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Introduction 

Queueing systems with repeated attempts are found suitable for modelling the processes in telephone switching systems, digita l 

cellular mobile networks, packet switching networks, local area networks, stock and flow etc. Review of retrial que ueing literature can 

be found in the survey papers of Yang and Templeton (1987) and Falin (1990), the bibliographies of Artalejo (1999a, 1999b) an d the 

books by Falin and Templeton (1997) and Artalejo and Gomez Corral (2008).  

Preemptive resume priority queues have important uses in modelling and analysing computer system and communication 

network. Artalejo et al. (2001) considered a retrial queueing system where customers at the retrial group have preemptive priority over 

customers at the waiting line. Krishna Kumar et al. (2002) analysed an M/G/1 retrial queueing system with additional phase of service 

and preemptive resume service discipline. Ayyappan et al. (2010) studied a retrial queueing system with single working vacation 

under preemptive priority service using matrix geometric technique. Senthil Kumar et al. (2013) analysed preemptive resume priority 

retrial queue with two classes of MAP arrivals.  

Retrial queues with collisions arise from the medium access control protocols for wireless LANs. Choi e t al. (1992) discussed a 

retrial queueing system with constant retrial rate and collision in the specific communication protocol CSMA -CD. Using generating 

function technique, Krishna Kumar et al. (2010) studied a Markovian single server feedback retrial qu eue with linear retrial rate and 

collision of customers. Kim (2010) considered an M/M/1 retrial queue with collision and impatience. Wu et al. (2011) considered a 

discrete time Geo/G/1 retrial queue with preemptive resume and collisions. 

In recent years, a variety of industrial applications have created interest in the modelling of reliability in queues with negative 

arrivals called G queues. Arrival of a negative customer not only removes the customer in service from the system but also ca uses the 

server breakdown. Liu et al. (2009) analysed an M/G/1 retrial G queue with preemptive resume and feedback under N policy vacation. 

Wang and Zhang (2009) considered a discrete time retrial queue with negative arrivals. Aissani (2010) obtained the generating  

function of the number of primary customers in the stationary regime of an M/G/1 retrial queue with negative arrivals and unreliable  

server. Wu and Lian (2013) discussed an M/G/1 retrial G queue with priority resume, Bernoulli vacation and server breakdown. Peng 

et al. (2013) suggested an M/G/1 retrial G queue with preemptive resume priority and collisions under linear retrial policy s ubject to 

server breakdowns and delayed repairs.  

In this paper we have analysed unreliable batch arrival retrial queue with positive and negative customers, priority or collisions, 

delayed repair and orbital search 

Model Description 

Single server queueing system with two types of arrivals positive and negative is considered. Positive customers arrive in ba tches 

according to Poisson process with rate +. At every arrival epoch, a batch of k customers arrives with probability Ck. The generating 

function of the sequence {Ck} is C(z) with first two moments m1 and m2. There is no waiting space in front of the server and therefore 

if the arriving batch of positive customers finds the server idle, then one of the customers receives his service and the others join  the 

orbit. If the server is busy, then the arriving batch proceeds to the server with probability  or enters the orbit with probability               

  (= 1 – ). In the first case, with probability  one of the customers interrupts the customer in service to commence his own service 

and the interrupted customer along with remaining customers join the orbit. Otherwise, with probability   (= 1 – ) the arriving 

batch collides with the customer in service resulting in all being shifted to the orbit and the server becomes idle . 
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ABS TRACT 

Batch arrival retrial queue with positive and negative customers is considered. Positive 

customers arrive in batches according to Poisson process. If the server is idle upon the 

arrival of a batch, one of the customers in the batch receives service immediately and others 

join the orbit. If the server is busy, the arriving batch joins the orbit or collides with the 

customer in service resulting in all being shifted to the orbit or one of the customers in the 

batch interrupts the customer in service to get his own service. The arrival of a negative 

customer brings the server down and makes the interrupted customer to leave the system. 

The repair of the failed server starts after a random amount of time. During the repair time 

and delay time, customers may balk the system. After each service completion, the server 

searches for customers in the orbit with certain probability. Using supplementary variable 

technique various performance measures are derived. Stochastic decomposition property is 

established. Special cases are discussed and numerical results are presented.  
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Negative customers arrive independently according to Poisson process with rate . The arrival of negative customer removes the 

positive customer in service from the system and causes the server breakdown. The repair of the failed server commences after  a 

random amount of time. If the server is waiting for repair (under repair), the arriving batch enters the orbit with probability p(q) or 

leaves the system with complementary probability p ( q ). As soon as the service of the positive customer is completed, the server 

goes for search of customers in the orbit with probability  or remains idle with probability  (= 1– ). The search time is assumed to 

be negligible. 

Distribution function, density function, Laplace Stieltjes transform and the first two moments of retrial time , service time, delay 

time and repair time which are generally distributed are given below. 

 
Time Distribution function Density function Laplace Stieltjes transform First two moments Hazard rate function  

Retrial A(x) a(x) A(s) - (x) 

Service B(x) b(x) B(s) 1, 2 (x) 

Delay D(x) d(x) 
)(sD

 1, 2 (x) 

Repair R(x) r(x) 
)(sR

 1, 2 (x) 

The stochastic behaviour of the retrial queueing system can be described by the Markov process {X(t), t  0} = {S(t), N(t), (t), t 

 0} where S(t) denotes the server state 0, 1, 2 or 3 according as the server being idle, providing service, waiting for repair or  under 

repair. N(t) corresponds to the number of customers in the orbit. If S(t) = 0, then (t) represents the elapsed retrial time. If S(t) = 1, 

then (t) represents the elapsed service time. If S(t) = 2, then (t) represents the elapsed delay time. If S(t) = 3, then (t) represents the 

elapsed repair time. 

Stability Condition 

Let )( 
ntN  be the number of customers in the orbit just after time tn. Then the sequence of random variables Yn = )( 

ntN  form a 

Markov Chain, which is the embedded Markov Chain of the system. 

Theorem 1 

 The embedded Markov chain {Yn, n   N} is ergodic if and only if 

[1 – B (+  + )] [+ ( + m1) +  m1 (p + 1 + q + 1) + m1(1 – A ()) ( + +  )]  <  

                                                                        (+  + ) [1 – m1(1 – A (+))   B (+  + )].  

The theorem can be proved along similar lines as in Gomez-Corral (1999). 

Steady State Distribution 

For the process {X(t), t  0}, define the probability  densities  

0(t)                = P{S(t) = 0, N(t) = n} 

n(x, t) dx = P{S(t) = 0, N(t) = n, x  (t) < x + dx}, x  0, n  1 

Pn(x, t) dx = P{S(t) = 1, N(t) = n, x  (t) < x + dx}, x  0, n  0 

F1,n(x, t) dx = P{S(t) = 2, N(t) = n, x  (t) < x + dx}, x  0, n  0 

F2,n(x, t) dx = P{S(t) = 3, N(t) = n, x  (t) < x + dx}, x  0, n  0 

The steady state equations of the model under study are 

   + 0  = 


0
0 )(P x  (x) dx + 



0
2,0 )(F x  (x) dx                      (1) 

dx

d n(x)  =  (+ + (x)) n(x),  n  1               (2) 

dx

d Pn(x) =  (+ +  + (x)) Pn(x) + +   


n

k 1
kC Pnk(x),  n  0                         (3) 

dx

d F1,n(x) =  (p + + (x)) F1,n(x) + + p 


n

k

x
1

k-n1,k ),(F C   n  0                           (4) 

dx

d F2,n(x) =  (q + + (x)) F2,n(x) + + q 


n

k

x
1

k-n2,k ),(F C   n  0                 (5) 

with boundary conditions  

1(0) =   


0
1 )(P x (x) dx + 



0
2,1 )(F x (x) dx                   (6) 

n(0)  =   


0
n )(P x (x) dx + 



0
n2, )(F x (x)dx + +   



n

k 1
kC 




0

)1(n )(P xk
dx, n  2     (7) 

P0(0)  =  + C1 0 + 



0

1 )( x  (x) dx +  


0
1 )( xP  (x) dx                                      (8) 

Pn(0)  =  + Cn+1 0 + 



0

1n )( x  (x) dx + +   


n

k 1
kC 




0

n )(P xk
dx  
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   + + 


n

k 1
kC 




0

1n )( xk
dx +  




0

1n )( xP  (x) dx,   n  1                    (9) 

F1,n(0)  =   


0
n )( xP dx,   n  0                                        (10) 

F2,n(0) =  


0
n1, )( xF  (x) dx,  n  0                             (11) 

The normalising equation is  

0 +  







1 0

n )(  
n

x dx +  






0 0
n )(  

n

xP dx +  






0 0
n1, )(  

n

xF dx +  






0 0
n2, )(  

n

xF dx = 1            (12)   

To solve the above equations, define the probability generating functions  

(x, z)   =   





1

)( 
n

n x zn ;                   P(x, z)   =   


0

)( 
n

n xP zn ; 

F1(x, z)   =   


0
,1 )( 

n
n xF zn     and    F2(x, z)   =  



0
,2 )( 

n
n xF zn  

Multiplying equations (2) to (5) by zn, summing over n and solving the corresponding partial differential equations, we get  

(x, z) =  (0, z) 
xe


(1 – A(x))                 (13) 

P(x, z) = P(0, z) 
C(z))x (   e (1 – B(x))               (14) 

F1(x, z) = F1(0, z) 
C(z))x(1 pe (1 – D(x))                          (15) 

 F2(x, z) = F2(0, z) 
C(z))x(1 qe (1 – R(x))                (16) 

Multiplying equations (6) to (11) by zn and summing over n, we get 

(0, z) =  


0

z) P(x, (x) dx + 


0
2 z) ,(F x (x) dx + +    z C(z) 



0

z) P(x, dx  + 0   (17) 

P(0, z) = 
z

C(z)   0 + 

z

1  



0

z) (x, (x) dx + 
z

C(z) 




0

z) (x, dx 

  + 

z

  


0

z) (x, P (x) dx + +   C(z) 


0

z) (x, P dx            (18) 

F1(0, z)  =  


0

z) (x, P dx                           (19) 

F2(0, z) = 


0
1 z) (x, F (x) dx                (20) 

Using equations (13) and (16) in equations (17) to (20) and simplifying, we have 

(0, z) = [+ 0 [C(z) B (+ (1 –  C(z)) + )  z + (1 – C(z))  

  B (+ (1 –  C(z)) + ) + K(z) (C(z) ( D (p +(1 – C(z)))  

                            R (q +(1 – C(z))) + +    z C(z) + +   z))]] / T(z)              (21) 

P(0, z) =  )( /   )1 (C(z) )( 0 zTA                  (22) 

F1(0, z) = + 0 A (+) (C(z) – 1) K(z) / T(z)                       (23) 

F2(0, z) = T(z) / K(z)  )))((1 (pD )1(C(z) )(A  0 zC              (24) 

where 

K(z)   =    













C(z)) 1(

)C(z))  1((1 B  

T(z) = z – [C(z) + A (+) (1 – C(z))]   B (+ (1 –  C(z)) + ) 

           B (+ (1 –  C(z)) + )  K(z) [(A (+) + C(z) (1 – A (+))) 

  ( 
D (p +(1 – C(z))) R (q +(1 – C(z))) + +    z C(z)) + +   z C(z)] 

Substituting the expressions of (0, z), P(0, z), F1(0, z) and F2(0, z) in (13), (14), (15) and (16), we get 

(x, z) = [+ 0 [C(z) B (+ (1 –  C(z)) + )  z + (1 – C(z))  

  B (+ (1 –  C(z)) + ) + K(z) (C(z) ( 
D (p +(1 – C(z)))  

                            R (q +(1 – C(z))) + +    z C(z) + +   z))]] A(x))  (1 
 xe 

/ T(z)  (25) 

P(x, z) = + 0 A (+) (C(z) – 1) 
 xC(z))      (   e (1 – B(x)) / T(z)           (26) 

F1(x, z) = +  0 A (+) (C(z) – 1) K(z)  xC(z))  (1 pe (1 – D(x)) / T(z)      (27) 
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F2(x, z) = +  0 A (+) (C(z) – 1) D (p + (1 – C(z))) K(z)  xC(z))  (1 qe (1 – R(x)) / T(z) (28) 

The partial probability generating function of the orbit size when the server is idle is  

(z) = 



0

z) (x, dx 

 = [0 (1 – A (+)) [(C(z) B (G(z)) –z+ B (G(z))(1–C(z)))(+ (1– C(z))+ )+C(z)(1 – B (G(z)))       

                              ( C(z)))1( (  pD C(z)))1( (  qR + +    z C(z) + +   z)]] / T1(z)   (29) 

where  

G(z)    = + (1 –  C(z)) +  

T1(z) = [z–(A (+)+C(z)(1–A (+))) B (G(z)) B (G(z))] (+ (1– C(z)) + )(1–B (G(z))) [(A (+)  

                               + C(z) (1 – A (+)))( C(z)))1( (  pD C(z)))1( (  qR + +    z C(z)) + +   z C(z)] 

The partial probability generating function of the orbit size when the server is busy is  

P(z) = 


0

z) P(x, dx 

 = )(T / )))(((1 )1(C(z) )(A  10 zzGB                                  (30) 

The partial probability generating function of the orbit size when the server is waiting for repair is  

F1(z) = 


0
1 z) (x,F dx 

   = ))( ( / )1)))(1( (( (G(z)))(1 )(A  10 zTpzCpDB                  (31) 

The partial probability generating function of the orbit size when the server is under repair is  

F2(z) = 


0
2 z) (x,F dx 

 = [0
+A (+)(1–B (G(z)))D (p+(1–C(z))) (R (q + (1–C(z)))–1)]/(q T1(z))  (32) 

Using the normalising equation (12), 0 can be obtained as  

0 = [(B (+  + ) – 1) (+ ( + m1) +  + m1 (p 1 + q 1) + m1 (1 – A (+))  

  ( + +   )) + (+  + ) (1 – m1 (1 – A ())   B (+  + ))] / [A (+)  

  ((+  + ) + (B (+  + ) – 1) (+ (   m1 ( p 1 + q 1))))]          (33) 

The probability generating function of the orbit size is  

Pq(z) = 0 + (z) + P(z) + F1(z) + F2(z) 

 = C(z) )((1 )1((z[ )(A 0    zC (z)T / )]())))(( 12 zTzGB      (34) 

where 

T2(z) = [(z–B (G(z)))–(1–B (G(z))) C(z)))1( ((  pD C(z)))1( (  qR +( p) / C(z))))1( (1(   pD +  

  q))] / C(z))))1( ((1 C(z)))1( ((    qRpD  

The probability generating function of the system size is  

PS(z) = 0 + (z) + z P(z) + F1(z) + F2(z) 

 = )(T / )](C(z)) )((1 (G(z)) )1(z[ )(A 120 zzTzCB            (35) 

Performance Measures 

 If the system is in steady state, then the probability that the system is empty is given by 0 

 The probability that the server is idle during retrial time is given by  

 = 
1  

lim
z

 (z)  

 = 0 (1 – A (+)) [(1 – B (+  + )) ( m1 (1 + + p 1 + + q 1)  

  + + (m1 +  + m1 )) + (+  + ) ( m1B (+  + ) – 1)] / )1(1


T    (36) 

where  

)1(1


T

 = (B (+  + ) – 1) [+  + + m1 +  + m1 (p 1 + q 1)+ m1(1 – A (+)) ( + +   )] +  

                   (+  + ) (1 – m1 (1 – A (+))   B (+  + )) 

 The probability that the server is busy is given by 

 P = 
1  

lim
z

 P(z)  

  = 
)1( / ))   (B(1   )( 110


  TmA               (37) 

 The probability that the server is in failure mode is given by 

    F = 
1  

lim
z

 (F1(z) + F2(z)) 
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 = 
)1(  / ))   (B(1 )  (   )( 11110


  TmA 

            (38) 

 The probability of unsuccessful retrials made by a customer is given by  

 VR = 

))   (  m (1 ))((1 )   ( )]  (

 ))((1m  ) q   (pm    )m  ( 

))) q  p( m (( )([A )1)   ((

 ))   ((1 )(A )      (1 m 

1

11111

111

111

























BA

A

B

B                 (39) 

Let Nr(z) and Dr(z) represent the numerator and denominator of Pq(z). 

 The mean number of customers in the orbit Lq is given by 

 Lq = 
1

lim
z

 

dz

d  Pq(z)                

  = 

2(1)r2D

(1)rD (1)rN  (1)rN  )1(



rD               (40) 

where 

Nr(1)     = 0 A (+) [+  B (+  + ) + (1 + (1 – B (+  + )) + m1 ( p 1 + q  1))] 

Nr(1) = 0 A (+) [2+( h3 + m1  B (+  + ) – m1)  (2B (+  + ) + m1  

  ( p 1 + q 1)) + + ( p h1 + q  h2 + 2 q  p 
2
1m  1 1) (1 – B (+  + ))] 

Dr(1) = )1(1


T  

Dr(1) = (B (+  + ) – 1) [+ (2 m1 + m2) + (p + h1 + q + h2) + 2 2
2
1m p 1 q 1 + 2 m1  

                    ( + m1
 (p 1 + q 1) (1 – A (+))+ +    (1 + m1)) + m2 (

 + +   ) (1 – A (+))  

  + 2 +    2
1m (1–A (+)) B (+  +)(+  + )  h3 (2 m1(1–A (+))+ m2  (1 – A (+))   

                   B (+  + )) + 2 h3 ( + m1 (p 1 + q 1) + +  (1 + m1) + m1(1 – A (+)) ( + +   ))] 

h1 = m2 1 + p + m1
2 2 

h2 = m2 1 + q + m1
2 2 and 

h3 = +   m1 


 

0

 x)   ( e  x b1(x) dx 

 The mean number of customers in the system is given by 

 LS  = 
1

lim
z

 

dz

d  PS(z) 

   = Lq+ P                 (41) 

 

Reliability Indices 

Let A(t) be the system availability at time t, that is the probability that the server is idle or working for a customer. The n under 

steady state condition, the availability of the server is given by 

A = 0 + 
1

lim
z









 
 

0 0

dx z) (x, dx  z) (x, P  

 = 0 +  + P 

 = 

 )1)   (( )) q   (m   (   )   (

 )1)   (( )) q   (m   (   )   (

111

111












Bp

Bp            (42) 

The steady state failure frequency of the server is  

₣ =  P 

 = 

 )1)   (( ))) q   (m   ((  )   (

))   ((1 m  

111

1












Bp

B            (43) 

Stochastic Decomposition 

Theorem 2 

The expected number of customers in the system (LS) can be expressed as the sum of two independent random variables, one of 

which is the expected number of customers in unreliable batch arrival classical queueing system with positive and negative cu stomers, 

priority or collisions and delayed repairs (L) and the other is the expected number of customers in the orbit given that the server is idle 

(L). 

Proof  

The probability generating function (z) of the number of customers in unreliable batch arrival queue with positive and negative 

customers, priority or collisions and delayed repairs is given by  
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(z)  = 

 ))] q   (m   ([ )1)   ((  )   (

)   ( ))  q    (m    )m  ( ( )1)   ((

111

1111













pB

pB  
x 

     

             

 

C(z))] z    )))((1 (q )))((1 (pD (

 (G(z)))(1  )C(z)) (1( (G(z)))[(

)](T  C(z))   C(z)  (1 ))((B 1)  (z [ 2



















zCRzC

BBz

zzG     

                                                     (44) 

  The probability generating function (z) of the number of customers in the orbit given that the server is idle is given by 

(z) = 

)1(

)(

0

0



 z  

 = [[( + m1 (p 1 + q 1) + + (m1 + )) + (+  + )] (B (+  + ) –1) / [(+  + ) +    

                  (+ (   m1 ( p 1 + q  1) (B (+  + ) – 1)))]] x[[0 A (+) ((+(1 –  C(z)) + )  

                  (z–B (G(z)))(1–B (G(z)))( )))(1( ( zCpD   ))))(1( ( zCqR   ++zC(z))] / T1(z) (45) 

From equations (35), (44) and (45), we get  

PS(z)    =   (z) (z) 

Consequently, in terms of convolution we can state that  

LS    =   L + L  

Special Cases 

Case (i)   

If  = 0 (no negative customers), then our model reduces to MX/G/1 retrial queue with priority or collisions and orbital search. In 

this case 

PS(z) = C(z))]   )((1 C(z))) 1((B )1([ )(A 0    zCz  / T3(z) 

where  

T3(z) = z – (A (+) + C(z) (1 – A (+)))   B (+ (1 –  C(z)))  

    B (+ (1 –  C(z))) (+ (1 –  C(z)))  (1 – B (+ (1 –  C(z)))) 

  [(A (+) + C(z) (1 – A (+))) + +    z C(z)] + +   z C(z) 

0 = )m( ( )1) ([( 1  B ))  ( ))(A  (1m 1    

  ))] (  ))(A  (1(1   1    Bm 1)))  ) ((  )((A  ( /    B  

Case (ii) 

A ()  1 (no retrials), in this case our model becomes MX/G/1 queue with positive and negative customers, priority or 

collisions, server breakdown and delayed repairs. For this model 

Ps(z) = 

  C(z) z  )))((1p )))((1 pD ))(G(z)B1() C(z))  1((G(z)))(B(

)](T  C(z))   )((1 (G(z))B )1([ 20












zCRzCz

zzCz  

0 = 

))] q   (m   ([ )1)   ((  )   (

)   ( )] q   (m    )m  ([ )1)   ((

111

1111












pB

pB  

When the computer system experiences failure it has to undergo repair. The repair process begins after an initial delay. During this 

down time, the programs that come in for execution may be withdrawn (balking) without being executed.  

 Numerical Results 

Performance measures are calculated numerically by assuming that the retrial time, service time, delay time and repair time 

follow exponential distribution with respective rates , ,  and . For the parameters   + = 2,  = 0.3,  = 0.6,  = 0.7, p = 0.5, q = 

0.5,  = 0.5,  = 4,  = 2,  = 1,  = 30, C1 = C2 = 0.5, the performance measures 0 - the probability that the system is empty,  - the 

probability that the server is idle in non-empty system, P - the probability that the server is busy and LS - the mean number of 

customers in the system are calculated by varying the rates +, ,  and  and presented in Fig. 1 and Fig. 2. 

The effect of 0,  and LS against the parameters + and  are plotted in Fig. 1 (a) to (d). From the figures it is observed that  

 0 decreases with + and increases with . 

 , P and LS increase for increasing values of + and decrease for increasing . 

 The variation of 0,  and LS with respect to the parameters  and  are given in Fig. 2 (a) to (d). Figures reveal that  

 0 increases with increase in  and . 

  and LS decrease with increase in  and . 

 P is independent of  and . 
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Fig 1. Performance Measures Versus (, +) 
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