,m}^{0}$ = -3.46843 + 0.070708 T + 3.402276 x 10⁻⁵T² (R² = 0.99857) $\Delta H_{m}^{0} = 1.60281 + 0.0125074 T - 0.949993 x 10^{-5}T^{2} (R^{2} =$ 0.99935)

• Fig 9. Correlation graphic of enthalpy and temperature for 1h-1,2,4-triazole-3-thiol and 2-amino-1,3,4-thiadiazole

Fig 10. The Mulliken charge distribution of (a) 1h-1,2,4triazole-3-thiol and (b) 2-amino-1,3,4-thiadiazole

Mulliken atomic charges

Mulliken atomic charge calculation has an important role in the application of quantum chemical calculation to molecular system. Since the charge distribution on the molecule has an important influence on the vibrational spectra, the net charge distribution. The total atomic charges of HTZT and ATDZ obtained by Mulliken population analysis with different DFT methods B3LYP and LSDA with 6-311++G(d,p) basis set were listed in Table 10. The magnitudes of the carbon atomic charges are found to be either positive or negative. These magnitude are changing between -0.09442 to 0.169045 for HTZT where as carbon atomic charges of ATDZ are negative. The negative value on carbon atoms in the aromatic ring leads to a redistribution of electron density. The nitrogen atoms N1, N2 and N4 in HTZT and N3, N4 and N6 in ATDZ exhibit their electro negative nature as expected. The better representative graphical form of the results has been done in Fig. 10. The corresponding plot of Mulliken atomic charges obtained by B3LYP and LSDA methods with 6-311++G(d,p) basis set is shown in Fiug.10.

Fig 11. ⁻H NMR experimental spectrum of (a) 1h-1,2,4triazole-3-thiol and (b)2-amino-1,3,4- thiadiazole

NMR spectroscopy is currently used for structure and functional determination of biological macromolecules. Chemical shifts are recognised as an imperative part of the information contained in NMR spectra. They are valuable for structural interpretation due to their sensitivity to conformational variations. The experimental ¹H and ¹³C NMR spectra of HTZT and ATDZ are shown in Figs. 11 and 12.

Fig 12. ¹³C NMR experimental spectrum of 1h-1,2,4-triazole-3-thiol and2-amino-1,3,4-thiadiazole

Vibrational

Total

Total

 μ_x

 μ_y

 μ_z

 μ_{total}

(calmol⁻¹Kelvin⁻¹)

Translational

Rotational

Vibrational

Translational

Rotational

Vibrational

Molar capacity at constant volume

Entropy (calmol⁻¹Kelvin⁻¹)

Dipole moment (Debye)

Parameter	1h-1,2,4-triazole-3-thiol 2-amino-1,3,4-thiadiazole					
	B3LYP	LSDA	B3LYP	LSDA		
SCF energy (Hartrees)	-640.53522	-638.19556	-640.52495	-638.18626		
Zero-point vibrational Energy (kJ/mol)	36.74278	36.26688	37.39145	36.67804		
	9.54308	9.61903	5.38000	5.44772		
Rotational constants (GHz)	2.17866	2.22190	3.44810	3.51233		
	1.77372	1.80497	2.10498	2.13794		
Thermal energy (kJ/mol)						
Total	40.063	39.583	40.681	40.050		
Translational	0.889	0.889	0.889	0.889		
Rotational	0.889	0.889	0.889	0.889		

37.806

18.418

2.981

2.981

12.456

74.360

39.748

26.524

3.2959

0.3792

-0.0002

3.3177

8.088

38.285

18.328

2.981

2.981

12.366

74.480

39.748

26.569

8.163

3.3452

0.3851

-0.0016

3.3673

38.272

19.697

2.981

2.981

13.735

74.106

39.748

26.466

7.892

2.2310

-3.2585

0.7162

4.0135

38.904

19.263

2.981

2.981

13.301

73.698

39.748

26.512

7.438

1.8748

-3.2930

0.8772

3.8895

Table 8. Theoretically computed thermodynamic parameters of 1h-1,2,4-triazole-3-thiol and 2-amino-1,3,4-thiadiazole calculated at B3LYP and LSDA with the basic set 6-311++G(d,p) method

 Table 9. Thermodynamic properties at different temperatures at the DFT/B3LYP and LSDA with the basic set 6-311++G(d,p) level for1h-1,2,4-triazole-3-thiol and2-amino-1,3,4-thiadiazole

	1h-1,2,4-tı	iazole-3-th	iol				2-amino-1,3,4-thiadiazole							
T (K)) Entropy		Entropy Heat (Heat Capa	Capacity Enthalpy			Entropy		Heat Capacity		Enthalpy	
	S (J.mol ⁻¹	(J.mol ⁻¹ .K ⁻¹) Cp (J.mol–1.K ⁻¹)		$\Delta H_0 \rightarrow T (kJ.mol^{-1})$		S (J.mol ⁻¹ .K ⁻¹)		Cp (J.mol-1.K ⁻¹)		$\Delta H_0 \rightarrow T (kJ.mol^{-1})$				
	B3LYP	LSDA	B3LYP	LSDA	B3LYP	LSDA	B3LYP	LSDA	B3LYP	LSDA	B3LYP	LSDA		
100	58.69264	58.59226	10.57839	10.5282	0.872371	0.869981	58.07122	58.07839	9.636711	9.815966	0.83174	0.83652		
200	67.46415	67.33031	15.31549	15.30115	2.165392	2.158222	66.44598	66.67782	15.45172	15.88432	2.07457	2.112811		
298.15	74.50765	74.38576	20.31549	20.40631	3.912524	3.907744	73.72371	74.13241	21.25	21.68499	3.881453	3.965105		
300	74.63193	74.51243	20.4087	20.50191	3.950765	3.945985	73.85516	74.26625	21.35038	21.78298	3.922084	4.003346		
400	81.1783	81.09226	25.22228	25.35612	6.23805	6.24522	80.69073	81.21893	26.20459	26.58939	6.309751	6.431644		
500	87.25382	87.19885	29.22562	29.36663	8.967495	8.989006	86.96224	87.5717	29.99283	30.33222	9.127629	9.287763		
600	92.87285	92.84417	32.39245	32.53585	12.05545	12.0913	92.70076	93.36759	32.91587	33.21463	12.27772	12.46893		
700	98.06166	98.05449	34.89484	35.03824	15.42304	15.47323	97.95172	98.66396	35.20076	35.46606	15.68834	15.90822		
800	102.8561	102.8705	36.89771	37.0435	19.01769	19.08222	102.7772	103.5229	37.02916	37.27055	19.30449	19.54828		
900	107.2992	107.3303	38.53011	38.6783	22.79159	22.87046	107.2275	107.9995	38.52772	38.75239	23.08317	23.35086		
1000	111.4316	111.4771	39.88289	40.03107	26.71367	26.80688	111.3528	112.1487	39.78489	39.99044	27.00048	27.28967		

Table 10. The charge distribution calculated by Mulliken methods for 1h-1,2,4-triazole-3-thiol and2-amino-1,3,4-thiadiazole

	1h-1,2,4-tria	zole-3-thiol		Atoms 2-amino-1,3,4-thiadiazole 6-311++G(d,p)			
	6-311++G(0	l,p)	Atoms				
Atoms	B3LYP	LSDA		B3LYP	LSDA		
N1	-0.22687	-0.23359	S1	0.153646	0.170177		
N2	-0.03486	-0.01031	C2	-0.21228	-0.29861		
C3	-0.09442	-0.14407	N3	-0.0698	-0.04023		
N4	-0.12648	-0.07424	N4	-0.13959	-0.13901		
C5	0.169045	0.088291	C5	-0.29381	-0.38467		
H6	0.333486	0.371595	N6	-0.19242	-0.16189		
S 7	-0.28747	-0.34906	H7	0.272751	0.295085		
H8	0.075633	0.110622	H8	0.247821	0.276769		
H9	0.191929	0.240754	H9	0.233691	0.282369		

and SC TWIK spectra (u ppin)											
		1h-1,2,4-triazole	-3-thiol		2-amino-1,3,4-thiadiazole						
Assignment	Expt (d _{iso}) 6-311++G(d,p) Chemical shift (d)		Assignment	Expt (d _{iso})	6-311++G(d,p)	Chemical shift (d)					
¹³ C											
C3	8.27	-1.68	6.59	C2	7.34	-2.02	5.32				
C5	2.34	-0.62	1.72	C5	10.49	12.74	-2.25				
¹ H											
H6	23.86	25.54	-1.68	H7	27.65	29.47	-1.82				
H8	13.53	27.40	-13.87	H8	26.05	28.79	-2.74				
H9	18.30	22.93	-4.63	H9	18.46	22.58	-4.12				

 Table 11. Experimental and theoretical chemical shifts of 1h-1,2,4-triazole-3-thiol and 2-amino-1,3,4-thiadiazole in 1H and13C NMR spectra (d ppm)

The recorded and calculated ¹H and ¹³C chemical shifts in $CDCl_3$ solution solvent are collected in Table 11, the atom states were numbered according to Figs. 1 and 2.

It is recognized that accurate prediction of molecules geometries are essential for reliable calculation of magnetic properties. Therefore full geometry optimization of HTZT and ATDZ was performed by using B3LYP/6-311++G(d,p) method in CDCl3 solvent. Then Gauge-Including Atomic Orbital (GIAO) ¹H and ¹³C chemical shift calculation of the compound have been made by same method. Application of the GIAO approach [50] to molecular system was significantly improved by an efficient application of the method to the *ab initio* SCF calculation, by using techniques borrowed from analytic derivative methodologies. The isotropic shielding values were used to calculate the isotropic chemical shifts with respect to *Tetramethylsilane* (TMS). It is clear from Table 11 that the agreement with experimental data is good

HOMO and LUMO analysis

Fig 13. Surfaces of FMOs for 1h-1,2,4-triazole-3-thiol and 2amino-1,3,4-thiadiazole (Orbital numbers are extracted from the output results of the B3LYP calculation)

Highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are very important parameters for physicists and chemists. These orbital's are a pair of orbital's in the compound, which allows them to interact most strongly. These orbital's are sometimes called the frontier orbital's, because lie at the outer most boundaries of the electrons of compound. Both the HOMO-LUMO, orbital's are the main orbital takes part in chemical reactivity. Owing to the interaction between HOMO and LUMO orbital of a structure transition state transition of $\pi - \pi^*$ type is observed with regard to the molecular orbital theory [54]. The energy of the HOMO is directly related to the ionization potential while the LUMO energy is directly related to the electron affinity. It also explains several types of reactions in the conjugated systems. The HOMO-LUMO analysis for the title compound has been carried out using B3LYP/6-311++G(d,p) method. The energy difference between HOMO and LUMO orbital which is called as energy gap is a critical parameter in determining molecular electrical transport properties because it is a measure electron conductivity calculated -0.19009eV and -0.2289 eV for HTZT and ATDZ, respectively. The 3D plots of molecular orbitals (HOMO and LUMO) are shown in Fig. 13. The calculated energies of HTZT and ATDZ at B3LYP method with 6-311++G(d,p) basis set are presented in Table 12.

Table 12. Calculated energies of 1h-1,2,4-4riazole-3-thiol and2-amino-1,3,4-thiadiazoleusing DFT/B3LYP/6-311++G(d,p)method

nictilou									
Parameters	1h-1,2,4-4riazole-3-	2-amino-1,3,4-							
	thiol	thiadiazole							
E _{HOMO} (eV)	-0.34264	-0.35077							
E _{LUMO} (eV)	0.15255	0.12187							
E _{HOMO-LUMO} gap(eV)	-0.19009	-0.2289							

Global and Local Reactivity Descriptors

Based on density functional descriptors global chemical reactivity descriptors of compounds such as hardness, chemical potential, softness, electronegativity and electrophilicity index as well as local reactivity have been defined [28–32]. Pauling introduced the concept of electronegativity as the power of an atom in a compound to attract electrons to it. Hardness (η), chemical potential (μ) and electronegativity (χ) and softness are defined follows.

$$\eta = \frac{1}{2} \left(\frac{\partial^2 E}{\partial N^2} \right)_{v(r)} = \frac{1}{2} \left(\frac{\partial \mu}{\partial N} \right)_{v(r)}$$
$$\mu = \left(\frac{\partial E}{\partial N} \right)_{v(r)}$$
$$\chi = -\mu = -\left(\frac{\partial E}{\partial N} \right)_{v(r)}$$

where E and v(r) are electronic energy and external potential of anN-electron system respectively. Softness is a property of compound that measures the extent of chemical reactivity. It is the reciprocal of hardness.

Using Koopman's theorem for closed-shell compounds, η , μ and χ can be defined as

$$\eta = \frac{(1-A)}{2} \\ \mu = \frac{-(1+A)}{2} \\ \chi = \frac{(1+A)}{2}$$

where A and I are the ionization potential and electron affinity of the compounds respectively. Electron affinity refers to the capability of a ligand to accept precisely one electron from a donor. However, in many kinds of bonding viz covalent hydrogen bonding, partial charge transfer takes place. Recently Parr et al. [28] have defined a new descriptor toquantify the global electrophilic power of the compound as electrophilicityindex (ω), which defines a quantitative classification of the global electrophilic nature of a compound. Parr et al. [28] haveproposed electrophilicity index (ω) as a measure of energy loweringdue to maximal electron flow between donor and acceptor. They defined electrophilicity index (ω) as follows

 $\omega = \frac{\mu^2}{2\eta}$

The usefulness of this new reactivity quantity has been recently demonstrated in understanding the toxicity of various pollutants in terms of their reactivity and site selectivity [33–35]. The calculated value of electrophilicity index describes the biological activity of HTZT and ATDZ. All the calculated values of hardness, potential, softness and electrophilicity index are shown in Table 13.

Molecular polarizabilities

Organic material can present nonlinear optical (NLO) properties. NLO is at the forefront of current research because it provides the key functions of frequency shifting, optical memory for the emerging technologies in areas such as single telecommunications, processing and optical interconnections [60, 61]. In discussing nonlinear optical properties, the polarization of the molecule by an external radiation field is often approximated as the creation of an induced dipole moment by an external electric field.

$$S = \frac{1}{2}$$

The methods to predict and interact the molecular properties, the polarizabilities and hperpolarizabilities, which are more advanced and can often, achieve good agreement with experiment [62].

The molecular static polarizability tensors of HTZT and ATDZ were evaluated by employing the B3LYP and LSDA methods. To obtain reliable results, the standard 6-311++G(d,p)basis set were employed on both methods. All elements of static molecular polarizability and hyperpolarizability of HTZT and ATDZ were presented in Table 14. The polarizabilities and hperpolarizabilities are directly related to the macroscopic susceptibilities. The static polarizabilities and hperpolarizabilities determined by DFT method reveals that the title molecule has more polarization effect. Thus studied title molecule might some as a prospective building block for NLO materials.

NBO analysis

The concept of natural atomic orbital (NAO) and natural bond orbital (NBO) analysis, which is very useful for distributing electrons into atomic and molecular orbitals, is used for the one electron density matrix to define the shape of the atomic orbitals in the molecular environment and then to derive molecular bonds from electron density from atoms. The NAOs resemble the pure atomic orbitals and are divided into a "natural minimal basis" corresponding to the occupied atomic orbitals for the isolated atom and a remaining set of natural "Rydberg" orbitals based on the magnitude of the occupation numbers. The minimal set of NAOs will normally be strongly occupied, while the Rydberg NAO will be weakly occupied. There are as many NAOs as the size of the atomic basis set, and the number of Rydberg NAOs increases as the basis set is enlarged [63].

Table 15 and 16 shows calculated natural orbital occupancy (number of electron (or) "natural population" of the orbital) of HTZT and ATDZ. For HTZT, it is noted that the maximum occupancies 1.99516, 1.99422, 1.98700, 1.98694, 1.98439 are obtained for BD(N2-C3), BD(N1-C5), BD(S7-H8), BD(N4-C5),

BD(C3-S7) respectively, and corresponding sp composition are also tabulated in Table 15. Therefore, the results suggest that the N2-C3, N1-C5 bond lengths of this compound are essentially controlled by the *p* character of these hybrid orbitals and also by the nature the N2-C3. For ATDZ, it is also noted that the maximum occupancies 1.99294, 1.99292, 1.98978, 1.98570, 1.98265 are obtained for BD(N4-C5), BD(C2-N3), BD(C2-N6), BD(N6-H7), BD(S1-C2) respectively, and corresponding sp composition are also tabulated in Table 16. Therefore, the results suggest that the N4-C5, C2-N3 bond lengths of this compound are essentially controlled by the *p* character of these hybrid orbitals and also by the nature the N4-C5. Delocalization of the electron density between occupied Lewis type (bond (or) lone pair) NBO orbital's and formally unoccupied (anti-bond (or) Rydberg) non Lewis NBO orbital's corresponding to a stabilizing donor- acceptor interaction have been performed atB3LYP/6-31+G(d,p) basis set. The energy of these interactions can estimated by the second order perturbation theory [30]. In Table 17, the perturbation energies of significant donor-acceptor interactions are comparatively presented for HTZT and ATDZ.

NBO theory allows the assignment of the hybridization of atomic lone pairs and of the atoms involved in bond orbitals. Interaction between atomic orbitals can be interpreted using NBO theory. NBO also gives the accurate natural Lewis structure picture of HTZT and ATDZ since it gives the maximum percentage of electron density. The second order Fock matrix was carried out to evaluate donor (i) and acceptor (j). The stabilization energy $E^{(2)}$ associated with a delocalization $i \rightarrow j$ is estimated as follows:

$$E(2) = \Delta E_{ij} = q_i \frac{F(i, j)^2}{\varepsilon_i \varepsilon_j}$$

where q_i is the donor orbital occupancy, ε_j and ε_i are diagonal elements and F(i,j) is the off-diagonal NBO Fock matrix element [64]. Hyper conjugation is an important effect in which an occupied Lewis-type NBO is stabilized by overlapping with a non-Lewis typeorbital. This electron delocalization can be described as a charge transfer from a Lewis valence orbital with a decrease in its occupancy, to a non-Lewis. Several other types of valuable data, such as directionality, hybridization, and partial charges, have been analysed from the NBO results [65,66].

In Table 17, the perturbation energies of significant donoracceptor interactions are comparatively presented for HTZT and ATDZ. The larger the $E^{(2)}$ value, the intense is the interaction between electron donors and electron acceptors. The interactions initiated by BD (1) N1-N2, BD (2) N2-N3, BD (1) C3-N4 and BD (2) N4-C5 donor NBOs of HTZTof the title compound are giving stabilization to their respective structures. Similarly, in ATDZ, the interactions initiated by BD (1) S1-C5, BD(2) C2-N3, BD(1) N3-N4, B(2) N4-C5 and BD(1) N6-H7 donor NBOs of ATDZof the title compound are giving stabilization to their respective structures. In HTZT, the interactions due to lone pair parent NBOs like LP (1) N2 \rightarrow BD* (2) N4-C5, LP (1) N2 \rightarrow BD* (1) C3-N4 and LP (2) S7 \rightarrow BD* (2) N2-N3 are giving reasonable amount of stabilization because of higher $E^{(2)}$ value. Similarly, in ATDZ, the interaction due to lone pair of LP (2) S1 \rightarrow BD* (2) C2-N3. LP (1) N3 \rightarrow BD* (1) S1-C2. LP (1) N4 \rightarrow BD* (1) S1-C5 and LP (1) N6 \rightarrow BD* (1) S1-C2 are giving reasonable amount of stabilization because of higher $E^{(2)}$ value. Above all the interaction among antibonding NBOs BD* (2) N2-C3 and BD* (2) C1 - C6 is giving the most possible stabilization to HTZT, since it has the most E⁽²⁾ value around 74.39 kcal/mol.

1h-1,2,4-tri	azole-3-thiol	2-amino-1,3,4-thiadiazole 6-311++G(d,p)								
6-311+-	+G(d , p)									
B3LYP	LSDA	B3LYP	LSDA							
-0.2476	-0.0796	-0.23632	-0.07534							
-0.09505	-0.15005	-0.11445	-0.16105							
-4.03885	-12.5628	-4.23155	-13.2732							
0.095045	0.15005	0.11445	0.16105							
-0.01824	-0.14143	-0.02771	-0.17213							
	1,2,4-tris 6-311+ B3LYP -0.2476 -0.09505 -4.03885 0.095045 -0.01824	1,5,7 initialization 1h-1,2,4-triazole-3-thiol 6-311++G(d,p) B3LYP LSDA -0.2476 -0.0796 -0.09505 -0.15005 -4.03885 -12.5628 0.095045 0.15005 -0.01824 -0.14143	1,b,1 initialization 1h-1,2,4-triazole-3-thiol 2-amino-1,3 6-311++G(d,p) 6-311+ B3LYP LSDA B3LYP -0.2476 -0.0796 -0.23632 -0.09505 -0.15005 -0.11445 -4.03885 -12.5628 -4.23155 0.095045 0.15005 0.11445 -0.01824 -0.14143 -0.02771							

Table 13. Global and local reactivity descriptors and related molecular properties of 1h-1,2,4-triazole-3-thiol and 2-amino-1,3,4-thiadiazole

Table 14. Tensor components of the polarisabilities and its mean value $\alpha = (\alpha_{xx} + \alpha_{yy} + \alpha_{zz})/3$ as well as the hyperpolarisabilities of 1h-1,2,4-triazole-3-thiol and 2-amino-1,3,4-thiadiazole calculated at B3LYP and LSDA methods

using $6-311++G(d,p)$ basis set											
	1h-1,2,4-tria	zole-3-thiol	2-amino-1,3	4-thiadiazole							
Parameters	6-311+-	+G(d , p)	6-311++G(d,p)								
	B3LYP	LSDA	B3LYP	LSDA							
	Polari	zability (α)									
α _{xx}	-29.0615	-28.906	-32.0858	-31.2195							
α_{yy}	-44.7725	-44.464	-47.2623	-46.8428							
α_{zz}	-44.5477	-44.5512	-43.994	-44.0892							
α_{xy}	-3.9024	-4.0876	2.9905	2.7239							
α_{xz}	-0.0083	-0.003	2.6191	2.1314							
α _{yz}	0.0073	0.0034	-0.5345	-0.4465							
$\alpha = (\alpha_{xx} + \alpha_{yy} + \alpha_{zz})/3$	-39.460567	-39.307067	-41.114033	-40.717167							
	Anisot	ropic tensor									
А	486.708446	486.831251	382.813164	417.298994							
В	15.2288479	16.7084943	16.0884653	12.1618594							
С	289.040767	293.541108	239.671978	245.135075							
	Hyperpol	larisability (β)									
β_{xxx}	33.1968	32.7936	16.3964	19.3389							
β _{yyy}	-2.0554	-1.7044	-13.9904	-13.7702							
β _{zzz}	0.0002	0.0004	0.5805	0.3991							
β_{xyy}	4.4801	4.4154	9.5954	10.0408							
β _{yxx}	2.0751	1.6402	-6.2915	-6.5629							
β_{zxx}	-0.0143	-0.0021	7.2553	5.984							
β_{xzz}	3.0462	2.6981	0.4863	0.4174							
β _{yzz}	-0.2464	-0.3848	0.0227	-0.151							
β _{zyy}	-0.0056	-0.0015	0.4293	0.4032							
β _x	40.7231	39.9071	26.4781	29.7971							
β _y	-0.2267	-0.449	-20.2592	-20.4841							
β _z	-0.0197	-0.0032	8.2651	6.7863							
$\beta_{\text{Total}} \ge 10^{-30} \text{ cm}^3 \text{esu}^{-1}$	1.429	1.372	1.016	1.166							

S.No	Bond Orbital	Occupancy	Atom	Contribution from parent NBO (%)	Atomic hybrid
				_	Contributions (%)
1	BD(N1-N2)	1.97688	N1	51.86	s(25.43) + p(74.45)
			N2	48.14	s(22.19) + p(77.65)
2	BD(N1-C5)	1.99422	N1	60.97	s(27.82) + p(72.11)
			C5	39.03	s(28.68) + p(71.19)
3	BD(N1-H6)	1.94334	N1	70.38	s(22.49) + p(77.43)
			H6	29.62	s(99.92) + p(0.08)
4	BD(N2-C3)	1.99516	N2	59.60	s(40.70) + p(59.20)
			C3	40.40	s(35.40) + p(64.49)
5	BD*(N2-C3)	1.94030	N2	57.67	s(0.04) + p(99.78)
			C3	42.33	s(0.15) + p(99.65)
6	BD(C3-N4)	1.97750	C3	41.46	s(31.22) + p(68.68)
			N4	58.54	s(26.64) + p(73.27)
7	BD(C3-S7)	1.98439	C3	54.43	s(33.23) + p(66.63)
			S7	45.57	s(18.27) + p(81.07)
8	BD(N4-C5)	1.98694	N4	59.41	s(38.06) + p(61.84)
			C5	40.59	s(34.81) + p(65.09)
9	BD*(N4-C5)	1.90404	N4	60.34	s(0.07) + p(99.75)
			C5	39.66	s(0.02) + p(99.73)
10	BD(C5-H9)	1.98277	C5	61.02	s(36.65) + p(63.31)
			H9	38.98	s(99.94) + p(0.06)
11	BD(S7-H8)	1.98700	S 7	57.99	s(16.37) + p(83.10)
			H8	42.01	s(99.62) + p(0.38)

Table 15. Bond orbital analysis of 1h-1,2,4-triazole-3-thiolby B3LYP/6-311++G(d,p)

Table 16. Bond orbital analysis of 2-amino-1,3,4-thiadiazole by B3LYP/6-311++G(d,p)

S.No	Bond Orbital	Occupancy	Atom	Contribution from parent NBO (%)	Atomic hybrid
				_	Contributions (%)
1	BD(S1-C2)	1.98265	S1	48.89	s(25.43) + p(82.13)
			C2	51.11	s(28.84) + p(70.96)
2	BD(S1-C5)	1.98132	S1	49.86	s(17.23)+ p(82.18)
			C5	50.14	s(27.68) + p(72.12)
3	BD(C2-N3)	1.99292	C2	41.21	s(36.34)+ p(63.56)
			N3	58.79	s(38.45) + p(61.46)
4	BD*(C2-N3)	1.91522	C2	42.81	s(0.02)+ p(99.80)
			N3	57.19	s(0.00) + p(99.83)
5	BD(C2-N6)	1.98978	C2	42.49	s(34.71)+ p(65.22)
			N6	57.51	s(29.75) + p(70.17)
6	BD(N3-N4)	1.97308	N3	50.20	s(22.62)+ p(77.22)
			N4	49.80	s(22.60) + p(77.24)
7	BD(N4-C5)	1.99294	N4	58.59	s(38.07)+ p(61.83)
			C5	41.41	s(34.69) + p(65.22)
8	BD*(N4-C5)	1.93534	N4	56.14	s(0.00)+ p(99.84)
			C5	43.86	s(0.01) + p(99.81)
9	BD(C5-H9)	1.98219	C5	61.94	s(37.70)+ p(62.26)
			H9	38.06	s(99.94) + p(0.06)
10	BD(N6-H7)	1.97396	N6	69.44	s(25.52)+ p(74.39)
			H7	30.56	s(99.94) + p(0.06)
11	BD(N6-H7)	1.98570	N6	69.02	s(25.71)+ p(74.20)
			H7	30.98	s(99.93) + p(0.07)

Donor		1h 1 2	1 triozolo 3	thial		, 	2-amino-134-thiadiazola				
Donor		111-1,2,4	+-triazore-5	-11101	-		2-ammo-1,:	5,4-unau	lazore		
(i)	NBO (i)	Acceptor NBO (i) $E^{(2)a}_{(kcal/mol)}$ $E_j - E_i^b$ $F(i,j)^c$ Donor NBO (i)(a.u)(a.u)(a.u)		NBO (i)	E ^{(2)a} (kcal/mol)	E _j – E _i ^b (a.u)	F(i,j) ^c (a.u)				
BD (1) N1 - N2	BD*(1)C3 - S7	6.76	0.97	0.072	BD (1) S1 - C5	BD*(1) C2 - N6	5.14	0.98	0.063		
BD (1) N1 - H6	BD*(2)N4 - C5	4.51	0.65	0.05	BD (2) C2 - N3	BD*(2) N4 - C5	10.14	0.32	0.053		
BD (2) N2 - C3	BD*(1)N1 - H6	3.27	0.77	0.045	BD (2) C2 - N3	BD*(1) N6 - H7	4.9	0.79	0.035		
BD (2) N2 - C3	BD*(2)N4 - C5	5.56	0.34	0.04	BD (1) N3 - N4	BD*(1) C2 - N6	5.93	1.07	0.071		
BD (1) C3 - N4	BD*(1)C5 - H9	5.13	1.15	0.069	BD (1) N3 - N4	BD*(1) C5 - H9	6.9	1.19	0.053		
BD (1) N4 - C5	BD*(1)C3 - S7	4.34	1.06	0.061	BD (2) N4 - C5	BD*(2) C2 - N3	8.79	0.32	0.051		
BD (2) N4 - C5	BD*(2)N2 - C3	16.94	0.33	0.07	BD (1) C5 - H9	BD*(1) N3 - N4	4.96	0.89	0.059		
BD (1) C5 - H9	BD*(1)C3 - N4	4.39	0.91	0.057	BD (1) N6 - H7	BD*(2) C2 - N3	5.03	0.63	0.054		
LP (1) N1	BD*(2)N4 - C5	8.41	0.37	0.05	LP (2) S1	BD*(2) C2 - N3	26.09	0.25	0.073		
LP (1) N2	BD*(1)C3 - N4	8.15	0.74	0.069	LP (1) N3	BD*(1) S1 - C2	12.09	0.58	0.075		
LP (1) N4	BD*(1)N2 - C3	4.24	0.96	0.057	LP (1) N4	BD*(1) S1 - C5	10.76	0.59	0.071		
LP (2) S7	BD*(2)N2 - C3	17.73	0.25	0.063	LP (1) N6	BD*(1) S1 - C2	11.26	0.51	0.068		
BD*(2) N2 - C3	BD*(2)N4 - C5	74.39	0.01	0.052							

 Table 17. Significant donor-acceptor interactions in 1h-1,2,4-triazole-3-thiol /2-amino-1,3,4-thiadiazole and their second order perturbation energies

 ${}^{a}E^{(2)}$ means energy of hyperconjucative interactions. Energy difference between donor and acceptor i and j NBO orbitals. F(i,j) is the Fock matrix element between i and j NBO orbitals.

Conclusion

DFT calculations on the structure, vibrational, electronic and NMR spectra of the title compound have been discussed. The calculated results showed that the predicted geometry can well reproduce the structural parameters. The FT-IR and FT-Raman spectral measurements have been made for the 1h-1,2,4triazole-3-thiol and 2-amino-1,3,4-thiadiazole. B3LYP/6-311++G(d,p) and LSDA/6-311++G(d,p) method can generate reliable geometry and related properties of the title compounds. Thermodynamic properties in the range from 100 to 1000K are obtained. The NBO analysis reveals hyper conjugative interaction; Natural bond orbital analysis of the molecule confirms that the intramolecular charge transfer caused by pelectron cloud movement from donor to acceptor must be responsible for the non-linear optical properties of the title compound. The lowering of the HOMO-LUMO energy gap value has substantial influence on the intramolecular charge transfer and bioactivity of the molecule. NMR chemical shifts have been calculated and compared with the experimental values.

Reference

[1] B.S. Holla, R. Gonsalves, S. Shenoy, IlFarmaco 53 (1998) 574–578.

[2] B.S. Holla, B. Veerendra, M.K. Shivananda, N. SuchethaKumari, Ind. J. Chem.42B (2003) 2010–2014.

[3] M. Ashok, B.S. Holla, J. Pharmacol. Toxicol. 2 (3) (2007) 256-263.

[4] D.J. Prasad, M. Ashok, P. Karegoudar, BojaPoojary, B.S. Holla, N. SuchetaKumari, Eur. J. Med. Chem. 44 (2009) 551–557.

[5] G.T. Zitouni, Z.A. Kaplancikli, M.T. Yildiz, P. Chevallet, D. Kaya, Eur. J. Med.Chem. 40 (2005) 607.

[6] K. Walczak, A. Gondela, J. Suwinski, Eur. J. Med. Chem. 39 (2004) 849.

[7] B.S. Holla, K.N. Poojary, B.S. Rao, M.K. Shivananda, Eur. J. Med. Chem. 37(2002) 511.

[8] B.S. Holla, B. Veerendra, M.K. Shivananda, BojaPoojary, Eur. J. Med. Chem. 38(2003) 759.

[9] M. Amir, K. Shikha, Eur. J. Med. Chem. 39 (2004) 535-541.

[10] A. Almasirad, S.A. Tabatabai, M. Faizi, A. Kebriaeezadeh, N. Mehrabi, A. Dalvandi, A. Shafiee, Bioorg. Med. Chem. Lett. 14 (2004) 6057-6063.

[11] K. Masuda, T. Toga, N. Hayashi, J. Labelled Compd. 11 (1975) 301-308;Chem. Abstr 84 (1976) 121730f.

[12] A. Vamvakides, Pharma.Fr 48 (1990) 154-159.

[13] K. Futaki, S. Tosa and E. Ebihara, Japan 73, 34, 174, 1973; Chem. Abstr. 81 (1974) 56602n;

[14] K. Colanceska-Ragenovic, V. Dimova, V. Kakurinov,

D.G. Molnar, A. Buzarovska, Molecules 6 (2001) 815-824;

[15] S. Tehranchian, T. Akbarzadeh, M.R. Fazeli, H. Jamalifarb, A. Shafiee, Bioorg.Med. Chem. Lett. 15 (2005) 1023–1025;

[16] P. Zoumpoulakis, Ch. Camoutsis, G. Pairas, M. Sokovic', J. Glamoclija, C. Potamitis, A. Pitsas, Bioorg. Med. Chem. 20 (2012) 1569–1583;

[17] S. Rollas, N. Kalyoncuog'lu, D. Su["] r-Altiner, Y. Yegenoglu, Pharmazie 48 (1993) 308–309;

[18] A.-R. Farghalya, E. De Clercq, H. El-Kashef, ARKIVOC x (2006) 137–151;

[19] T. Akhtar, S. Hameed, N.A. Al-Masoudi, K.M. Khan, Heteroat. Chem. 18 (2007) 316–322;

[20] M.S. Gujral, P.M. Patnaik, R. Kaul, H.K. Parikh, C. Conradt, C.P. Tamhankar, G.V.Daftary, Efficacy of hydrolytic enzymes in preventing radiation therapyinducedside effects

in patients with head and neck cancers, CancerChemother. Pharmacol.47 (2001) S23-S28.

[21] M.R. Stockler, N.J.C. Wilcken, A. Coates, Chemotherapy for advanced breastcancer: how long should it continue?, Breast Cancer Res Treat. 81 (2003) 49–52.

[22] A. Foroumadi, F. Soltani, H. Moallemzadeh-Haghighi, A. Shafiee, Synthesis, in vitro-antimycobacterial activity and cytotoxicity of some alkyl a-(5-aryl-1,3, 4-thiadiazole-2-ylthio)acetates, Arch. Pharm. 338 (2005) 112–116.

[23] J.A. Nelson, L.M. Rose, L.L. Bennett, Effects of 2-amino-1,3,4-thiadiazole onribonucleotide pools of leukemia L1210 cells, Cancer Res. 36 (1976) 1375–1378.

[24] A. Mastrolorenzo, A. Scozzafava, C.T. Supuran, Toluenesulfonylureidoderivatives of amines, amino acids and dipeptides: a novel class of potentialantitumor agents, Eur. J. Pharm. Sci. 11 (2000) 325–332.

[25] A. Senff-Ribeiro, A. Echevarria, E.F. Silva, S.S. Veiga, M.B. Oliveira, Antimelanoma activity of 1,3,4-thiadiazolium mesoionics: a structure–activity relationship study, Anticancer Drugs 15 (2004) 269–275.

[26] R.F. Asbury, J.A. Blessing, D. Moore, A Phase II trial of aminothiadiazole inpatients with mixed mesodermal tumors of the uterine corpus: a gynecologiconcology group study, Am. J. Clin. Oncol. 19 (1996) 400–402.

[27] P.F. Engstrom, L.M. Ryan, G. Falkson, D.G. Haller, Phase II study ofaminothiadiazole in advanced squamous cell carcinoma of the esophagus, Am. J. Clin. Oncol. 14 (1991) 33–35.

[28] R.F. Asbury, J.A. Blessing, P.J. DiSaia, J. Malfetano, Aminothiadiazole (NSC 4728)

in patients with advanced nonsquamous carcinoma of the cervix. A phase IIstudy of the Gynecologic Oncology Group, Am. J. Clin.Oncol. 12 (1989) 375–377.

[29] F. Vergne, P. Bernardelli, E. Lorthiois, N. Pham, E. Proust, Ch. Oliveira, A.K.Mafroud, F. Royer, R. Wrigglesworth, J.K. Schellhaas, M.R. Barvian, F. Moreau, M. Idrissi, A. Tertre, B. Bertin, M. Coupe, P. Berna, P. Soulard, Discovery ofthiadiazoles as a novel structural class of potent and selective PDE7 inhibitors.Part 1: Design, synthesis and structure-activity relationship studies, Bioorg.Med. Chem. Lett. 14 (2004) 4607– 4613.

[30] K.-Y. Jung, S.-K.Kim, Z.-G. Gao, A.S. Gross, N. Melman, K.A. Jacobson, Y.-Ch.Kim, Structure–activity relationships of thiazole and thiadiazole derivatives aspotent and selective human adenosine A[3] receptor antagonists, Bioorg. Med.Chem. 12 (2004) 613–623.

[31] P. Bhattacharya, J.T. Leonard, K. Ry, Exploring QSAR of thiazole and thiadiazole

derivatives as potent and selective human adenosine A3 receptor antagonistsusing FA and GFA techniques, Bioorg. Med. Chem. 13 (2005) 1159–1165.

[32] J. J. P. Stewart, Int. J. Quantum Chem.58(1996)133-146.

[33] M.J. Frisch, G.W. Trucks, H.B. Schlegal, G.E. Scuseria, M.A. Robb, J.R.Cheesman, V.G. Zakrzewski, J.A. Montgomerg, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J.Tomasi, V. Barone, M. Cossi, R.Cammi, B. Mennucci, C. Pomelli, C. Adamo, S.Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N.Rega, P. Salvador, J.J. Dannenberg, D.K. Malich, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B.Stetanov, G. Liu, A.Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B.Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S.Replogle and J.A. Pople, GAUSSIAN 98, Revision A 11.4, Gaussian, Inc,PittsburghPA, 2009.

[34] P. Hohenberg, W. Kohn, Phys. Rev. 136(1964) B864-B871.

[35] A.D. Becke, J. Chem. Phys., 98 (1993) 5648-5652.

[36] C. Lee, W. Yang, R.G. Parr, Phys. Rev., B37 (1988) 785-789.

[37] A. Frisch, A.B. Nielson, A.J. Holder, Gaussview user manual, Gaussian Inc., Pittsburgh, PA 2009.

[38] S.-Q. Xu, J.-M. Li, ActaCryst. E64 (2008) 1469-1475.

[39] S. Kirkpatrick, Science, 220(1983)671-680;

[40] D. Vanderbilt, J.Comput. Phys., 56(1984)251-259.

[41] M. Silverstein, G. Clayton Basseler, C. Morill, Spectrometric Identification of Organic compounds, Wiley, New York, 2001.

[42] B. Smith, Infrared Spectral Interpretation, A systematic Approach, CRC press, Washington, DC, 1999.

[43] G. Socrates, Infrared and Raman characteristic Group Frequencies, Tables and charts, Third ed, wiley, Chichester (2001)

[44] M. Arivazhagan, V.P. Subhasini, A. Austine, SpectrochimicaActa A 86(2012) 205-2013.

[45] R.J. Xavier, E. Gopinath, SpectrochimicaActa A 86(2012)242-251.

[46] C.N. Ten, V.V. Nechaev, A.N. Pankratov, V.J. Berezin, V.I. Baranow, J. Struct. Chem. 51(2010)854-861.

[47] M.A. Palafox, G. Tardajos, A. Guerroero-Martinez, Chem. Phys. Lett. 57(2007)251–256.

[48] V. Arijunan, S. Mohan, SpectrochimActa A 72(2009)436-444.

[49] P. Muniappan, R. Meenakshi, G. Rajavel, M. Arivazhagan, SpectrochimicaActa A, 117C(2013)739-753.

[50] K. Wolinski, J.F. Hinton, P.Pulay, J.Am.chem.soc. 112(1990)8251-8260.

[51] S. Gunasekaran, R.A. Balaji, S. Kumeresan, G. Anand, S. Srinivasan, Can.J.Anal.Sci. Spectrosc 53(2008) 149-162.

[52] K. Fukui, T. Yonezawa, H. Shingu, J.Chem. Phys 20(1952)722-725.

[53] R. Kurtaran, S. Odabasoglu, A. Azizoglu, H. Kara, O. Atakol Polyhedron 26(2007)5069-5074.

[54] K. Fukui, Theory of Orientation and Stereoselection, Springer-Verlag, Berlin, 1975.

[55] K. Fukui, Science 218(1987)747-754.

[56] R.G. Parr, L.V. Szentpaly, S.J. Liu, Am. Chem. Soc. 121 (1999) 1922-1924.

[57] P.K. Chattraj, B. Maiti, U.J. Sarkar, J. Phys. Chem. A 107 (2003) 4973-4979.

[58] R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, J. Am. Chem. Soc. 68 (1978) 3807.

[59] R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512-7516.

[60] D.S. Chemia, J. Zyss(Eds), in; Nonlinear Optical Properties of Organic Molecules and Crystals, Vol 1&2, Academic Press, London 1987.

[61] C. Basshard, K. Sutter, P. Pretre, J. Hulliger, M. Florsheimer, P. Kaatz, P. Gunter, Organic Nonlinear Optical Materials, Gordon and Breach, Basel, 1995.

[62] B. Champaguein : M. Springborg (Ed), Chemical Modelling: Applications and Theory specialist periodical Reports, R.Soc.chem. 6(2009)17.

[63] Frank Jensen, Computational Chemistry, John Wiley & Sons, Ltd, 2006.

[64] R.A.E. Castro, J. Canotilho, S.C.C. Nunes, M. Ermelinda,S. Eusebio, J. Simoes Redinha, Spectrochim. Acta 72A (2009) 819–826.

[65] F. Weinhold, Nature 411 (2001) 539–541.

[66] F. Weinhold, C. Landis, Valency and Bonding: A Natural Bond Orbital Donor–Acceptor Perspective, Cambridge University Press, Cambridge, 2005.