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1. Introduction 

A PV array is usually oversized to compensate for a low power yield during winter months. This mismatching between a PV 

module and a load requires further over-sizing of the PV array and thus increases the overall system cost.  To mitigate this problem, a 

maximum power point tracker (MPPT) can be used to maintain the PV module‟s operating point at the MPP. MPPTs can extract more 

than 97% of the PV power when properly optimized. A typical photovoltaic system may consist of the solar generator itself and other 

components that maybe any one of the following: storage elements (especially in stand-alone systems); the utility grid; power 

converters (DC/DC or Inverters) and associated control circuitry [1-7]. DC-DC converters are electronic devices that are used 

whenever we want to change DC electrical power efficiently from one voltage level to another. In all applications, we want to perform 

the conversion with the highest possible efficiency. DC-DC Converters are needed because unlike AC, DC can‟t simply be stepped up 

or down using a transformer. In many ways, a DC-DC converter is the DC equivalent of a transformer. They essentially just change 

the input energy into a different impedance level. So whatever the output voltage level, the output power all comes from the input; 

there‟s no energy manufactured inside the converter. Quite the contrary, in fact some is inevitably used up by the converter circuitry 

and components, in doing their job. The Boost converter is another simple power electronic converter and basically consists of a 

voltage source, an inductor, a power electronic switch (usually a MOS-FET or an IGBT) and a diode. It usually also has a filter 

capacitor to smoothen the output. Buck converters provide longer battery life for mobile systems that spend most of their time in 

“stand-by”. Buck regulators are often used as switch-mode power supplies for baseband digital core and the power amplifier [8-13]. 

This paper proposes the part of DC-DC Converter coupled with resistive load and supplying it with Maximum Power as shown in 

figure 1. 

 

 

 

 

 

 

 

Figure (1) Simple DG System with DC-DC Converter and 

Resistive Load 
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ABSTRACT  

This paper proposes Artificial Neural Network (ANN) model for the required DC-DC 

Converter Duty Cycle feeding Maximum Power to resistive load to be used for distributed 

generation (DG) applications. It proposes a PV module when coupled to a load through DC-

DC Converter to supply this resistive load with the maximum power from the PV module. 

Some of DC-DC converters topologies are discussed in brief with concentration on Cúk and 

SEPIC Converters operations. The mechanism of load matching is described to give the 

required converter duty cycle at maximum power point (MPP). Relations in 3D figures are 

introduced for the most probable situations for irradiance and temperature with the 

corresponding PV voltage and current. Also, 3D figures for the desired duty cycle, output 

voltage and current of DC-DC converter to gain the maximum power to the resistive load at 

various irradiance and temperature values. Moreover; Artificial Neural Network (ANN) is 

used to implement a neural model with its algebraic function to take the probable system 

situations and outs the proposed converter duty cycle to give maximum power for the load. 

All the neural model are done with their hidden and output layers‟ suitable neurons numbers 

and suitable performance goals depending on the 3D simulation figures shown in the paper.  
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2. Maximum Power Point for Resistive Load 

When a PV module is directly coupled to a load, the PV module‟s operating point will be at the intersection of its I–V curve 

and the load line which is the I-V relationship of load. For example in figure 2, a resistive load has a straight line with a slope of 

1/RLoad as shown in Figure 3. In other words, the impedance of load dictates the operating condition of the PV module. In general, 

this operating point is seldom at the PV module‟s MPP, thus it is not producing the maximum power.  

A PV array is usually oversized to compensate for a low power yield during winter months. This mismatching between a PV 

module and a load requires further over-sizing of the PV array and thus increases the overall system cost. To mitigate this problem, a 

maximum power point tracker (MPPT) can be used to maintain the PV module‟s operating point at the MPP. MPPTs can extract more 

than 97% of the PV power when properly optimized. This section discusses the I-V characteristics of PV module and resistive load, 

matching between the two, and the use of DC-DC converters as a means of MPPT.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. DC-DC Converter 

The heart of MPPT hardware is a switch-mode DC-DC converter. It is widely used in DC power supplies and DC motor 

drives for the purpose of converting unregulated DC input into a controlled DC output at a desired voltage level [14]. MPPT uses the 

same converter for a different purpose: regulating the input voltage at the PV MPP and providing load-matching for the maximum 

power transfer. There are a number of different topologies for DC-DC converters. They are categorized into isolated or non-isolated 

topologies.  

The isolated topologies use a small-sized high-frequency electrical isolation transformer which provides the benefits of DC 

isolation between input and output, and step up or down of output voltage by changing the transformer turns ratio. They are very often 

used in switch-mode DC power supplies [15]. Popular topologies for a majority of the applications are fly-back, half-bridge, and full-

bridge. In PV applications, the grid-tied systems often use these types of topologies when electrical isolation is preferred for safety 

reasons. Non-isolated topologies do not have isolation transformers.  

These topologies are further categorized into three types: step down (buck), step up (boost), and step up & down (buck-

boost). The buck topology is used for voltage step-down. In PV applications, the buck type converter is usually used for charging 

batteries and in LCB for water pumping systems. The boost topology is used for stepping up the voltage. The grid-tied systems use a 

boost type converter to step up the output voltage to the utility level before the inverter stage. Then, there are topologies able to step 

up and down the voltage such as: buck-boost, Cúk, and SEPIC (stands for Single Ended Primary Inductor Converter).  

For PV system with batteries, the MPP of commercial PV module is set above the charging voltage of batteries for most 

combinations of irradiance and temperature. A buck converter can operate at the MPP under most conditions, but it cannot do so when 

the MPP goes below the battery charging voltage under a low-irradiance and high-temperature condition. Thus, the additional boost 

capability can slightly increase the overall efficiency [16]. 

3.1 Cúk and SEPIC Converters 
The buck converter is the simplest topology and easiest to understand and design, however it exhibits the most severe 

destructive failure mode of all configurations [15]. Another disadvantage is that the input current is discontinuous because of the 

switch located at the input, thus good input filter design is essential. Other topologies capable of voltage step-down are Cúk and 

SEPIC. Even though their voltage step-up function is optional for LCB application, they have several advantages over the buck 

 

Figure (2) PV module with a 

resistive load. 
 

 

Figure (3) I-V curves of PV module and various 

resistive loads (1 kW/m
2
, 25C). 

 



Adel El Shahat/ Elixir Elec. Engg. 89 (2015) 37159-37176 

 

37161 

converter. They provide capacitive isolation which protects against switch failure (unlike the buck topology). The input current of the 

Cúk and SEPIC topologies is continuous, and they can draw a ripple free current from a PV array that is important for efficient MPPT. 

Figure 4 shows a circuit diagram of the basic Cúk converter. It is named after its inventor. It can provide the output voltage that is 

higher or lower than the input voltage.  

The SEPIC, a derivative of the Cúk converter, is also able to step up and down the voltage. Figure 5 shows a circuit diagram 

of the basic SEPIC converter. The characteristics of two topologies are very similar. They both use a capacitor as the main energy 

storage. As a result, the input current is continuous. The circuits have low switching losses and high efficiency [15]. The main 

difference is that the Cúk converter has a polarity of the output voltage reverse to the input voltage.  

The input and output of SEPIC converter have the same voltage polarity; therefore the SEPIC topology is sometimes 

preferred to the Cúk topology. SEPIC may be also preferred for battery charging systems because the diode placed on the output stage 

works as a blocking diode preventing an adverse current going to PV source from the battery. The same diode, however, gives the 

disadvantage of high-ripple output current. On the other hand, the Cúk converter can provide a better output current characteristic due 

to the inductor on the output stage [14]. Therefore, this paper decides on the Cúk converter because of the good input and output 

current characteristics. 

 

 

 

 

 

 

 

 

 

3.2 Basic Operation of Cúk Converter 
 

The basic operation of Cúk converter in continuous conduction mode is explained here. In steady state, the average inductor 

voltages are zero, thus by applying Kirchoff‟s voltage law (KVL) around outermost loop of the circuit shown in figure 4. 

 
Assume the capacitor (C1) is large enough and its voltage is ripple free even though it stores and transfer large amount of energy from 

input to output [14] (this requires a good low ESR capacitor). The initial condition is when the input voltage is turned on and switch 

(SW) is off. The diode (D) is forward biased, and the capacitor (C1) is being charged. The operation of circuit can be divided into two 

modes. 

 

3.2.1 Mode 1: When SW turns ON, the circuit becomes one  
The voltage of the capacitor (C1) makes the diode (D) reverse-biased and turned off. The capacitor (C1) discharge its energy to 

the load through the loop formed with SW, C2, RLoad, and L2. The inductors are large enough, so assume that their currents are ripple free. 

Thus, the following relationship is established. 

 
 

 

 

 

 

 

 

 

3.2.2 Mode 2: When SW turns OFF, the circuit becomes one 
 
 

 

 

 

 

 

 

Figure (4) Circuit diagram of basic Cúk 

converter. 

 

 

Figure (5) Circuit diagram of basic SEPIC 

converter. 

 

 

Figure (6) Basic Cúk converter when the 

switch is ON. 

 

 

Figure (7) Basic Cúk converter when the 

switch is OFF. 
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The capacitor (C1) is getting charged by the input (Vs) through the inductor (L1). The energy stored in the inductor (L2) is transfer to the 

load through the loop formed by D, C2, and RLoad. Thus, the following relationship is established. 

 
For periodic operation, the average capacitor current is zero. Thus, from the equation (2) and (3): 

 
-IL2 . DT + IL1 . ( 1 – D ) T = 0 .....(5)                                                                                 

IL1 / IL2 = D / ( 1 – D )...................(6)                                                                                           

where: D is the duty cycle (0 < D < 1), and T is the switching period. 

Assuming that this is an ideal converter, the average power supplied by the source must be the same as the average power absorbed by 

the load. 

Pin = Pout..........................................(7)                                                                                                                    

Vs . IL1 = Vo . IL2……………….....(8)                                                                                                                                                             

IL1 / IL2 = Vo / Vs.............................(9)                                                                                                                                                              

Combining the equation (6) and (9), the following voltage transfer function is derived [14]. 

Vo / Vs = D / ( 1 – D )......................(10) 

Its relationship to the duty cycle (D) is: 

If 0 < D < 0.5 the output is smaller than the input. 

If D = 0.5 the output is the same as the input. 

If 0.5 < D < 1 the output is larger than the input. 

 
3.3 Mechanism of Load Matching 

As described before, when PV is directly coupled with a load, the operating point of PV is dictated by the load (or impedance to be 

specific). The impedance of load is described as below. 

RLoad = Vo / Io……………………...(11) 

Where: Vo is the output voltage, and Io is the output current. 

The optimal load for PV is described as: 

Ropt = VMPP / IMPP.....(12) 

Where: VMPP and IMPP are the voltage and current at the MPP respectively. When the value of RLoad matches with that of Ropt, the 

maximum power transfer from PV to the load will occur. These two are, however, independent and rarely matches in practice. The 

goal of the MPPT is to match the impedance of load to the optimal impedance of PV. The following is an example of load matching 

using an ideal (loss-less) Cúk converter. From the equation (10): 
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From the equation (9) 

s

o

L

L

o

s

V

V

I

I

I

I


2

1
                                                                                                (14) 

From the equation (13) and (14) 
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From the equation (13) and (15), the input impedance of the converter is: 
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As shown in figure 8, the impedance seem by PV is the input impedance of the converter (Rin). By changing the duty cycle (D), the 

value of Rin can be matched with that of Ropt. Therefore, the impedance of the load can be anything as long as the duty cycle is 

adjusted accordingly. 
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3.4 Maximum Power Point Algorithm 
The location of the MPP in the I–V plane is not known beforehand and always changes dynamically depending on irradiance and 

temperature. Therefore, the MPP needs to be located by tracking algorithm, which is the heart of MPPT controller. The example of 

resistive load matching is elaborated here to show how the output voltage and current change with varying irradiation and temperature. 

The maximum power transfer occurs when the input impedance of converter matches with the optimal impedance of PV module, as 

described in the equation below. 

MPP
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V
RR                                                                                            (17) 

The required duty cycle (D) for the Cúk converter is:  

Load

in

R

R
D





1

1
                                                                                              (18) 

The converter output voltage is: 

so V
D

D
V


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1
                                                                                                   (19) 

The converter output voltage is: 

so I
D

D
I




1
                                                                                                    (20) 

It should be notified that, if the application requires a constant voltage, it must employ batteries to maintain the voltage constant. Also, 

of course, in reality DC-DC converter used in MPPT is not 100% efficient. The efficiency gain from MPPT is large, but the system 

needs to take efficiency loss by DC-DC converter into account. There is also tradeoff between efficiency and the cost. It is necessary 

for PV system engineers to perform economic analysis of different systems and also necessary to seek other methods of efficiency 

improvement such as the use of a sun tracker. 

4. PV Cell Model 

The use of equivalent electric circuits makes it possible to model characteristics of a PV cell. The method used here is 

implemented in MATLAB programs for simulations. The same modeling technique is also applicable for modeling a PV module. 

There are two key parameters frequently used to characterize a PV cell. Shorting together the terminals of the cell, the photon 

generated current will follow out of the cell as a short-circuit current (Isc).  

Thus, Iph = Isc, when there is no connection to the PV cell (open-circuit), the photon generated current is shunted internally 

by the intrinsic p-n junction diode. This gives the open circuit voltage (Voc). The PV module or cell manufacturers usually provide the 

values of these parameters in their datasheets [35]. The ASE-300-DGF/50 is an industrial-grade solar power module built to the highest 

standards. Extremely powerful and reliable, the module delivers maximum performance in large systems that require higher voltages, 

including the most challenging conditions of military, utility and commercial installations.  

For superior performance, quality and peace of mind, the ASE-300-DGF/50 is renowned as the first choice among those who 

recognize that not all solar modules are created equal [35]. The simplest model of a PV cell equivalent circuit consists of an ideal 

current source in parallel with an ideal diode. The current source represents the current generated by photons (often denoted as Iph or 

IL), and its output is constant under constant temperature and constant incident radiation of light. The PV panel is usually represented 

by the single exponential model or the double exponential model. The single exponential model is shown in fig. 9. The current is 

expressed in terms of voltage, current and temperature as shown in equation 21 [36]. 
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Figure (8) The impedance seen by PV is Rin that is 

adjustable by duty cycle (D). 
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Where Iph: the photo generated current; Io: the dark saturation current; Is1: saturation current due to diffusion; Is2: is the saturation 

current due to recombination in the space charge layer; IRp: current flowing in the shunt resistance; Rs: cell series resistance; Rp: the 

cell (shunt) resistance; A: the diode quality factor; q: the electronic charge, 1.6  10 
– 19

 C; k: the Boltzmann‟s constant, 1.3810
–23

 

J/K; and T: the ambient temperature, in Kelvin. 

Eq.21 and Eq.22 are both nonlinear. Furthermore, the parameters (Iph, Is1, Is2, Rs, Rsh and A) vary with temperature, irradiance and 

depend on manufacturing tolerance. Numerical methods and curve fitting can be used to estimate [36], [37].  

There are three key operating points on the IV curve of a photovoltaic cell. They are the short circuit point, maximum power point and 

the open circuit point. At the open – circuit point on the IV curve, V = Voc and I = 0. After substituting these values in the single 

exponential equation (21) the equation can be obtained [36]. 
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At the short – circuit point on the IV curve, I = Isc and V = 0. Similarly, using equation (1), we can obtain. 
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At the maximum – power point of the IV curve, we have I = Impp and V = Vmpp. We can use these values to obtain the following: 
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The power transferred to the load can be expressed as             

P = IV                                                                                                                              (26) 

We can estimate the diode quality factor as: 
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And  

Rp = Rsho                                                                                                                            (28) 
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As a very good approximation, the photon generated current, which is equal to Isc, is directly proportional to the irradiance, the 

intensity of illumination, to PV cell [38]. Thus, if the value, Isc, is known from the datasheet, under the standard test condition, 

Go=1000W/m
2
at the air mass (AM) = 1.5, then the photon generated current at any other irradiance, G (W/m2), is given by: 

 
0

0

)(
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                                                                                                     (32)        

It should be notified that, in a practical PV cell, there is a series of resistance in a current path through the semiconductor material, the 

metal grid, contacts, and current collecting bus [39]. These resistive losses are lumped together as a series resister (Rs). Its effect 

becomes very conspicuous in a PV module that consists of many series-connected cells, and the value of resistance is multiplied by 

the number of cells. Shunt resistance is a loss associated with a small leakage of current through a resistive path in parallel with the 

intrinsic device [39]. This can be represented by a parallel resister (Rp). Its effect is much less conspicuous in a PV module compared 
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Figure (9)  Single exponential model of a PV Cell. 
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Figure (10) Double exponential model of PV Cell. 

 



Adel El Shahat/ Elixir Elec. Engg. 89 (2015) 37159-37176 

 

37165 

to the series resistance so it may be ignored [39], [40]. The ideality factor denoted as A and takes the value between one and two (as to 

reach the nominated characteristics) [40]. 

 

5. Photovoltaic Module Modeling 

 

A single PV cell produces an output voltage less than 1V, thus a number of PV cells are connected in series to achieve a desired output 

voltage. When series-connected cells are placed in a frame, it is called as a module. When the PV cells are wired together in series, the 

current output is the same as the single cell, but the voltage output is the sum of each cell voltage. Also, multiple modules can be 

wired together in series or parallel to deliver the voltage and current level needed. The group of modules is called an array. The panel 

construction provides protection for individual cells from water, dust etc, as the solar cells are placed into an encapsulation of flat 

glass. Our case here depicts a typical connection of 216 cells that are connected in series [35]. The strategy of modelling a PV module 

is no different from modelling a PV cell. It uses the same PV cell model. The parameters are the all same, but only a voltage parameter 

(such as the open-circuit voltage) is different and must be divided by the number of cells. An electric model with moderate complexity 

[17] is shown in figure 3, and provides fairly accurate results. The model consists of a current source (Isc), a diode (D), and a series 

resistance (Rs). The effect of parallel resistance (Rp) is very small in a single module, thus the model does not include it. To make a 

better model, it also includes temperature effects on the short-circuit current (Isc) and the reverse saturation current of diode (Io). It 

uses a single diode with the diode ideality factor set to achieve the best I-V curve match. 

 

 

 

 

 

 

 

 

 

The equation (33) describes the current-voltage relationship of the PV cell. 
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                                                       (33) 

Where: I is the cell current (the same as the module current); V is the cell voltage = {module voltage} /{No. of cells in series}; T is the 

cell temperature in Kelvin (K). 

First, calculate the short-circuit current (Isc) at a given cell temperature (T): 

)](1[ refTscTsc TTaII
ref



                                                                     (34)

 

Where: Isc at Tref is given in the datasheet (measured under irradiance of 1000W/m
2
), Tref is the reference temperature of PV cell in 

Kelvin (K), usually 298K (25
o
C), a is the temperature coefficient of Isc in percent change per degree temperature also given in the 

datasheet. 

The short-circuit current (Isc) is proportional to the intensity of irradiance, thus Isc at a given irradiance (G) is introduced by Eq. 32. 

The reverse saturation current of diode (Io) at the reference temperature (Tref) is given by the equation (35) with the diode ideality 

factor added: 
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The reverse saturation current (Io) is temperature dependant and the Io at a given temperature (T) is calculated by the following 

equation [41]. 
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The diode ideality factor (A) is unknown and must be estimated. It takes a value between one and two; however, the more accurate 

value is estimated by curve fitting [41] also, it can be estimated by try and error until accurate value achieved. Eg is the Band gap 

energy (1.12 V (Si); 1.42 (GaAs); 1.5 (CdTe); 1.75 (amorphous Si)). The series resistance (Rs) of the PV module has a large impact on 

the slope of the I-V curve near the open-circuit voltage (Voc), hence the value of Rs is calculated by evaluating the slope dI/dV of the I-

V curve at the Voc [41]. The equation for Rs is derived by differentiating the I-V equation and then rearranging it in terms of Rs as 

introduced in equation (37). 
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Figure (11)  Equivalent circuit used in the 

simulations. 
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Where: 
ocV

dI

dV
is the slope of the I-V curve at the Voc (using the I-V curve in the datasheet then divide it by the number of cells in 

series); Voc is the open-circuit voltage of cell (Dividing Voc in the datasheet by the number of cells in series). 

Finally, the equation of I-V characteristics is solved using the Newton‟s method for rapid convergence of the answer, because the 

solution of current is recursive by inclusion of a series resistance in the model [41]. The Newton‟s method is described as: 
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                                                                                       (38) 

Where: f’(x) is the derivative of the function, f(x) = 0, xn is a present value, and xn+1 is a next value.  
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By using the above equations the following output current (I) is computed iteratively. 
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                                                            (40) 

The figures of I-V characteristics at various module temperatures are simulated with the MATLAB model for our PV module are 

shown. Also, the P-V relations at various module temperatures are presented. All of these are done at various irradiance values are 

introduced.  

 

6. Simulation Results 

 

The calculation results are presented by two ways: one in 2D figures, and other with the use of 3D figures. These results are based on 

PV module data and the MATLAB simulation model which implemented in previous section. Relations between all possible predicted 

resistances values for all the entire I-V curves with the desired optimum resistance values are presented at the first from figure 11 to 

figure 14. We want the converter to make the load matching at the points of intersections between the curves for the most probable 

global values of the load resistances and the straight lines of optimum load values in order to transfer the required maximum power for 

the resistive load.   
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Figure (11) Resistive load and Optimum resistance values with Voltage at 1 kW/m
2
 Irradiance. 
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Figure (12) Resistive load and Optimum resistance with Voltage at 0.75 kW/m
2
 Irradiance. 
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After that, a set of 3 D figures (from fig. 15 to fig. 22) are proposed to cover the most probable situations at various irradiance, various 

temperature with the current, and the voltage of the PV module. These surface faces relations will be considered later as the input 

learning or training data for the proposed neural network model. All these figures are based on the MATLAB PV module modeling 

introduced before.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

Module Voltage (Volt)

R
e
s
is

ti
v
e
 L

o
a
d
 &

 O
p
ti
m

u
m

 V
a
lu

e
s
 (

O
h
m

)

 

Figure (13) Resistive load and Optimum resistance with Voltage at 0.50 kW/m
2
 Irradiance. 
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Figure (14) Resistive load and Optimum resistance with Voltage at 0.25 kW/m
2
 Irradiance. 
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Figure (16) Current & Temp.& (1kW/m
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) Irradiance. 
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Finally, the relations of converter duty cycle, converter output voltage, and converter output current values to transfer the maximum 

power from the PV module to various values of resistive loads. The converter duty cycle values from these relations are taken as target 

or output values. These relations are presented with variable values of temperature and irradiance in figures from 23 to 26.     
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Figure (23) Converter Duty Cycle for max power with Temperature and 1 kW/m
2
 Irradiance. 
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Figure (24) Converter Output Voltage for max. power with Temp. and 0.75 kW/m
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Figure (25) Converter Output Voltage for max. power with Temp. and 0.50 kW/m
2
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Figure (26) Converter Output Voltage for max. power with Temp. and 0.25 kW/m
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7. Artificial Neural Networks (ANNs) Technique 

An ANN consists of very simple and highly interconnected processors called neurons. The neurons are connected to each 

other by weighted links over which signals can pass. Each neuron receives multiple inputs from other neurons in proportion to their 

connection weights and generates a single output which may propagate to several other neurons [17]. Among the various kinds of 

ANNs that exist, the Back-propagation learning algorithm has become the most popular used method in engineering application. It can 

be applied to any feed-forward network with differentiable activation functions [18], and it is the type of network used in this paper.  

7.1 Fundamentals of Neural Network 
The ANN modeling is carried out in two steps; the first step is to train the network, whereas the second step is to test the 

network with data, which were not used for training. It is important that all the information the network needs to learn is supplied to 

the network as a data set. When each pattern is read, the network uses the input data to produce an output, which is then compared to 

the training pattern. If there is a difference, the connection weights are altered in such a direction that the error is decreased. After the 

network has run through all the input patterns, if the error is still greater than the maximum desired tolerance, the ANN runs through 

all the input patterns repeatedly until all the errors are within the required tolerance [19], [20].  

7.2 Data Collection, Analysis and Processing 
Quality, availability, reliability, repeatability, and relevance of the data used to develop and run the system is critical to its 

success. Data processing starts from the data collections and analysis followed by pre-processing and then feeds to the neural network.  

7.3 Network Structure Design 
Though theoretically there exists a network that can simulate a problem to any accuracy, there is no easy way to find it. To 

define an exact network architecture such as how many hidden layers should be used, how many units should there be within a hidden 

layer for a certain problem is a painful job.  

7.3.1 Number of Hidden Layers 
Because networks with two hidden layers can represent functions with any kind of shapes, there is no theoretical reason to use 

networks with more than two hidden layers. In general, it is strongly recommended that one hidden layer be the first choice for any 

feed-forward network design [17-20]. 

7.3.2 Number of Hidden Units (node) 
Another important issue in designing a network is how many units to place in each layer. Using too few units can fail to detect the 

signals fully in a complicated data set, leading to under fitting. Using too many units will increase the training time, perhaps so much 

that it becomes impossible to train it adequately in a reasonable period of time. The best number of hidden units depends on many 

factors – the numbers of input and output units, the number of training cases, the amount of noise in the targets, the complexity of the 

error function, the network architecture, and the training algorithm. The best approach to find the optimal number of hidden units is 

trial and error. 

7.3.3 Initializing Back-Propagation feed-forward network  
Back-propagation is the most commonly used method for training multi-layer feed-forward networks. For most networks, the learning 

process is based on a suitable error function, which is then minimized with respect to the weights and bias. The algorithm for 

evaluating the derivative of the error function is known as back-propagation, because it propagates the errors backward through the 

network. 

8. ANN Required Duty Cycle Model with its regression function 

All the neural models in this section use the previous technique which used and verified before like in [22-34] for the author 

in the field of green energy. First, ANN PV module model is presented with its regression function which is verified before by the 

author [42]. This model uses the previous 3D graphs illustrated before as training or learning data for input and desired target. The 

inputs in this model are the Irradiance and Temperature; the outputs are: Module Voltage, Current, and Power. This model with its 

hidden and output layers‟ suitable neurons numbers is depicted in figure 27. Also, the general neural network, and training state are 

presented in figures 35, and 36 respectively. This model would be used in some cases to help in predicting the required duty cycle as it 

will be seen.     

 

 

 

 

 

 

 

 

 

 

 

  

Figure (27) Training State. 
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The normalized inputs Gn: (Normalized Irradiance); Tn : ( Normalized Temperature) are as follow:  

(0.2797) / 0.6250) -(G  Gn                                                                            (41) 

)9683270007 - (T  T n
                                                                       (42) 

Equations (41) and (42) present the normalized inputs for irradiance and temperature, also the following equations lead to the required 

derived outputs equations. 

E1)) (- exp  (1 / 1F1

2.8411  T 0.8968  G 0.3884 - E1 nn




                                                         (43) 

E2)) (- exp  (1 / 1F2

4.7062  T 0.1120  G 0.8336 1 E2 nn




                                                        (44) 

E3)) (- exp  (1 / 1F3

7.2495  T 9.6071  G 0.3773 - E3 nn




                                                         (45) 

E4)) (- exp  (1 / 1F4

5.0369  T 9.4705  G 0.0696 - E4 nn




                                                        (46) 

E5)) (- exp  (1 / 1F5

4.6963  T 0.3523  G 6.3252 E5 nn




                                                          (47) 

E6)) (- exp  (1 / 1F6

8.7149  T 3.4660  G 0.1062 - E6 nn




                                                       (48) 

E7)) (- exp  (1 / 1F7

3.7157  T 4.0327  G 0.1802  E7 nn




                                                        (49) 

E8)) (- exp  (1 / 1F8

11.1433  T 1.1094  G 11.6503 E8 nn




                                                       (50) 

E9)) (- exp  (1 / 1F9

0.7613  T 0.8735  G 0.2372  E9 nn




                                                         (51) 

The normalized outputs are: 

Vn = 0.0466 F1 + 0.0080 F2 + 0.0661 F3 – 0.2311 F4 – 0.0071 F5 + 2.5608 F6 +  0.0771 F7 + 0.0091 F8 - 0.0217 F9 - 2.7656                                            

(52) 

 

In = 6.2907 F1 + 1.5501 F2 + 0.2881 F3 + 1.8330 F4 - 1.1986 F5 - 0.6123 F6 -   

        1.2526 F7 + 1.6547 F8 - 2.6831 F9 - 6.1682                                               (53) 

Pn = 7.2249 F1 + 1.7820 F2 + 1.0262 F3 + 5.1377 F4 - 1.3507 F5 - 0.9574 F6 +  

        3.4515 F7 + 1.8830 F8  - 6.9036 F9 - 7.3615                                              (54)            

The un- normalized out puts 

V = 25.2226 Vn + 42.6563                                                                                   (55) 

I = 2.1788 In + 2.3181                                                                                          (56) 

P = 57.5303 Pn + 81.4030                                                                                    (57)         

Then, the first ANN model for predicting the required duty cycle for maximum power supply is presented as follow. The inputs in this 

model are the Irradiance and Temperature; the output is the required duty cycle to drive the DC/DC converter at maximum power 

transfer for the resistive load matching. This model with its hidden and output layers‟ suitable neurons numbers is well depicted in 

figure 28. Also, the general neural network, and training state are presented in figures 35, and 38 respectively.   
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Figure (28) Duty cycle ANN Model. 
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The algebraic equation of this neural model is deduced as the following:  

E1)) (- exp  (1 / 1F1

0.3804  T 0.3814  G 0.3590 - E1 nn




                                                        (58) 

E2)) (- exp  (1 / 1F2

3.8184  T 6.4507  G 0.0141- E2 nn




                                                        (59) 

E3)) (- exp  (1 / 1F3

0.9329  T 0.9089  G 0.0351 - E3 nn




                                                        (60) 

E4)) (- exp  (1 / 1F4

2.4202  T 4.3558  G 8.5133 E4 nn




                                                          (61) 

E5)) (- exp  (1 / 1F5

3.4972  T 0.2623  G 5.6139 E5 nn




                                                          (62) 

E6)) (- exp  (1 / 1F6

4.0081  T 4.2841  G 9.6390 - E6 nn




                                                        (63) 

The normalized outputs are: 

Dn = 0.6425 F1 - 0.3052 F2 - 1.8018 F3 - 0.0027 F4 - 0.1021 F5 - 0.0181 F6 +  

     0.4733                                                                                                          (64) 

The un- normalized out puts 

D = 0.3087 Dn + 0.6542                                                                                       (65) 

After that, the second ANN model for predicting the required duty cycle for maximum power supply is presented as follow. The 

inputs in this model are the module voltage and module current; the output is the required duty cycle to drive the DC/DC converter at 

maximum power transfer for the resistive load matching. This model with its hidden and output layers‟ suitable neurons numbers is 

well depicted in figure 29.  

 

 

 

 

 

 

 

 

 

The algebraic equation of this neural model is deduced as the following:  

The normalized inputs Vn: (Normalized Voltage); In : ( Normalized Current) are as follow:  

(25.2226) / 42.6563) -(V  Vn                                                                        (66) 

)31812.17882 - (I  I n
                                                                              (67) 

Equations (66) and (67) present the normalized inputs for irradiance and temperature, also the following equations lead to the required 

derived outputs equations. 

E1)) (- exp  (1 / 1F1

3.5535  I 0.0757  V   0.1708 E1 nn




                                                          (68) 

E2)) (- exp  (1 / 1F2

5.9777  I 6.6072  V   0.3229-    E2 nn




                                                    (69) 

E3)) (- exp  (1 / 1F3

38.8185    I 0.0538  V 20.3367    E3 nn




                                                 (70) 

E4)) (- exp  (1 / 1F4

6.2840     I 0.2479  V 4.3491-    E4 nn




                                                   (71) 

The normalized outputs are: 

Dn = 39.5715 F1 + 2.7944 F2 + 56.3549 F3 - 0.9435 F4 - 57.9687                    (72) 

The un- normalized out puts 
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Figure (29) Duty cycle ANN Model. 

 



Adel El Shahat/ Elixir Elec. Engg. 89 (2015) 37159-37176 

 

37174 

D = 0.3087 Dn + 0.6542                                                                                       (73) 

Finally, the third ANN model for predicting the required duty cycle for maximum power supply is presented as follow. The inputs in 

this model are the irradiance, temperature, module voltage and module current; the output is the required duty cycle to drive the 

DC/DC converter at maximum power transfer for the resistive load matching. The algebraic equation of this neural model is deduced 

as the following:  

The normalized inputs Gn: (Normalized Irradiance); Tn: ( Normalized Temperature); Vn: (Normalized Voltage); In: ( Normalized 

Current) are as follow:  

(0.2797) / 0.6250) -(G  Gn                                                                            (74) 

)9683270007 - (T  T n
                                                                       (75) 

(25.2226) / 42.6563) -(V  Vn                                                                        (76) 

)31812.17882 - (I  I n
                                                                              (77) 

Equations (74), (75), (76) and (77) present the normalized inputs for irradiance,  temperature, voltage, and current. The following 

equations lead to the required derived outputs equations. 

E1)) (- exp  (1 / 1F1

4.8487   I 0.6579- V 1.2431   T 0.0564-  G 0.5936 E1 nnnn




               (78) 

E2)) (- exp  (1 / 1F2

5.5987   I 0.6658- V 1.2037   T 0.0479- G 0.5943 E2 nnnn




               (79) 

E3)) (- exp  (1 / 1F3

7.1509 - I 4.8012 V 12.5644  T 9.1499  G 1.5461- E3 nnnn




            (80) 

The normalized outputs are: 

Dn = 1.0e+003 * (- 0.5322 F1 + 1.1651 F2 + 0.0014 F3) - 633.1165                  (81)      

The un- normalized out puts 

D = 0.3087 Dn + 0.6542                                                                                       (82) 

 

9. Conclusion 

This paper introduces Cúk DC-DC converter coupled to resistive load by maximum power from PV module. Relations which 

govern the process of load matching are discussed to give the required converter duty cycle at maximum power point (MPP). The 

simulation results are introduced by two ways first by 2D figures for the optimum resistive load values and for the predicted whole 

probable range of resistive loads to give a point of view about the intersection between them i.e. point of MPP. Second, the rest of the 

results are well depicted in the form of 3D figures for the PV module relations I-V with the various values of irradiance and 

temperature based on PV module data and the implemented MATLAB simulation model. Then, the relations of converter duty cycle, 

converter output voltage, and converter output current values to transfer the maximum power from the PV module to various values of 

resistive loads with variable values of temperature and irradiance. The neural network has the ability to deal with previous relations as 

surface or mapping face, due to this technique ability for interpolation between points with each other and also curves.  

This neural network unit is implemented, using the back propagation (BP) learning algorithm due to its benefits to have the 

ability to predict values in – between learning values, also make interpolation between learning curves data. This is done with suitable 

number of network layers and neurons at minimum error and precise manner. The ANN regression function for each unit is introduced 

to be used directly without operating the neural model each times. First, ANN PV module model is presented with its regression 

function, its inputs are the Irradiance and Temperature; the outputs are: Module Voltage, Current, and Power. Then, the first ANN 

model for predicting the required duty cycle for maximum power supply is introduced with its regression function, its inputs the 

Irradiance and Temperature; the output is the required duty cycle to drive the DC/DC converter at maximum power transfer for the 

resistive load matching. After that, the second ANN model for predicting the required duty cycle for maximum power supply is 

illustrated with its regression function, its inputs are the module voltage and module current; the output is the required duty cycle to 

drive the DC/DC converter at maximum power transfer for the resistive load matching. Finally, the third ANN model for predicting 

the required duty cycle for maximum power supply is proposed with its regression function, its inputs are the irradiance, temperature, 

module voltage and module current; the output is the required duty cycle to drive the DC/DC converter at maximum power transfer 

for the resistive load matching.  
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