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Introduction 

Integral transformation is one of the well known techniques used for function transformation. And the transform analysis of 

generalized functions concentrates on finite parts of integrals, generalized functions and distributions. In this paper we stressed on 

Fourier-Finite Mellin transform. The Pioneer of this Fourier-Finite Mellin Transform is Robbin’s and Huang [1972]. The Fourier-

Finite Mellin Transform is used in signal processing, image processing and many more. 

Human face recognition is, indeed, a challenging task, especially under illumination and pose variations. So the effectiveness 

of a simple face recognition algorithm is based on Fourier-Finite Mellin Transform. [1]. Fourier-Finite Mellin Transform has 

found application in optical pattern recognition, Ship classification by sonar and radar and image processing. It is also used to 

correct various optical distortions, including noise, in lenses. Fourier-Finite Mellin Transform is frequently used in content-based 

image retrieval and digital image watermarking. The Fourier-Finite Mellin Transform is used to help identify the leaf of a plant, 

regardless of the leaf’s scale or rotation, or location in the image [2].  

There are various theorems for the above said Fourier-Finite Mellin Transform and Fourier-Laplace transform like 

Analyticity Theorem, Abelian theorem, Representation Theorem which are already discussed in our previous papers. The main 

aim of this paper is to generalized the Fourier-Finite Mellin Transform in the Distributional Sense and to presents the Inversion 

Theorem for Distributional Fourier-Finite Mellin Transform.  

Above work requires testing function space and definition of distributional generalized Fourier-Finite Mellin transform which 

are given as: 

The space 
, , ,f b cFM 

  

This space is given by  
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Where the constants A  and 
lqC  depend on the testing function .    

Distributional Generalized Fourier-Finite Mellin transforms ( )fFM T   

For
, , ,( , ) f b cf t x FM 


  , where 

, , ,f b cFM 


   is the dual space of
, , ,f b cFM 


. It contains all distributions of compact
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ABSTRACT 

The Fourier-Finite Mellin transform is a variant of the Fourier transform; however, it 

certainly does not have as glorious or as predominant a history as the Fourier transform. 

This Fourier-Finite Mellin transform is used to correct various optical distortions, 

including noise in lenses, it is also used in radar classification of ships. Theoretically, the 

Fourier-Finite Mellin transform should provide a truly translation, rotation and scale 

invariant measure of an image. Fourier-Finite Mellin transform is frequently used in 

content-based image retrieval and digital image watermarking. 

The Object of the present paper is to prove  an Inversion theorem for distributional 

Fourier-Finite Mellin transform  with the help of two lemmas which are also given in this 

paper.  

                                                                                                     © 2015 Elixir All rights reserved. 

 

Elixir Appl. Math. 89 (2015) 36835-36842 

Applied Mathematics 

Available online at www.elixirpublishers.com (Elixir International Journal) 

 

Tele:  

E-mail addresses: vdsharma@hotmail.co.in 

                                                      © 2015 Elixir All rights reserved 



         V. D. Sharma
 
and A. N. Rangari/ Elixir Appl. Math. 89 (2015) 36835-36842 

 
36836 

support. The Distributional Fourier-Finite Mellin transform is a function of ( , )f t x and is defined as  
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                                                                            (1.2.1)                                                                                                                                                  

where, for each fixed t   0 ,t   x   0 x   , 0s  and 0p  , the right hand side of (1.2.1) has a sense as an 

application of 
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1

1 , , ,

p
p

p f b c
ist a

e x FM
x








  
  

 

  .           

This paper is summarized as follows: 

In Section 2, Lemma 1 and Lemma 2 are given. In section 3, Inversion theorem for Fourier-Finite Mellin Transform is 

proved. Uniqueness theorem is proved in section 4. Lastly conclusions are given in Section 5.   

Notations and terminology are as per Zemanian [3], [4]. 

Inversion Theorem for Distributional Fourier-Finite Mellin Transform  

Lemma 1 

Statement 

Let 

    , ,fFM f t x F s p  
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,  

where  

p iw  , also s and  are fixed with 
1 2s   and 

1 2p   . 

Proof 

For  , 0t x  , the result is trivial, so assume that  , 0t x  . If     , ,fFM f t x F s p , then  

 ,F s p  

is analytic for 0s  , 
1 2Re p    and  ,s p  is an entire function. Therefore above integrals certainly exist. 

In order that right hand side is meaningful, we show that  
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Where  P p  is a polynomial in p                                                             
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Partition the path of integration on the straight line from s r   to s r  into m-intervals, each of length  
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To show that  
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Where  P p q  is a polynomial in p
etc.  
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Since  
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Now consider the first term of (4.1.3), choosing 0m  and 0n  so large that, for 0m m  and 0n n , 
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for all 0x x  and 0t t  .                                                                                                                                                     

In view of above in equations (2.1.4), (2.1.5) and (2.1.3),  
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Further left hand side of (2.1.6)  
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Since 
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is a continuous function of s and w from (2.1.6). We have 
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Lemma 2 

If  D I and  
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Since   is continuous, as in Zemanian [5] pp.66 it can be shown that  

   , , , 0l q A v u v u    
   

Hence Proved. 

Now the proof of Inversion Theorem can be easily completed. 

Inversion Theorem  

Statement 

Let     , ,fFM f t x F s p , for 0s  and 
1 2p   . Also, let r and  be a real variable such that r  ,  

0 a  .Then in the sense of convergence in D ,   
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Now, the integral on s and p is a continuous function of t and x and therefore the right hand side of (4.3.1) without the limit 

notation can be written as  
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Since  ,t x is of bounded support and the integrand is a continuous function of , , ,t x s w , the order of integration may be 
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The order of integration for the repeated integral herein may be changed because again  ,t x is of bounded support and the 

integrand is a continuous function of , , ,t x s w upon doing this we obtain  
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The last expression tends to 

   , , ,f v u v u  as r  and   because *

, , ,f b cf FM  and according to lemma 2, the testing function in the last 

expression converges in 
, , ,f b cFM 

 to  ,v u .  

This completes the Proof. 

Uniqueness Theorem 

If     , ,fFM f t x F s p , for , fs p  and     , ,fFM g t x G s p , for , , 0gs p s  and 

1 2Re p    . If 
f g   is not empty and if    , ,F s p G s p , for 
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Proof 

 f and g must assign the same value to each D . By inversion theorem and equating F (s, p) and G (s, p) in 
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Thus, f=g in D
*
 (I).  

Conclusion  

This paper mainly focused on the proof of Inversion Theorem for Distributional Fourier-Finite Mellin Transform with the 

help of two lemmas.  
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