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Introduction 

In recent years, industrial producers and manufacturers have 

attempted to increase the efficiency, performance and accuracy 

of machining operations. These activities can be affected by a 

number of factors, such as machine tool conditions, tool 

geometry, work piece material and also machining parameters. 

Among these, machining parameters such as cutting speed, 

depth of cut and feed rate play a significant role in machining 

quality as parameters that are controlled by the user. Therefore, 

suitable selection of these parameters is necessary to reach 

optimal machining conditions in order to improve production 

efficiency. 
So far, several researchers have performed experimental 

investigations about the machining operations and evaluated the 

effect of machining parameters on the outputs of the process. In 

fact, they have attempted to find suitable machining parameters 

in order to determine optimal conditions of the process. But, 

implementing numerous experimental tests for finding 

mentioned conditions is very time consuming and costly. To 

solve this problem, some of the researchers have attempted to 

model the machining processes by various methods such as, 

statistic, intelligent and analytical methods. Among them, 

predictive models are capable of estimating complex 

relationships between machining input parameters and 

corresponding outputs.  

Literature review 

Abdelouahhab Jabri, Abdellah El Barkany, Ahmed El 

Khalfi [1] presented a multi-optimization technique based on 

genetic algorithms to search optimal cuttings parameters such as 

cutting depth, feed rate and cutting speed of multi-pass turning 

processes. Two objective functions are simultaneously 

optimized under a set of practical of machining constraints, the 

first objective function is cutting cost and the second one is the 

used tool life time. Results obtained from Genetic Algorithms 

method are presented in Pareto frontier graphic. This technique 

allowed selecting optimal cutting parameters of a normal stat; 

other cutting parameters can be selected for different situation. 

Somashekara and Lakshmana Swamy [2] studied on 

optimal setting of Turning parameters (Cutting speed, Feed and 

Depth of Cut) which results in an optimal value of Surface 

Roughness while machining Al 6351-T6 alloy with Uncoated 

Carbide Inserts. Several statistical modeling techniques have 

been used to generate models including Genetic Algorithm, 

Response Surface Methodology. In our study, an attempt has 

been made to generate a model to predict Surface Roughness 

using Regression Technique. Also an attempt has been made to 

optimize the process parameters using Taguchi Technique. S/N 

ratio and ANOVA analysis were also performed to obtain 

significant factors influencing Surface Roughness. 

Aman Aggarwal and Hari Singh [3] made an attempt to 

review the literature on optimizing machining parameters in 

turning processes. Various conventional techniques employed 

for machining optimization include geometric programming, 

geometric plus linear programming, goal programming, 

sequential unconstrained minimization technique, dynamic 

programming etc. The latest techniques for optimization include 

fuzzy logic, scatter search technique, genetic algorithm, Taguchi 

technique and response surface methodology. 

Scope of Study 

The scope of the work is to embrace us about machine tool 

and the material that have to be cut and to the analysis. A model 

is developed for the selected performance measures (responses) 

namely: Metal Removal Rate and Surface Roughness 3.2 

Material and Methodology. 

Optimal Central Composite Design was used to design the 

experimental setting and the experiments were conducted on
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 ABSTRACT 

This paper presents effective method and to determine optimal machining parameters in a 

turning operation on annealed Beryllium copper alloy to enhance the metal removal rate and 

minimize the surface roughness. The scope of this work is extended to Multi objective 

optimization. Response Surface Methodology is opted for preparing the design matrix. 

Artificial Neural Networks are used to train and validate the data prepared through 

experimentations. Multi Objective Genetic Algorithm is used for optimization of the 

performance measures of the process. A powerful model would be obtained with high 

accuracy to analyse the effect of each parameter on the output. The input parameters 

considered in this work are cutting speed, feed and depth of cut. 
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CNC Lathe with annealed Beryllium Copper alloy as work 

material. Out of 53 experiments as per the design, 40 were run 

(remaining 13 were kept aside for prediction purpose, which can 

be used for confirmation experiments) with speed, feed rate and 

depth of cut as cutting conditions to evaluate the metal removal 

rate and surface roughness while machining. 

Artificial Neural Networks were used to test the 

significance of the experimental results. Response surface 

methodology is used to model the process and extract the 

optimal set of parameters. 

Design of Experiments 

Design of experiments is a powerful statistical analysis tool 

for modeling and analyzing the effect of process variables over 

performance variables which is an unknown function of these 

process variables. The selection of optimal points in the design 

space is generally called Design of Experiments.  

The selection of the experimental design can have a good 

influence on the precision and the construction cost estimations. 

Randomly chosen design points make an inaccurate surface to 

be constructed or even prevent the ability to construct a surface 

at all. Many experimental design techniques have been used to 

aid in the selection of appropriate design points. In a factorial 

design factor range is divided into levels between the lowest and 

the highest values (Arbizu and Perez, 2003).  

Experiments were conducted through the optimal Central 

Composite design method. In this work, the machining 

characteristics (speed, feed rate and depth of cut) are 

investigated based on metal removal rate and surface roughness. 

The machining parameters are tested for significance using the 

technique of analysis of variance obtained from regression 

analysis (Myers and Montgomery, 1995). Analysis of variance is 

used to study the effect of process parameters and establish 

correlation among the cutting speed, feed and depth of cut with 

respect to the major machinability factor, cutting forces such as 

cutting force and feed force. 

The process variables with their ranges are listed in table 1 

and table 2 gives the design matrix with output parameters. 

Table 1. Process Variables with their Ranges 

Factor Name Units Minimum Maximum 

A s rpm 1175 1800 

B f mm/min 145 400 

C d mm 0.2 0.5 

Artificial Neural Networks for validation of the model 

Artificial Neural Networks are simplified models of 

biological nervous system inspired by the computing performed 

by a human brain. Kohonen (1987) defined neural network as 

“massively parallel interconnected networks of simple (usually 

adaptive) elements and their hierarchical organizations which 

are intended to interact with the objects of the real world in the 

same way as biological nervous system do.” ANNs have the 

capabilit y to learn and thereby acquire knowledge and make it  

available for use. ANNs are built by connecting processing unit 

s, called nodes or neurons. Each of the input (xi) is associated 

with some weight (wi ) which takes a portion of the input to the 

node for processing. The node combines the inputs (w) and 

produces net input which in turn is transformed into output with 

the help of transfer function/activation function.  

The optimal network architecture was designed by means of 

MAT Lab Neural Network toolbox. Neurons in the input layer 

correspond to cutting speed (s), feed rate (f) and depth of cut (d). 

The output layer corresponds to metal removal rate (MRR) and 

surface roughness (Ra). 

 

 

 

Table 2. Design matrix according to OCCD 
Std Run A:s 

rpm 

B:f 

mm/min 

C:d 

mm 

MRR 

mm^3/min 

Ra 

microns 

33 1 1331.25 336.25 0.425 38020 16.31 

51 2 1643.75 272.5 0.425 41840 23.41 

30 3 1643.75 336.25 0.275 49920 33.74 

19 4 1800 272.5 0.5 47030 24.9 

13 5 1800 145 0.35 33140 25.9 

41 6 1487.5 208.75 0.275 29700 22.41 

37 7 1487.5 208.75 0.35 29320 18.8 

36 8 1643.75 272.5 0.35 42220 27.02 

49 9 1487.5 208.75 0.425 28950 15.19 

31 10 1331.25 208.75 0.425 23380 10.09 

5 11 1175 145 0.5 10110 1.733 

22 12 1800 272.5 0.35 47790 32.12 

26 13 1487.5 272.5 0.5 35890 14.7 

17 14 1487.5 145 0.5 21250 8.474 

20 15 1487.5 400 0.5 50530 20.92 

32 16 1643.75 208.75 0.425 34520 20.3 

18 17 1175 272.5 0.5 24750 4.49 

29 18 1331.25 336.25 0.275 38780 23.53 

44 19 1643.75 272.5 0.275 42590 30.62 

47 20 1331.25 336.25 0.35 38400 19.92 

8 21 1800 400 0.5 61670 31.13 

46 22 1487.5 336.25 0.275 44350 28.63 

3 23 1175 400 0.2 40910 25.15 

16 24 1800 400 0.35 62430 38.34 

50 25 1331.25 272.5 0.425 30700 13.2 

23 26 1487.5 145 0.35 22000 15.69 

24 27 1487.5 400 0.35 51290 28.14 

15 28 1175 400 0.35 40150 17.93 

12 29 1800 272.5 0.2 48540 39.34 

45 30 1643.75 208.75 0.35 34890 23.9 

6 31 1800 145 0.5 32390 18.68 

40 32 1487.5 272.5 0.425 36270 18.3 

10 33 1175 272.5 0.2 26260 18.92 

28 34 1643.75 208.75 0.275 35270 27.51 

52 35 1487.5 336.25 0.425 43590 21.42 

39 36 1487.5 272.5 0.275 37020 25.52 

2 37 1800 145 0.2 33900 33.11 

25 38 1487.5 272.5 0.2 37400 29.13 

53 39 1487.5 272.5 0.35 36650 21.91 

48 40 1643.75 336.25 0.35 49540 30.13 

27 41 1331.25 208.75 0.275 24130 17.31 

7 42 1175 400 0.5 39390 10.71 

43 43 1331.25 208.75 0.35 23750 13.7 

4 44 1800 400 0.2 63180 45.56 

35 45 1331.25 272.5 0.35 31080 16.81 

38 46 1487.5 336.25 0.35 43970 25.02 

14 47 1487.5 400 0.2 52040 35.35 

1 48 1175 145 0.2 11620 12.7 

9 49 1487.5 145 0.2 22760 22.91 

34 50 1643.75 336.25 0.425 49160 26.52 

11 51 1175 145 0.35 10860 5.484 

21 52 1175 272.5 0.35 25510 11.71 

42 53 1331.25 272.5 0.275 31450 20.42 

In this model, the inputs are fully connected to the outputs. 

In the neural network model, the output neurons on the input 

layer reach the j
th

 neuron on the next layer and become its input 

as stated as in Equation (1).  

                                                                ------(1) 

Where   

n is the number of neurons of the inputs to the j
th

 neuron in the    

hidden layer and netj is the total or net input. 

Xi is the input from the i
th

 neuron in the preceding layer and  

wij is the weight of between the i
th 

  neuron on the input layer 

and   the j
th

 neuron on the next layer.  
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A tangent hyperbolic function (f) that transforms the input 

value of the hidden layer to produce its output (outj) 

The back propagation algorithm 

                     ---------(2) 

The back propagation algorithm is used as learning 

procedure for multi layer perceptron network. The algorithm 

makes it possible to propagate error from the output layer to the 

input layer and correct the weight vectors, which will result in 

minimum error. The back propagation algorithm minimizes the 

square of the differences between actual output and desired 

output units and for all training pairs. 

The error obtained when the training pair (pattern) 

consisting of both input and output given to the input layer of 

the network is given by equation (MSE). 

        -------(3) 

where, 

Tpi  is the i
th

 component of the desired output vector; 

Opi is the calculated output of i
th

 neuron in the output layer. 

Training Function and learning functions are mathematical 

procedures used to automatically adjust the network’s weights 

and biases. The training function dictates a global algorithm that 

affects all the weights and biases of a given network. The 

activation function f(x) is a non linear function and is given by 

   ------ (4) 

Where  f(x) is differentiable. 

Experimental results were used to develop an ANN model 

for predicting MRR and surface roughness. In this work, three 

inputs and two outputs are considered as the data of ANN model 

with input variables speed, feed rate and depth of cut and the 

output variables were MRR and Ra. The 32 results obtained 

from the experiments were used in training the network and 8 

results were used for testing and 13 for validation. The summary 

of the network trained for MRR is given in table (3) for the 

architecture given in figure (1). 

 
Figure 1. Network Architecture 

 

Analysis of MRR 

Table 3. Training and testing information for MRR network 

Net Information   

    Name Net Trained on MRR  

    Configuration Linear Predictor 

    Location This Workbook 

    Independent Category Variables 0 

    Independent Numeric Variables 3 (A:s (RPM), B:f (mm/min), 

C:d (mm)) 

    Dependent Variable Numeric Var. 

(MRR(mm^3/min)) 

Training   

    Number of Cases 32 

    % Bad Predictions (30% Tolerance) 0.0000% 

    Root Mean Square Error 2.761 

    Mean Absolute Error 2.455 

    Std. Deviation of Abs. Error 1.263 

Testing   

    Number of Cases 8 

    % Bad Predictions (30% Tolerance) 0.0000% 

    Root Mean Square Error 3.238 

    Mean Absolute Error 2.852 

    Std. Deviation of Abs. Error 1.533 

Data Set   

    Name MRR 

    Number of Rows 40 

13 experiments in the design matrix were first tested for 

prediction using the network model and confirmation tests were 

performed for testing the significance of the model. The last 13 

rows in the table (4) show that the model is significant with 

minimum residual values. Graphical representation of 

performance of the neural network is represented in the figure 

(6). At epoch 17, the best performance is observed. The training 

state with gradient and validation check is given in the figure 

(7). Regression plots for the mean square error for trained, 

validated, test values and overall regression plot is shown in the 

figure (8). The R
2
 values of 0.99 for all trained, validated, test 

and overall experimental runs prove the model validity. The 

same is represented in error histogram (figure 9). 

 

 
Figure 2. Histogram of residuals 

 

 
Figure 3. Predicted vs Actual MRR (training) 
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Table 4. Training report for MRR 

 Train-Test-Predict Report for Net Trained on MRR 

A:s (RPM) B:f (mm/min) C:d (mm) MRR(mm^3/min) Tag Used Prediction Good/Bad Residual 

1331.25 336.25 0.425 38020 train       

1643.75 272.5 0.425 41840 train       

1643.75 336.25 0.275 49920 train       

1800 272.5 0.5 47030 train       

1800 145 0.35 33140 train       

1487.5 208.75 0.275 29700 train       

1487.5 208.75 0.35 29320 train       

1643.75 272.5 0.35 42220 train       

1487.5 208.75 0.425 28950 test 28947.03 Good 2.97 

1331.25 208.75 0.425 23380 train       

1175 145 0.5 10110 test 10107.83 Good 2.17 

1800 272.5 0.35 47790 test 47786.24 Good 3.76 

1487.5 272.5 0.5 35890 train       

1487.5 145 0.5 21250 train       

1487.5 400 0.5 50530 train       

1643.75 208.75 0.425 34520 train       

1175 272.5 0.5 24750 train       

1331.25 336.25 0.275 38780 train       

1643.75 272.5 0.275 42590 test 42594.52 Good -4.52 

1331.25 336.25 0.35 38400 train       

1800 400 0.5 61670 train       

1487.5 336.25 0.275 44350 train       

1175 400 0.2 40910 train       

1800 400 0.35 62430 train       

1331.25 272.5 0.425 30700 train       

1487.5 145 0.35 22000 train       

1487.5 400 0.35 51290 train       

1175 400 0.35 40150 test 40151.11 Good -1.11 

1800 272.5 0.2 48540 train       

1643.75 208.75 0.35 34890 test 34894.71 Good -4.71 

1800 145 0.5 32390 train       

1487.5 272.5 0.425 36270 test 36268.87 Good 1.13 

1175 272.5 0.2 26260 train       

1643.75 208.75 0.275 35270 train       

1487.5 336.25 0.425 43590 train       

1487.5 272.5 0.275 37020 test 37024.82 Good -4.82 

1800 145 0.2 33900 train       

1487.5 272.5 0.2 37400 train       

1487.5 272.5 0.35 36650 train       

1643.75 336.25 0.35 49540 train       

1331.25 208.75 0.275 24130 predict 24133.29   -3.29 

1175 400 0.5 39390 predict 39395.16   -5.16 

1331.25 208.75 0.35 23750 predict 23755.31   -5.31 

1800 400 0.2 63180 predict 63185.86   -5.86 

1331.25 272.5 0.35 31080 predict 31077.14   2.86 

1487.5 336.25 0.35 43970 predict 43968.67   1.33 

1487.5 400 0.2 52040 predict 52046.46   -6.46 

1175 145 0.2 11620 predict 11619.73   0.27 

1487.5 145 0.2 22760 predict 22759.13   0.87 

1643.75 336.25 0.425 49160 predict 49160.40   -0.40 

1175 145 0.35 10860 predict 10863.78   -3.78 

1175 272.5 0.35 25510 predict 25507.44   2.56 

1331.25 272.5 0.275 31450 predict 31455.12   -5.12 
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Table 5. Linear Function 

  Intercept/Coefficient 

Intercept -45914.24 

A:s (RPM) 35.65 

B:f (mm/min) 114.85 

C:d (mm) -5034.97 

 

Analysis of Surface Roughness 

Table 6. Training and testing information for Ra network 

Summary   

Net Information   

    Name Net Trained on Ra (2) 

    Configuration Linear Predictor 

    Location This Workbook 

    Independent Category Variables 0 

    Independent Numeric Variables 3 (A:s (RPM), B:f 

(mm/min), C:d (mm)) 

    Dependent Variable Numeric Var. (Ra(μ)) 

Training   

    Number of Cases 32 

    Training Time 0.00.00 

    Number of Trials 0 

    Reason Stopped Auto-Stopped 

    % Bad Predictions (30% Tolerance) 0.0000% 

    Root Mean Square Error 0.002583 

    Mean Absolute Error 0.002166 

    Std. Deviation of Abs. Error 0.001407 

Testing   

    Number of Cases 8 

    % Bad Predictions (30% Tolerance) 12.5000% 

    Root Mean Square Error 1.226 

    Mean Absolute Error 0.4361 

    Std. Deviation of Abs. Error 1.146 

Prediction   

    Number of Cases 13 

    Live Prediction Enabled YES 

Data Set   

    Name Ra 

    Number of Rows 53 

    Manual Case Tags NO 

 

 

Figure 4. Histogram of Residuals for Ra (Training set) 

 

Figure 5. Predicted vs actual Ra (Training set) 
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Figure 6. Performance Plot 
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Figure 7. Training State 



K. Devaki Devi
 
et al./ Elixir Mech. Engg. 89 (2015) 36751-36758 36756 

 

 

 

 

Table 7. Training report for Ra 
    Train-Test-Predict Report for Net Trained on Ra  

A:s (RPM) B:f (mm/min) C:d (mm) Ra(μ) Tag Used Prediction Good/Bad Residual 

1331.25 336.25 0.425 16.31 train       

1643.75 272.5 0.425 23.41 train       

1643.75 336.25 0.275 33.74 train       

1800 272.5 0.5 24.9 train       

1800 145 0.35 25.9 train       

1487.5 208.75 0.275 22.41 train       

1487.5 208.75 0.35 18.8 train       

1643.75 272.5 0.35 27.02 train       

1487.5 208.75 0.425 15.19 train       

1331.25 208.75 0.425 10.09 train       

1175 145 0.5 1.733 test -1.73 Bad 3.47 

1800 272.5 0.35 32.12 test 32.12 Good 0.00 

1487.5 272.5 0.5 14.7 train       

1487.5 145 0.5 8.474 train       

1487.5 400 0.5 20.92 train       

1643.75 208.75 0.425 20.3 train       

1175 272.5 0.5 4.49 train       

1331.25 336.25 0.275 23.53 train       

1643.75 272.5 0.275 30.62 test 30.63 Good -0.01 

1331.25 336.25 0.35 19.92 test 19.92 Good 0.00 

1800 400 0.5 31.13 train       

1487.5 336.25 0.275 28.63 train       

1175 400 0.2 25.15 train       

1800 400 0.35 38.34 train       

1331.25 272.5 0.425 13.2 train       

1487.5 145 0.35 15.69 train       

1487.5 400 0.35 28.14 train       

1175 400 0.35 17.93 train       

1800 272.5 0.2 39.34 train       

1643.75 208.75 0.35 23.9 train       

1800 145 0.5 18.68 train       

1487.5 272.5 0.425 18.3 test 18.30 Good 0.00 

1175 272.5 0.2 18.92 train       

1643.75 208.75 0.275 27.51 test 27.51 Good 0.00 

1487.5 336.25 0.425 21.42 train       

1487.5 272.5 0.275 25.52 train       

1800 145 0.2 33.11 test 33.11 Good 0.00 

1487.5 272.5 0.2 29.13 train       

1487.5 272.5 0.35 21.91 train       

1643.75 336.25 0.35 30.13 test 30.13 Good 0.00 

1331.25 208.75 0.275 17.31 predict 17.31     

1175 400 0.5 10.71 predict 10.71     

1331.25 208.75 0.35 13.7 predict 13.70     

1800 400 0.2 45.56 predict 45.56     

1331.25 272.5 0.35 16.81 predict 16.81     

1487.5 336.25 0.35 25.02 predict 25.03     

1487.5 400 0.2 35.35 predict 35.35     

1175 145 0.2 12.7 predict 12.70     

1487.5 145 0.2 22.91 predict 22.91     

1643.75 336.25 0.425 26.52 predict 26.52     

1175 145 0.35 5.484 predict 5.48     

1175 272.5 0.35 11.71 predict 11.71     

1331.25 272.5 0.275 20.42 predict 20.42     

*R-Square (Training) = 0.999 
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Table 8. Linear Function 
  Intercept/Coefficient 

Intercept -23.14 

A:s (RPM) 0.03266 

B:f 

(mm/min) 

0.04882 

C:d (mm) -48.11 
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Figure 8. Regression Plot 
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Figure 9. Error Histogram plot 

 

Figure 10. Training Process and Parameter Selection of 

Network 

Optimization 

The developed model through ANN is then used in genetic 

algorithm for setting the optimum values to maximize MRR an 

minimize surface roughness.  

Genetic Algorithm (GA) is an evolutionary tool in solving 

optimization problems in engineering, mathematics and other 

fields. Global optimization is exposed as criteria in genetic 

algorithm. Best parents-best child through a number of 

generations are evolved out for getting global optimum outputs 

due to which it is an excellent optimization tool for complex 

problems. 

GA tool in MATlab is utilized for its simplicity and 

efficiency for solving the present problem imported from NN 

tool. Figure (11) shows the optimization criteria.  

The objective functions for MRR and Ra are written in M-

file in MATLAB as  

function y = ga1(x) 

 y(1) = 63180-(-45912.2+35.6466*x(1)+114.848*x(2)-5034.07* 

 x(3)); 

 y(2) = -23.961572358169+0.032330913710112 *  x(1) 

 +0.042410486223248*x(2)-34.602836037421 *x(3); 

 

 Figure 11. Running Process of Optimization Tool 

Box in MATLAB 

Here, y(1) represents MRR for maximization and y(2) 

represents Ra for minimization. x(1), x(2), x(3) represent the 

input parameters speed, feed rate and depth of cut. When the 

above function is exported and run on MOGA tool box, the 

pareto front plot with best individuals can be obtained as in the 

figure (12). The optimal set of the input and output parameters 

are tabulated in the table (9). 
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Figure 12. Pareto Front 

Result and Conclusion 

The mathematical function for turning process parameters 

of annealed Beryllium copper alloy has been obtained and 

validated with neural network modelling, which is applied in 

multi objective Genetic Algorithm for optimizing the process 

parameters and is given in Table (9). A satisfactory value has 

been obtained which was proven with confirmatory test with 

98% confidence level.  
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Table 9. Optimal setup of parameters 
Speed 

(RPM) 

Feed rate 

(mm/min) 

Depth of 

cut (mm) 

MRR 

(mm
3
/min) 

Ra 

(µ) 

1175 145 0.5 53070.462 2.87 
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