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Introduction  

 All Atomic Force Microscopy is widely used for probing 

surface properties on atomic scale. AFM has been utilized to 

topography the surface of sample in nano-scale, study the 

properties of materials like adhesion [1] Young modulus, 

elasticity and friction [2], scanning the unknown potential 

function of materials , and study the behavior of materials in 

their natural environments [3]. AFM is growing in such a great 

pace that in near future scientists will find some applications of 

it in their fields. 

Generally AFM functions in three different modes, non-contact 

mode[4],tapping mode, and contact mode. In tapping mode, tip 

contacts the sample surface for a short period of time during the 

scanning of the surface while micro-cantilever vibrates at a 

frequency near to the resonant frequency of micro-cantilever [5]. 

The dynamics of AFM is affected by the tip and sample 

interaction forces. 

By examining the variation in amplitude and phase of the micro-

cantilever vibration it is possible to study the properties of 

sample such as topography of scanning surface. Various sets of 

parameters affect the dynamics of AFM like contact stiffness 

between tip and sample [6], probe mass [7], micro-cantilever‟s 

features [8], non-linear nature of the tip and sample interaction 

forces [9].Cumulative effects of all of these parameters 

complicate the recognition of dynamic behavior of AFM. 

Mass-spring system [10] and continuous beam model [11] are 

two general methods of approaching dynamic behavior of micro-

can till ever vibration in studying the AFM. Mass-spring model 

is a useful method to find the dynamic behavior of AFM 

especially when the nonlinear behavior of system is desired 

[9,10]. 

However, Burnhum et al [12] proved that lumped mass model is 

impractical when AFM works in fluid environment as the hydro 

dynamic force exerted on a cantilever may not be well presented 

by drag force on a sphere. However it has been shown that linear 

continuous beam model is more reliable [13]. 

Semi analytical solution is a useful method to study the 

dynamics of AFM. Mokhtari-Nezhad et al [14] used semi-

analytical solution to study the influence of tip mass on resonant 

frequency of AFM. 

Approximate methods like mode superposition method [15, 16], 

Reyli-Rithz method and finite-element method (FEM) [17] are 

useful especially when analytical or semi analytical solutions are 

complicated or impossible. But each of these methods has some 

inadequacies like      limitations in obtaining the number of 

resonance frequencies of the system and low accuracy [18]. 

However, Wave Propagation Method (WPM) which offers 

the privileges of finding the exact value of all resonant 

frequencies, the number of more frequencies as well as obtaining 

the resonance frequencies of beam with non-constant thickness 

makes it as a noble method for investigating the vibration of the 

AFM micro-beam system. In this paper WPM method is 

developed and utilized to find the first two resonant frequencies 

of the system. The results are then compared with experiment. 

 

AFM vibration analysis 

When micro cantilever becomes close to the sample, interaction 

forces between tip and sample affect the dynamics of AFM. Two 

general regimes are distinguished: short range repulsive and 

wide range attractive forces [12]. The nature of these forces are 

nonlinear but if the beam vibrates near to equilibrium position 

with small amplitude then these forces can be considered as 

linearized visco-elastic forces with constant coefficients [14]. 

Based on Euler Bernoulli equation of beams the governing 

equation of the motion is [12]:  
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Where   is the density of cantilever, A is cross-section area, E 

is Young modules, I is area moment of inertia around Z axis, and  

y(x,t) is the displacement of beam in Y direction as it is shown in 

Fig 1.  
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Fig 1. Schematic diagram of AFM micro-cantilever and tip-

sample interaction 

By assuming harmonic motion of micro-cantilever holder 

defined as 
ti

y eyth  .)( 0  , the solution of Eq. (1) can be 

declared by 
tiexYtxy  ).(),( .Due to assuming linear dynamic 

and harmonic oscillation of micro-cantilever holder the relative 

displacement at the tip head is also assumed in harmonic. The 

corresponding boundary conditions of micro-cantilever are: 
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Fig 2. Tangential and normal forces exerted at micro-

cantilever and its probe 

fx and fyare resultant forces which are applied at end of micro-

cantilever at x=0 in x and y directions respectively, H and mtip 

are the length and the mass of probe which is considered as a 

pointed mass as shown in the Fig 1. 

With respect to Fig.2, fx and fy are equal to: 

)sin()cos(  ntx FFf                                                  3(a) 

)sin()cos(  tnx FFf                                                  

3(b) 

Where Fn and Ft are normal and lateral forces and   is tilting 

angle of micro-cantilever. Lateral and normal forces can be 

obtained as following: 

nnnnn ckF  .                                                                4(a) 

ttttt ckF  .                                                                  4(b) 

In the above equations, t and n are tangential and normal 

directions and   is the displacement of the free end of the 

micro-cantilever. The displacement of end of micro-cantilever 

are obtained by following relations: 

)sin()()cos()(  HLLYn                                    5(a) 

)()()()(  HCosLSinLYt                                    5(b) 

Where )(L is the tilting angle of cantilever at x=L. Solving 

governing equation of the motion Eq. 1 with respect to boundary 

conditions Equations 2.a, 2.b, 2.c, and 2.d will lead us to find the 

response function of micro-cantilever motion (Y(x)). 

Wave Propagation Method 

Assume that the general solution of the Eq-1 is: 

1 2 3 4( , ) ( )ikx ikx kx kx i tw x t c e c e c e c e e                  (6) 

Where c1, c2, c3 and c4 are constants and k is wave number and is 

equal to: 
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Based on WPM method [1], Eq-6 can be rewritten as positive 

(a
+
) and negative (a

-
) waves: 
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Then the relation between positive and negative wave matrices 

is: 
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Where F
+
 and F

-
 are propagation matrices which are as 

following: 

0

0

ikl

kl

e
F F

e



 



 
   

                                                     (10) 

Where Eq. 2(a) and 2(b) present the zero displacement and zero 

slip at x=0 respectively. Eq. 2(c) and 2(d) present applied 

vertical momentum and shear force at end of micro-beam 

respectively. 

 
Fig 3. Schematic figure of positive and negative waves at 

ends of micro-cantilever. External forces are equalized in the 

forms of springs and dampers 

Displacement and force matrices are defined as follows: 
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Where the relationship between the state vector in physical 

domain and in the wave domain is obtained as follow [19]: 



Farzad mokhtari-Nezhad and Roslan Bin Abd. Rahman/ Elixir Mech. Engg. 89 (2015) 37226-37230 
 

37228 

W a

F a

 

 

 

  

       
    

                                                           (12) 

 

, 
 

, 
 

, 
 

are 2×2 matrices that are as follows:  
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Regarding to Fig 3 the relations between positive and negative 

waves atthe ends of micro-beam are: 

Aa R a 
                                                                          (14a) 

Bb R b 
                                                                           (14b) 

Where RA and RB are the reflection matrices at points A and B. 

Boundary conditions for the clamped of the cantilever include: 

Zero movement and zero slope. Based on above boundary 

conditions, reflection matrix at the clamped side of the cantilever 

can be calculated: 
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Transition matrix at the open end of the beam depends on 

the boundary conditions. Considering the impact of external 

forces in the form of the spring and damper, this reflection 

matrix is given by: 

   1( ) ( )BR k k         
                                 (16) 

K is the stiffness matrix and depends on the boundary 

conditions, For micro-cantilever of the AFM device in pure 

bending vibration mode and considering the surface reaction 

forces as a linear spring and damper, the stiffness matrix is as 

follows: 
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Where mt is the tip-mass, kn and kt are spring coefficient of tip-

sample interaction in normal and lateral directions respectively, 

and   is the frequency of micro-cantilever. By obtaining the 

wave equations, the natural frequency of the system can be 

found. These equations are as the following: 

Aa R a 
                                                                            (18) 

Bb R b 
                                                                             (19) 

b F a                                                                               (20) 

a F b                                                                               (21) 

These equations can be written in matrix form, therefore, 

uniform beam equation with linear boundary conditions and 

considering the applied forces on the beam as a linear spring and 

damper are: 
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Where b+ and b-are the wave matrices at x=L as it is shown in 

Fig 3. To have a unique answer, the determinant of the 

coefficient matrix of the above matrix should be equal to zero. 

By solving this equation, we can obtain the resonant frequency 

of the micro-cantilever. 

Results and discussion 

In this paper the frequency response of the micro-cantilever 

of AFM is studied using the Wave Propagation Method. Three 

types of micro-cantilever are used in the experiments of the 

current study which was done in ARA-AFM laboratory [21]. 

The three types of micro-cantilever, NSG01/Tin, NSG01/Co and 

NSG11, are utilized which the properties of these cantilevers are 

listed in table 1. The same properties of micro-cantilevers were 

used in both analytical and experimental analysis in order to 

make comparison.  

 
Fig 4. Obtained resonant frequency curve from experiment 

with different micro- cantilever and its tip, a: NSG01/C0, b: 

NSG01/Tin, c: NSG11 

In order to find the resonance frequency by the AFM device, 

operator specifies an approximate domain of frequency. 

Actually, the frequency domain, which should be specified for 

the device, is already provided by the manufacturer and is given 

to the operator.  
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The device begins to increase the vibration frequency of the 

micro-cantilever from minimum to maximum along the specified 

frequency domain. Figure 4 illustrates the frequency response of 

the system examined by the operator. 

 
Fig 5. Frequency response of three different MC obtained 

from analytical study 

Moreover, resonance frequencies of micro-cantilevers are 

obtained using analytical method. Response function of all three 

types of micro-cantilever (Y(L)) are illustrated in Fig. 5. 

By solving the characterization equation of equation 17, the 

resonance frequencies of micro-cantilever can be obtained using 

WPM. The 1st resonant frequency of all micro-cantilever types 

which were obtained from the experiment, WPM, and analytical 

method are listed in table 2.  

Some issues such as approximations for modeling the 

micro-cantilever system like using the linear beam theory and 

the linear visco-elastic of tip-sample interaction as well as the 

errors in parameters‟ measurement like cantilever features, have 

some effects on the obtaining RFs of system, experimentally and 

theoretically, and it would lead to some deviation from exact 

resonant frequency. 

However, Based on above mentioned, obtained RFs from 

WPM method are in good agreement with the experiments. It is 

shown that WPM is reliable method to find the resonance 

frequency of AFM micro-cantilever. Results show that this 

method is more accurate than the analytical method. 

Conclusion 

In this paper modified wave propagation method (WPM) , 

for the first time, is utilized to find the resonance frequencies of 

Atomic Force Microscope micro-cantilever by considering the 

damping coefficients at boundary condition and tip mass. It is 

shown that Wave Propagation Method (WPM) has a great ability 

to find the resonance frequencies of the AFM. 

In this study, the RF of micro-cantilever is obtained using 

three methods including analytical method, WPM, and 

experimental method. To verify the accuracy of the WPM 

Table 1. Parameters and characteristics of micro-cantilever and its probe according to the catalogue of producer 
Micro-cantilever NSG01/Tin NSG01/Co NSG11 

length 

 5   

125 125 130 

width 

5  

30 30 35 

thickness 

( m) 

1.5-2.5 2 1.7-2.3 

Domain of RF 

(KH) 

87-230 90-220 115-190 

Damping coeff. 

(Ns/m) 

10-3 10-3 8.3×10-3 

Young‟s modulus (pa) 1.3×1011 1.3×1011 1.5×1011 

Probe mass 

(kg) 

1.036×10-19 3.027×10-17 2.021×10-20 

Micro-cantilever NSG01/Tin NSG01/Co NSG11 

length 

 5   

125 125 130 

width 

5  

30 30 35 

thickness 

( m) 

1.5-2.5 2 1.7-2.3 

Domain of RF 

(KH) 

87-230 90-220 115-190 

Damping coeff. 

(Ns/m) 

10-3 10-3 8.3×10-3 

Young‟s modulus (pa) 1.3×1011 1.3×1011 1.5×1011 

Probe mass 

(kg) 

1.036×10-19 3.027×10-17 2.021×10-20 

 
Table 2. Comparison of first resonant frequencies obtained by WPM method with experiment and analytical method 

Tip model Obtained RF from 

WPM (rad/s) 

Experiment R.F  

Result (rad/s) 

Obtained  

RF from 

 Analytical (rad/s) 
NSG01/Tin 1122489 1060000  1184600 

NSG01/Co 1015157 939680  1106700 

NSG11 1098459 988000  1139200 

 



Farzad mokhtari-Nezhad and Roslan Bin Abd. Rahman/ Elixir Mech. Engg. 89 (2015) 37226-37230 
 

37230 

method, the obtained results are compared against the 

experimental and analytical results and a good agreement is 

observed. The results show that this method is more accurate 

rather than the analytical method. Modified Wave Propagation 

Method, therefore, can be used for further studies of AFM with 

non-constant parameters like v-shaped AFM or Fork AFM. 
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