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Introduction 

In recent years, several theories have been proposed to deal with uncertainty, imprecision and vagueness. Probability set theory, 

fuzzy set theory [34], intuitionistic fuzzy set theory[6], interval intuitionistic fuzzy set theory[5] are used to deal with uncertainties and 

imprecision embedded in a system. But, all these above theories failed to deal with indeterminate and inconsistent information which 

exist in beliefs system.  F. Smarandache[28] developed a new concept called neutrosophic set (NS) which generalizes fuzzy sets and 

intuitionistic fuzzy sets. NS can be described by membership degree, indeterminate degree and non-membership degree. After that, 

Wang et al. [31] introduced an instance of neutrosophic sets known as single valued neutrosophic sets (SVNS), which were motivated 

from the practical point of view and that can be used in real scientific and engineering application, and provide the set theoretic 

operators and various properties of SVNSs. This theory is applied and found to be useful in many different fields such as control 

theory[1], databases[3, 4], medical diagnosis problem[2], decision making problem [11, 18, 19, 33], physics[22] etc. 

In 1982, Pawlak [18] introduced the notion of rough set theory as the extension of the Cantor set theory [7]. Broumi et al. [9] 

comment that the concept of rough set is a formal tool for modeling and processing incomplete information in information systems. 

Rough set theory [18] is very useful to study of intelligent systems characterized by uncertain or insufficient  

information. Main mathematical basis of rough set theory is formed by two basic components namely, crisp set and equivalence 

relation. Rough set is the approximation of a pair of sets known as the lower approximation and the upper approximation. Here, the 

lower and upper approximation operators are equivalence relation. 

Combining neutrosophic set models with other mathematical models has attracted the attention of many researchers. In 2014, 

Broumi et al. [7, 8, 9] introdced the concept of rough neutrosophic set. İt is developed based on the concept of rough set theory [21] 

and single valued neutrosophic set theory [25] Rough neutrosophic set theory [8, 9] is the generalization of rough fuzzy sets [15, 16, 

17], and rough intuitionistic fuzzy sets [30]. 

The multiset theory was formulated first in [32] by Yager as generalization of the concept of set theory and then the multiset was 

developed in [10] by Calude et al. Several authors from time to time made a number of generalizations of the multiset theory. 

Sebastian and Ramakrishnan introduced a new notion called multi fuzzy sets which is a generalization of the multiset. Since then, 

several researchers [13, 23, 24] discussed more properties on multi fuzzy set. And they made an extension of the concept of fuzzy 

multisets to an intuitionstic fuzzy set which was called intuitionstic fuzzy multisets (IFMS). Since then in the study on IFMS, a lot of 

excellent results have been achieved by researchers [25, 26, 27]. An element of a multi fuzzy set can occur more than once with 

possibly the same or different membership values whereas an element of intuitionistic fuzzy multiset allows the repeated occurrences 

of membership and non membership values. The concepts of FMS and IFMS fail to deal with indeterminacy. In 2013 Smarandache 

[29], and Deli et al.14] used the concept of neutrosophic refined sets and studied some of their basic properties. The concept of 

neutrosophic refined set (NRS) is a generalization of fuzzy multisets and intuitionistic fuzzy multisets. 

Recently, Broumi and Smarandache[7] defined the Hausdorff distance between neutrosophic sets and some similarity measures 

based on the distance such as set theoretic approach and matching function to calculate the similarity degree between neutrosophic 

sets. In the same year, Broumi and Smarandache [9, 10, 11] also proposed the correlation coefficient between interval neutrosphic 

sets. Hanafy et al. [16] proposed the correlation coefficients of neutrosophic sets and studied some of their basic properties. Based on 

centroid method, Hanafy et al. [17], introduced and studied the concepts of correlation and correlation coefficient of neutrosophic sets 

and studied some of their properties. 
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ABSTRACT 

Correlation measure is an important tool in the field of fuzzy, rough and neutrosophic 

environments. The main aim of this paper is to introduce the correlation measure for rough 

neutrosophic refined sets. This concept is the extension of correlation measure of 

neutrosophic sets and intuitionistic fuzzy multi sets. Finally, using the correlation of rough 

neutrosophic refined set measure, the application of medical diagnosis and pattern 

recognition are presented. 
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In this paper, we propose correlation measure of rough neutrosophic sets and establish some of its properties. Finally, a numerical 

example of medical diagnosis is presented to demonstrate the applicability and effectiveness of the proposed approach. This diagnosis 

method can deal with the medical diagnosis problem with indeterminate and inconsistent information which cannot be handled by the 

diagnosis method based on other existing methods. 

Preliminaries 

Definition 2.1[34] 

Let X be a non-empty set. A fuzzy set A in X is characterized by its membership function ]1,0[: XA  and )(xA  is 

interpreted as the degree of membership of element x in a fuzzy set A, for each Xx . It is clear that A is completely determined by 

the set of tuples  A =  Xxxx A :))(,(   

Definition 2.2[21] 

Suppose (U, R) is an approximation space, where, U is a finite nonempty domain, R indicates an equivalence relation on U, and 

[x]R represents the equivalence classes including Ux  based on the equivalence relation R. If X is a nonempty subset on U, then       

R-lower approximation and R-upper approximation of X on U are separately defined by 

XR  =  XxUx R  ][/ , XR  =   XxUx R][/  

If XR  = XR , we say that X is definable; otherwise, we say X is rough, and the set pair 

( XR , XR ) is called the rough set of X. 

Definition 2.3[1] 

Let U be a space of points (objects), with a generic element in U denoted by u. A neutrosophic set (N-set) A in U is characterized 

by a truth-membership function
AT , a indeterminacy-membership function 

AI  and a falsity-membership function AF . )(xTA , 

)(xI A  and )(xFA  are real standard or nonstandard subsets of   1,0 . 

It can be written as 

A = {< ))(),(),((, x
A

Fx
A

Ix
A

Tx >: xU, )(xTA
, )(xI A

, )(xFA

 [0, 1]}. 

There is no restriction on the sum of )(xTA
, )(xI A

, )(xFA
, so 

 3)(sup)(sup)(sup0 x
A

Fx
A

Ix
A

T
. 

Definition 2.4[31] 

Let U be a space of points (objects), with a generic element in U denoted by u. An SVNS A in X is characterized by a truth-

membership function )(xTA , a indeterminacy-membership function )(xI A  and a falsity-membership function )(xFA , where 

)(xTA
, )(xI A

, and )(xFA
 belongs to [0,1] for each point u in U. Then, an SVNS A can be expressed as 

A = {< ))(),(),((, x
A

Fx
A

Ix
A

Tx > : xU, )(xTA
, )(xI A

, )(xFA

 [0, 1]}. 

There is no restriction on the sum of )(xTA , )(xI A , )(xFA , so 

3)(sup)(sup)(sup0  x
A

Fx
A

Ix
A

T . 

Definition 2.5[31] 

Let E be a universe. A neutrosophic refined (multi) set(NRS) A on E can be defined as follows: 

A = {< ))(....(),((),(()),(.....(),((),(()),(....(),((),((, 212121 xFxFxFxIxIxIxTxTxTx P

AAA

P

AAA

P

AAA
>: 

xE} 

where, ]1,0[:)(........(),((),( 21 ExTxTxT P

AAA
, 

]1,0[:)(........(),((),( 21 ExIxIxI P

AAA
, and 

]1,0[:)(........(),((),( 21 ExFxFxF P

AAA
 

such that 3)(sup)(sup)(sup0  xFxIxT i

A

i

A

i

A
, (i = 1, 2, ……, P) and 

)((........)(()( 21 xTxTxT P

AAA  for any xE. 

))(........(),((),(( 21 xTxTxT P

AAA
, ))(........(),((),(( 21 xIxIxI P

AAA
  

and ))(........(),((),(( 21 xFxFxF P

AAA
is the truth-membership sequence, indeterminacy-membership sequence and falsity-

membership sequence of the element x, respectively. Also, P is called the dimension (cardinality) of Nms A, denoted d(A). We 

arrange the truth-membership sequence in decreasing order but the corresponding indeterminacy-membership and falsity-membership 

sequence may not be in decreasing or increasing order. 

The set of all Neutrosophic refined (multi)sets on E is denoted by NRS(E). 

Definition 2.6[14] 

Let U be a non-null set and R be an equivalence relation on U. Let A be neutrosophic set in A with the membership function AT , 

indeterminacy function AI  and non-membership function AF . The lower and the upper approximations of A in the approximation 

(U, R) denoted by )(AN  and )(AN  are respectively defined as follows: 
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)(AN  = UxxUxFxIxTx RANANAN  ,][/)(),(),(, )()()(

, 

)(AN = 
UxxUxFxIxTx RANANAN

 ,][/)(),(),(,
)()()(

 

Where, 

)()( xT AN
= )(][ UTx ARz  , )()( xI AN

= )(][ UIx ARz  , )()( xF AN
= )(][ UFx ARz  , 

)(
)(

xT
AN

= )(][ UTx ARz  , )(
)(

xI
AN

= )(][ UIx ARz  , )(
)(

xF
AN

= )(][ UFx ARz  , 

So,  3)()()(0 )()()(  xFxIxT ANANAN
and 

3)()()(0
)()()(

 xFxIxT
ANANAN

 

Where   and   indicate “max” and “min” operators respectively, )(UTA
, )(UI A

 and )(UFA
 are the membership , 

indeterminacy and non-membership of U with respect to A. It is easy to see that )(AN  and )(AN  are two neutrosophic sets in U. 

Thus NS mappings N , N  : )()( UNUN   are, respectively, referred to as the lower and upper rough NS approximation 

operators, and the pair ( )(AN , )(AN ) is called the rough neutrosophic set in (U, R). 

From the above definition, it is seen that )(AN  and )(AN  have constant membership on the equivalence classes of R if 

)(AN = )(AN . That is 

)()( xT AN
= )(

)(
xT

AN
,  )()( xI AN

= )(
)(

xI
AN

, )()( xF AN
= )(

)(
xF

AN
 for any x belongs to U. 

A is said to be a definable neutrosophic set in the approximation (U, R). It can be easily proved that zero neutrosophic set (0N) and 

unit neutrosophic sets (1N) are definable neutrosophic sets. 

Definition 2.7[16] 

Let }...........{ ,3,2,1 nxxxxX   be the finite universe of discourse and 

A = {< XxxFxIxT ii

j

Ai

j

Ai

j

A  /)(),(),( >}, B = {< XxxFxIxT ii

j

Bi

j

Bi

j

B  /)(),(),( >} be two neutrosophic refined 

sets consisting of the membership, indeterminate and non-membership functions. Then the correlation measure between rough 

neutrosophic sets of A and B is given by 

),( BANRS = 

),(*),(

),(

BBCAAC

BAC

NRSNRS

NRS
 

Where, 

),( BACNRS
= 

 
 


p

j

n

i

i

j

Bi

j

Ai

j

Bi

j

Ai

j

Bi

j

A xFxFxIxIxTxT
p 1 1

)()()()()()(
1  

),( AACNRS
= 

 
 


p

j

n

i

i

j

Ai

j

Ai

j

Ai

j

Ai

j

Ai

j

A xFxFxIxIxTxT
p 1 1

)()()()()()(
1  

and      ),( BBCNRS
= 

 
 


p

j

n

i

i

j

Bi

j

Bi

j

Bi

j

Bi

j

Bi

j

B xFxFxIxIxTxT
p 1 1

)()()()()()(
1  

Definition 2.8[5] 
The cardinality of the membership function Mc(x), indeterminate function Ic(x) and the non-membership function Nc(x) is the 

lenth of an element in a Rough Neutrosophic refined set(RNRS) A and is denoted by   and   = )(xM c
= )(xI c

 = )(xNc
. 

If A, B, C are the RNRS defined on X, then their cardinality   = Max{ (A), (B), (C)} 

Correlation Measure of two Rough Neutrosophic refined sets 

Definition 3.1 

Let }...........{ ,3,2,1 nxxxxX   be the finite universe of discourse and 

A = {< XxxFxIxT ii

j

Ai

j

Ai

j

A  /)(),(),( >}, B = {< XxxFxIxT ii

j

Bi

j

Bi

j

B  /)(),(),( >} be two neutrosophic refined 

sets consisting of the membership, indeterminate and non-membership functions. Then the correlation coefficient of A and B is given 

by 

),( BARNRS = 

),(*),(

),(

BBCAAC

BAC

RNRSRNRS

RNRS
 

Where, 

 ),( BACRNRS
= 

 
 


p

j

n

i

i

j

Bi

j

Ai

j

Bi

j

Ai

j

Bi

j

A xFxFxIxIxTxT
p 1 1

)()()()()()(
1


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 ),( AACRNRS
= 

 
 


p

j

n

i

i

j

Ai

j

Ai

j

Ai

j

Ai

j

Ai

j

A xFxFxIxIxTxT
p 1 1

)()()()()()(
1


 

and      ),( BBCRNRS
= 

 
 


p

j

n

i

i

j

Bi

j

Bi

j

Bi

j

Bi

j

Bi

j

B xFxFxIxIxTxT
p 1 1

)()()()()()(
1


 

Here )( i

j

A xT = 

2

)()( i

j

Ai

j

A xTxT 
, )( i

j

A xI = 

2

)()( i

j

Ai

j

A xIxI 
, )( i

j

A xF = 

2

)()( i

j

Ai

j

A xFxF 
; 

 

And )( i

j

B xT = 

2

)()( i

j

Bi

j

B xTxT 
, )( i

j

B xI = 

2

)()( i

j

Bi

j

B xIxI 
, )( i

j

B xF = 

2

)()( i

j

Bi

j

B xFxF 
. 

Proposition 3.2 

Let A and B be two rough neutrosophic sets. Then, the defined correlation measure between A and B satisfies the following 

properties 

1. 0 ),( BARNRS    1 

2. ),( BARNRS = 1if and only if A = B 

3. ),( BARNRS  = ),( ABRNRS  

Proof 

1. As the membership, indeterminate and non-membership functions of the RNRS lies between 0 and 1, 

 ),( BARNRS   

also leis between 0 and 1. 

2. To Prove 

 ),( BARNRS = 1if and only if A = B 

(i) Let the two RNRS be equal. Hence for any 

)( i

j

A xT  = )( i

j

B xT  

)( i

j

A xI  = )( i

j

B xI  

)( i

j

A xF = )( i

j

B xF  

That is, )( i

j

A xT = )( i

j

B xT , )( i

j

A xI = )( i

j

B xI , )( i

j

A xF = )( i

j

B xF  

)( i

j

A xT  = )( i

j

B xT , )( i

j

A xI = )( i

j
B xI , )( i

j

A xF  = )( i

j

B xF  

Then ),( AACRNRS
= ),( BBCRNRS

= 

          
 

 


p

j

n

i

i

j

Ai

j

Ai

j

Ai

j

Ai

j

Ai

j

A xFxFxIxIxTxT
p 1 1

)()()()()()(
1


 

 and ),( BACRNRS
 = 

 
 


p

j

n

i

i

j

Bi

j

Ai

j

Bi

j

Ai

j

Bi

j

A xFxFxIxIxTxT
p 1 1

)()()()()()(
1


 

      = 
 

 


p

j

n

i

i

j

Ai

j

Ai

j

Ai

j

Ai

j

Ai

j

A xFxFxIxIxTxT
p 1 1

)()()()()()(
1


 

      = ),( AACRNRS
 

Hence ),( BARNRS = 
),(*),(

),(

BBCAAC

BAC

RNRSRNRS

RNRS = 
),(*),(

),(

AACAAC

AAC

RNRSRNRS

RNRS = 1. 

 

(ii) Let ),( BARNRS  = 1. Then, the unit measure is possible only if 

       

 
),(*),(

),(

BBCAAC

BAC

RNRSRNRS

RNRS  = 1 

This refers that )( i

j

A xT = )( i

j

B xT , )( i

j

A xI = )( i

j

B xI , )( i

j

A xF = )( i

j

B xF  

That is )( i

j

A xT = )( i

j

B xT , )( i

j

A xI = )( i

j

B xI , )( i

j

A xF = )( i

j

B xF  

 
)( i

j

A xT
 = 

)( i

j

B xT
, 

)( i

j

A xI
= 

)( i

j
B xI

, 
)( i

j

A xF
 = 

)( i

j

B xF
for all i, j values. 
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Hence A = B. 

3. It is obvious that 

),( BARNRS = 

),(*),(

),(

BBCAAC

BAC

RNRSRNRS

RNRS
=  

),(*),(

),(

BBCAAC

ABC

RNRSRNRS

RNRS
= ),( ABRNRS  

 

             as ),( BACRNRS
= 

 
 


p

j

n

i

i

j

Bi

j

Ai

j

Bi

j

Ai

j

Bi

j

A xFxFxIxIxTxT
p 1 1

)()()()()()(
1


 

   = 
 

 


p

j

n

i

i

j

Ai

j

Bi

j

Ai

j

Bi

j

Ai

j

B xFxFxIxIxTxT
p 1 1

)()()()()()(
1


 

   = ),( ABCRNRS
 

Numerical Evaluation 

Example 4.1 

Let X = {A1, A2, A3, A4,………., An} with A = {A1, A2, A3, A4} and B = {A5, A6, A7, A8} are RNRS defined as 

A = 







)1.0,3.0,5.0(

)3.0,3,0,3.0(
,

)2.0,5.0,8.0(

)4.0,5,0,6.0(
:1A

,

)2.0,3.0,6.0(

)8.0,3,0,4.0(
,

)2.0,5.0,8.0(

)4.0,5,0,6.0(
:2A

, 

        

)1.0,3.0,8.0(

)3.0,3,0,6.0(
,

)2.0,3.0,8.0(

)4.0,5,0,4.0(
:3A

 , 







)1.0,3.0,7.0(

)3.0,3,0,5.0(
,

)2.0,3.0,9.0(

)6.0,5,0,7.0(
:4A

 

B = 







)2.0,3.0,4.0(

)2.0,3,0,6.0(
,

)2.0,4.0,9.0(

)4.0,4,0,7.0(
:5A

,

)1.0,4.0,8.0(

)3.0,4,0,6.0(
,

)2.0,5.0,9.0(

)4.0,7,0,7.0(
:6A

, 

        

)1.0,3.0,5.0(

)5.0,3,0,3.0(
,

)3.0,5.0,5.0(

)5.0,7,0,3.0(
:7A

 , 







)1.0,4.0,7.0(

)5.0,6,0,5.0(
,

)2.0,6.0,8.0(

)4.0,6,0,6.0(
:8A

 

Here the cardinality   = 4 as )(A = )(AM c
= )(AI c

 = )(ANc
= 4 and 

)(B = )(BM c
 = )(BI c

 = )(BNc
= 4 and the RNRS Correlation measure is 0.9673. 

Example 4.2 

Let X = {A1, A2, A3, A4, ……, An} with A = {A1, A2, A3, A4} and B = {A5, A6, A7, A8} are RNRS defined as 

A =







)1.0,3.0,5.0(

)3.0,3,0,3.0(
,

)2.0,5.0,8.0(

)4.0,5,0,6.0(
:1A

,

)2.0,3.0,6.0(

)8.0,3,0,4.0(
,

)2.0,5.0,8.0(

)4.0,5,0,6.0(
:2A

, 

        







)1.0,3.0,7.0(

)3.0,3,0,5.0(
,

)2.0,3.0,9.0(

)6.0,5,0,7.0(
:3A

 

B = 













)7.0,6.0,9.0(

)7.0,8,0,5.0(
,

)5.0,8.0,9.0(

)7.0,8.0,7.0(
:4A

 

Here )(A = )(AM c
= )(AI c

 = )(ANc
= 3 and 

)(B = )(BM c
 = )(BI c

 = )(BNc
= 1 

Therefore the cardinality   = max { )(A , )(B } = max {3, 1} = 3 

and the RNRS Correlation measure is 0.6409. 

Application 

In this section we give some applications of RNRS in medical diagnosis and pattern recognition problems using the correlation 

measure. 

Medical Diagnosis Using Rnrs Correlation Measure 

Realistic practical problems consist of more uncertainty and complexity. So, it is necessary to employ more flexible tool which 

can deal uncertain situation easily. In this situation, rough neutrosophic set is very useful tool to uncertainty and incompleteness. In 

real medical diagnosis problems, however, by only taking one time inspection, we cannot come to a conclusion whether a particular 

person is found with a particular decease or not. Sometimes he/she may also show the symptoms of different diseases. In that case we 

cannot give a proper solution. So in order to get the right solution the patient has to be examined at different time intervals (e.g. two or 

three times a day). In this case, a Rough Neutrosophic multi set concept is very suitable for expressing this information at different 

time intervals, which allows the repeated occurrences of any element. The unique feature of this proposed method is that it considers 

multi truth membership, indeterminate and false membership. By taking one time inspection, there may be error in diagnosis. Hence, 
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this multi time inspection, by taking the samples of the same patient at different times gives best diagnosis". This can be explained 

using the following example. 

Example 5.1 

Let P = {P1, P2, P3} be the set of patients, D = {}be the set of diseases and S = {} be the set of symptoms. Now we have to 

examine the patients and determine the disease of the patient in rough neutrosophic multi set environment. 

Table 1. The relation between the patients and symptoms 

A Temperature Cough Throat Pain Headache Body Pain 

P1 

)4.0,3.0,5.0(

)4.0,3.0,3.0(  

)5.0,2.0,4.0(

)7.0,6.0,2.0(  

)4.0,3.0,3.0(

)6.0,7.0,1.0(  

)4.0,3.0,6.0(

)4.0,5.0,4.0(  

)2.0,0.0,5.0(

)4.0,2.0,3.0(  

)4.0,3.0,4.0(

)6.0,5.0,2.0(  

)4.0,3.0,4.0(

)6.0,7.0,2.0(  

)2.0,4.0,3.0(

)6.0,8.0,1.0(  

)2.0,6.0,2.0(

)4.0,6.0,0.0(  

)2.0,2.0,5.0(

)6.0,4.0,5.0(  

)6.0,3.0,6.0(

)8.0,5.0,4.0(  

)4.0,3.0,5.0(

)8.0,3.0,1.0(  

)4.0,1.0,7.0(

)4.0,3.0,3.0(  

)4.0,3.0,3.0(

)6.0,3.0,1.0(  

)2.0,3.0,1.0(

)4.0,5.0,1.0(  

P2 

)4.0,3.0,9.0(

)6.0,3.0,3.0(  

)0.0,5.0,6.0(

)4.0,5.0,4.0(  

)4.0,2.0,5.0(

)6.0,6.0,3.0(  

)6.0,3.0,8.0(

)8.0,3.0,4.0(  

)2.0,3.0,5.0(

)2.0,5.0,3.0(  

)4.0,3.0,3.0(

)6.0,5.0,1.0(  

)2.0,2.0,7.0(

)4.0,4.0,5.0(  

)4.0,4.0,5.0(

)4.0,6.0,1.0(  

)3.0,3.0,2.0(

)7.0,5.0,0.0(  

)0.0,3.0,8.0(

)2.0,3.0,4.0(  

)7.0,3.0,5.0(

)9.0,7.0,3.0(  

)2.0,2.0,3.0(

)4.0,6.0,1.0(  

)4.0,1.0,5.0(

)6.0,7.0,3.0(  

)5.0,1.0,3.0(

)9.0,3.0,3.0(  

)4.0,3.0,2.0(

)6.0,7.0,0.0(  

P3 

)4.0,3.0,9.0(

)6.0,3.0,7.0(  

)4.0,3.0,9.0(

)4.0,7.0,5.0(  

)4.0,3.0,7.0(

)4.0,5.0,5.0(  

)2.0,4.0,6.0(

)4.0,6.0,4.0(  

)2.0,2.0,4.0(

)4.0,6.0,2.0(  

)2.0,4.0,2.0(

)6.0,8.0,0.0(  

)4.0,3.0,4.0(

)8.0,3.0,2.0(  

)5.0,5.0,3.0(

)9.0,5.0,1.0(  

)4.0,3.0,2.0(

)6.0,5.0,0.0(  

)4.0,1.0,6.0(

)6.0,3.0,6.0(  

)4.0,1.0,7.0(

)8.0,5.0,3.0(  

)4.0,1.0,3.0(

)8.0,3.0,1.0(  

)2.0,3.0,8.0(

)8.0,5.0,4.0(  

)4.0,2.0,3.0(

)4.0,4.0,3.0(  

)3.0,1.0,3.0(

)9.0,3.0,1.0(  

Let the samples be taken in three different timings (morning, noon, evening) 

Table 2. The relation between the symptoms and the diseases 

B Viral fever Tuberculosis Typhoid Throat disease 

Temperature 

)6.0,3.0,3.0(

)6.0,7.0,1.0(  

)4.0,5.0,5.0(

)6.0,7.0,3.0(  

)2.0,3.0,9.0(

)8.0,5.0,3.0(  

)7.0,5.0,3.0(

)9.0,9.0,3.0(  

Cough 

)1.0,2.0,9.0(

)5.0,6.0,3.0(  

)2.0,1.0,9.0(

)4.0,3.0,7.0(  

)4.0,1.0,5.0(

)8.0,3.0,1.0(  

)1.0,3.0,3.0(

)1.0,5.0,1.0(  

Throat Pain 

)2.0,1.0,6.0(

)4.0,3.0,4.0(  

)2.0,5.0,5.0(

)4.0,5.0,3.0(  

)4.0,3.0,5.0(

)6.0,7.0,3.0(  

)1.0,3.0,3.0(

)3.0,9.0,1.0(  

Headache 

)0.0,8.0,9.0(

)4.0,8.0,3.0(  

)5.0,3.0,3.0(

)7.0,3.0,1.0(  

)2.0,4.0,2.0(

)4.0,8.0,0.0(  

)4.0,3.0,4.0(

)6.0,7.0,0.0(  

Body Pain 

)2.0,3.0,9.0(

)6.0,5.0,5.0(  

)2.0,3.0,3.0(

)6.0,3.0,1.0(  

)4.0,1.0,2.0(

)4.0,5.0,2.0(  

)2.0,1.0,3.0(

)4.0,3.0,1.0(  

 

 

 

 

 

Table 3. The correlation measure between RNRS A and B: 
 Viral fever Tuberculosis Typhoid Throat disease 

P1 0.846 0.910 0.884 0.880 

P2 0.849 0.868 0.892 0.809 

P3 0.792 0.853 0.872 0.822 

The highest correlation measure from table 3 gives the proper medical diagnosis.  
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Patient P1 suffers from Viral fever and patients P2, P3 suffer from Typhoid. 

Pattern Recognition of Rnrs Correlation Similarity Measure 

Example 5.2 

Let X = {A1, A2, A3, A4,………., An} with A = {A1, A2}, B = {A3, A4} and 

C = {A1, A4} are RNRS defined as 

A = 







)1.0,3.0,2.0(

)5.0,5.0,0.0(
,

)1.0,0.0,3.0(

)3.0,2,0,1.0(
,

)1.0,0.0,4.0(

)3.0,2,0,2.0(
,

)1.0,4.0,6.0(

)1.0,4,0,2.0(
:1A

, 

         







)1.0,6.0,3.0(

)3.0,6,0,1.0(
,

)1.0,3.0,5.0(

)3.0,3,0,3.0(
,

)0.0,3.0,6.0(

)2.0,7,0,2.0(
,

)0.0,2.0,7.0(

)0.0,4,0,5.0(
:2A

 

B = 







)4.0,0.0,1.0(

)8.0,2,0,1.0(
,

)1.0,1.0,5.0(

)3.0,1,0,3.0(
,

)2.0,1.0,6.0(

)4.0,3,0,2.0(
,

)2.0,4.0,6.0(

)4.0,4,0,4.0(
:3A

, 

         







)1.0,3.0,3.0(

)1.0,5,0,1.0(
,

)1.0,3.0,3.0(

)3.0,5,0,3.0(
,

)0.0,4.0,7.0(

)0.0,6,0,1.0(
,

)0.0,6.0,6.0(

)4.0,6,0,2.0(
:4A

 

C = 







)1.0,3.0,2.0(

)5.0,5.0,0.0(
,

)1.0,0.0,3.0(

)3.0,2,0,1.0(
,

)1.0,0.0,4.0(

)3.0,2,0,2.0(
,

)1.0,4.0,6.0(

)1.0,4,0,2.0(
:1A

, 

        







)1.0,3.0,3.0(

)1.0,5,0,1.0(
,

)1.0,3.0,3.0(

)3.0,5,0,3.0(
,

)0.0,4.0,7.0(

)0.0,6,0,1.0(
,

)0.0,6.0,6.0(

)4.0,6,0,2.0(
:4A

 

and the testing RNRS pattern D is given as 

D = 







)1.0,3.0,2.0(

)1.0,5.0,2.0(
,

)1.0,2.0,3.0(

)3.0,6,0,3.0(
,

)0.0,2.0,4.0(

)0.0,8,0,4.0(
,

)1.0,4.0,6.0(

)3.0,8,0,2.0(
:1A

, 

         







)1.0,4.0,3.0(

)1.0,6,0,1.0(
,

)1.0,3.0,3.0(

)3.0,5,0,1.0(
,

)0.0,3.0,6.0(

)0.0,7,0,4.0(
,

)1.0,0.0,6.0(

)3.0,4,0,2.0(
:2A

 

Here the cardinality   = 2 as )(A = )(AM c
= )(AI c

 = )(ANc
= 2 and 

)(B = )(BM c
 = )(BI c

 = )(BNc
= 2, then the proposed correlation similarity measure between the pattern (A, D) is 0.8628, 

the pattern (B, D) is 0.8175, and the pattern (C, D) is 0.8597. Hence the testing pattern D belongs to pattern A type. 

Conclusion 

In this paper, we have defined the correlation measure of rough neutrosophic refined sets and proved some of their basic 

properties. We have presented an application of correlation measure of rough neutrosophic refined sets in medical diagnosis and 

pattern recognition and found that the correlation measure of RNRS is effective in handling the medical diagnosis problems with 

indeterminate and inconsistent information. We hope that the proposed concept can be applied in solving realistic multi-attribute 

decision making problems. 
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