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Introduction 

Mathematics Subject Classification: 20N20, 08A99, 03E72 

Nowadays, it is generally accepted that in fuzzy logic the algebraic structure should be a residuated lattice which was 

introduced by Ward and Dilworth [22].  Some other logical algebras such as MTI-algebras [3], BL-algebras [5], MV-algebras [2], 

G- -algebras, and NM-algebras [3], which are also called R_0 -algebras [23], are all able to be considered particular 

classes of residuated lattices.  Filters are an important tool to study these logical algebras and the completeness of the 

corresponding nonclassical logics.  On the one hand, filters are closely related to congruence relations with which one can 

associate quotient algebras [21].  Since Rosenfeld [16] applied the notion of fuzzy sets [25] to abstract algebra and introduced the 

notion of fuzzy subgroups, the literature of various fuzzy algebraic concepts has been growing very rapidly [18]. The notion of 

fuzzy filters was introduced, and some properties of them were obtained [10].  Moreover, based on the notion of intuitionistic 

fuzzy sets proposed by Atanassov [1], the concept of the intuitionistic fuzzy filter in BL-algebras was introduced in [24].   In this 

paper, we apply the notion of intuitionistic fuzzy sets to a residuated lattice.  Further, we define the notion of intuitionistic fuzzy 

congruence relation on a residuated lattice and study its properties.    Then we prove that the quotient algebra induced by a vague 

filter is a residuated lattice and investigate some related  results. 

Preliminaries 

Definition 2.1 [5] 

A residuated lattice is an algebraic structure L = (L, , , *, , 0, 1) satisfying the following axioms: 

1. (L, , , 0, 1) is a bounded lattice 

2. (L, *, 1) is a commutative semigroup (with the unit element 1). 

3. (*, 1) is an adjoint pair, i.e., for any x, y, z, wL,  

i. if x  y and z  w , then x * z  y * w. 

ii. if  x  y and y  z  x  z and z  x  z  y. 

iii. (adjointness condition) x * y  z if and only if x  y  z. 

In this paper, denote L as residuation lattice unless otherwise specified. 

Theorem 2.2 [5]  

In each residuated lattice L, the following properties hold for all x, y, z  L: 

1. (x * y)  z = x  (y  z). 

2. z  x  y  z * x  y. 

3. x  y  z * x  z * y. 

4. x  (y  z) = y (x  z). 

5. x  y  z  x  z  y. 

6. x  y  y  z  x  z,    . 

7. y  z  (x  y)  (x  z). 

8. y  x  (x  z)  (y  z). 

9. 1  x = x, x  x = 1. 

10.   , m, n  N, m  n. 

11.   y  x  y = 1. 
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ABSTRACT 

The aim of this paper is to establish the concept of vague congruence relation on a 

residuated Lattice.  We discuss the relationship between vague Filters and vague 

congruence relations.  Further we define the vague congruence relation corresponding to 

a given vague filter and some of its properties are obtain.  Finally, we determine the 

quotient algebra induced by this relation and discuss some properties.                                                                                                     
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12.  = 1,  = 0,  = , x  . 

13.   y  z = (x  z)  (y  z). 

14.  = 0. 

15.  (y  z) = (x  y)  (x  z). 

Definition 2.6: [26] 

A fuzzy set A of a residuated lattice L is called a fuzzy filter, if it satisfies, for any x, y  L                         

1. A(1)  A(x). 

2. A(x * y)  min{A(x), A(y)}. 

Theorem 2.7: [26] 

A  fuzzy set A of a residuated lattice L is a fuzzy filter, if and only if it satisfies, for any x, y  L, 

1. A(1)  A(x). 

2. A(y)  min{A(x  y), A(x)} 

Definition 2.8 [4] 

A Vague set A in the universe of discourse S is a Pair ( , ) where :S [0,1] and :S  [0,1] are mappings (called 

truth membership function and false membership function respectively) where (x) is a lower bound of the grade of membership 

of x derived from the evidence for x and (x) is a lower bound on the negation of x derived from the evidence against x and        

(x) + (x)  1 x S. 

Vague congruence relation 

Definition 3.1 

 Let X be a set and R  VR(X).  Then R is called a vague equivalence relation (in short, VE) on X if it satisfies the following 

conditions 

1. R  is vague reflexive, i.e., R(x, x) = 1  for each x  X. 

2. R is vague symmetric, i.e., R(x, y) = R(y, x) 

3. R is vague transitive, i.e., R o R  R 

Definition 3.2 

Let R = [ , 1- ] be a VE on a residuated lattice L.  Then R is called a vague congruence relation (in short VC) if it 

satisfies the following conditions: for any x, y, z, w  L 

1. (x  z, y  w)  (x, y)  (z, w) 

2. (x  z, y  w)  (x, y)  (z, w) 

3. (x  z, y  w)  (x, y)  (z, w). 

4. (x  z, y  w)  (x, y)  (z, w). 

Theorem 3.3 

Let R = [ , 1- ] be a VE on a residuated lattice L.  Then R is a VC if and only if it satisfies the following conditions 

1.  (x  z, y  z)  (x, y) 

2. (x  z, y  z)  (x, y)  

3. (z  x, z  y)  (x, y) 

4. (x  z, y  z)   (x, y) 

5. (x  z, y  z)  (x, y)  for all x, y, z  L. 

Proof 

Let R = [ , 1- ] be a VC on a residuated lattice L. We have (z, z) = 1.  Suppose that   {, , , }.  By Definition 

3.2, (x  z, y  z)  (x, y)  (z, z) = (x, y).  Hence it satisfies conditions (1- 5).  Conversely, since R = [ , 1- ] is a 

VE , then (x  z, y  w)   (x  z, u)  (u, y  w)]  [ (x  z, y  z)  (y  z, y  w)]   (x, y)  (z, w) .  

Therefore R is a vague congruence relation. 

Theorem 3.4 

              Let R = [ , 1- ] be a VE on a residuated lattice L.  Then R = [ , 1- ] be a VC on L  if and only if for all ,   [0, 

1 ] , the sets U( , ) = {x   X : (x)  } and L( , ) = {x   X : (x)  } are vague congruence relations on L. 

Proof 

Suppose that R = [ , 1- ] be a VC on a residuated lattice L. and  ,   [0, 1]. 

First, we will show that U( , )  is a equivalence relation on L. 

Since (x, x) = 1  , then (x, x)  U( , ).  Hence U( , ) is reflexive.  It is clear that U( , ) is symmetric.  Let (x, y), (y, 

z)  U( , ).  Then  (x, y), (y, z)  .  Since R is a vague equivalence relation on L, we obtain that   (x,z) (z,y)  

 (x ,u)  (u, y)] =  (x, y)   (x, y).  Therefore U( , )  is transitive.  Hence U( , ) is a vague equivalence 

relation on L.  Suppose that *  {, , , } and (x, y), (z, w)  U( , ) .  Then (x, y), (z, w)  . Therefore by Definition 
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3.2, we have  (x,y) (z,w)  (x* y, z* w ), that is (x * z, y * w)  U( , ).  Hence U( , ) is a vague congruence 

relation on L.  Similarly we can prove that L( , ) is a vague congruence relation on L.  Conversely, suppose that for all , 

  [0, 1] , the sets U( , ) and L( , ) are congruence relations on L. We will prove that R=[ ,1- ]  is a vague 

equivalence relation on L.  Since U( , 1) and L( , 1) are reflexive, then R(x, x) = [1, 1] for each x  L.  It is clear that R is 

vague symmetric. Suppose that x, y, z  L.  Let  (x, z) =  p and  (z, y) = q. Put  = p  q. Then (x, z) ,           (z, y)   .  

Hence (x, z), (z, y)  U( , ).  Since U( , ) is transitive, we obtain that (x, y)  U( , ), that is (x, y)   = p  q = (x, 

z)  (z, y).   Since    z  L is arbitrary, we get that (x,y)   (x,z)  (z, y)].   

Similarly we prove that 1- (x,y)   1- (x, z)  1- (z, y)].  Therefore R o R  R and then  R is vague equivalence 

relation.  Let *  {, , , }. Suppose that  (x, y) = r and (z, w)=s. Put =rs .  Then (x, y) , (z, w)  .  Hence (x, 

y), (z, w) U( , ). Since U( , ) is a vague congruence relation, we obtain that (x * z, y * w)  U( , ) , that is (x * z, y 

* w)   = rs = (x, y)  (z, w).  Similarly, we can show that  1- (x * z, y * w)  (x, y)  1- (z, w).  Hence 

R=[ ,1- ] is a vague congruence relation on L. 

Vague congruences induced by vague filter 

Definition 4.1          

Let R = [ , 1- ] be a VC on a residuated lattice L.  Then the vague subset  = [ , 1- ] which is defined by (x) 

= (x, 1) and 1-  (x) = 1-  (x, 0), is called a vague subset induced by R. 

Theorem 4.2 

Let R = [ , 1- ] be a VC on a residuated lattice L.  Then  is a vague filter of L. 

Proof: 

Let x, y  L be arbitrary.  Then (1) = (1, 1) = (x  1, 1  1)  (x, 1) =  (x).  (y) = (y,1) = (y  (x 

* (x  y)), y1)  (x * (x  y),  1 * 1)  (x,1) (x  y, 1) =  (x)  (x  y).  

Definition 4.3 

Let A = [ , 1- ] be a vague filter (in short VF) of a residuated lattice L.  The vague relation   = [ , 1- ] on L 

which is defined by (x, y) =  (x  y)   (y  x) is called the vague relation induced by A. 

Lemma 4.4 

Let A = [ , 1- ] be a VF of a residuated lattice L.  Then  

1. (x  y)  [(x * z)  (y * z)] 

2. (x  y)  [(y  z)  (x  z)] 

3. (x  y)  [(x  z)  (y  z)] 

4. (x  y)  [(x  z)  (y  z)] for all x, y, z  L. 

Proof: 
(1) and (2) follows from Definitions. 

3.Since (x  z) * (x  y)  (x * (x  y))  (z * (y  x))  y  z, then (x  y)  (x  z)  (y  z).  Hence (3) holds. 

4.(x  z) * (x  y) = (x * (x  y))  (z * (x  y))  y  z.  Then x  z  (x  z)  (y  z).  Hence (4) holds. 

Theorem 4.5 

Let A = [ , 1- ] be a vague filter of a residuated lattice L.  Then   = [ , 1- ] is a VC on L. 

Proof: Follows from Lemma 4.4. 

Theorem 4.6 

Let A = [ , 1- ] be a vague filter  on a residuated lattice L.  Then   = A. 

Proof: 

    Let x  L.  Since A is a vague filter of L, we have  

(x) = (x, 1) =  (x  1)   (1  x) =  (x)  .  Hence  = A. 

Theorem 4.7    

Let R = [ , 1- ] be a VC on a residuated lattice L.  Then   = R. 

Proof: 

Let x, y  L.  Then   (x, y) =  (x  y)  (y  x) = (x  y, 1)  (y  x, 1) = (x  y, y  y)  (y 

 x, x  x)  (x, y). Therefore   R.  Conversely, we have (x, y)  (x, x  y)  (x  y, y)  (y * (y  x), y)  

(x, x * (x  y))   (y * (y  x), y * 1)  (x * 1, x * (x  y))  (y  x, 1)  (1,  x  y) =   (y  x)  (x 

 y) = (x, y).  Therefore   R.  Hence  = R.  

Theorem 4.8: (correspondence theorem) 

There is a bijection between the set of all vague congruence relations and the set of all vague filters A = [ , 1- ] be a 

vague filter of a residuated lattice L such that  (1) = 1. 
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Proof: 

Denote the set of all vague congruence relations on L by VC(L) and the set of all vague filters such that (1) = 1 by VF(L).  

Define  : VC(L)  VF(L) by  (R) =   and   : VF(L)  VC(L) by (A) =   By Theorems 4.3 and 4.4.  and  are well 

defined.  By Theorem 4.6 and 4.7,  and  are inverse of each other. 

Definition 4.9 

Let R be a vague congruence relation on a residuated lattice L and a  L.  Define the complex mapping  : L  I x I as 

follows: (x) = R(a, x), for all x  L.  Then  is a vague set and it is called a vague equivalence class of R containing a. 

Proposition 4.10: 

Let A = [ , 1- ] be a vague filter of a residuated lattice L and   be the VC induced by A. Then the following hold:  

1.   =  if and only if (a  b) =  (b  a)  = (1) and (a  b) =   1-  (b  a)  = 1- (0), 

2.   =   if and only if (a) = (1) and 1- (a) = 1- (0). 

Proof:  

1. Let   =  .  We have (a)  = (a) and obtain that (a  a)   (a  a) = (a, a) =  (a, b) = 

(b  a)  (a   b).  It follows that (b  a) = (a  b) = (1),  (b  a) = (a  b) = 1- (0).  

Conversely, suppose that (b  a) = (a  b) = (1) and (a  b) = 1-  (b  a)  = 1- (0) . we know that (x  

a)  (a  b)  ((x  a) * (a  b))  (x  b) and (x  b)    (b  a)  ((x  b) * (b  a))        (x  a).  By 

using assumption, we have (x  a)  (x  b) and (x  b)  (x  a).  Therefore (x  b) = (x  a) .  Similarly, 

we can show that (b  x) = (a  x).  Thus (x) = (x) for all       x  L. 

2. It follows from part (1) 

Theorem 4.11 

Let A = [ , 1- ] be a vague filter of a residuated lattice L. Define a  b  if and only if   = . Then  is a 

congruence relation on L. 

Proof: The proof follows from Proposition 4.10. 

Definition 4.12 

Let A = [ , 1- ] be a vague filter of a residuated lattice L and  be the VC induced by A.                                                                                 

The set { : a  L} is called the vague quotient set of L by  and denoted by L / .  On this set, we have  

*  =  ,    =   and    = ,    =  . 

Theorem 4.13 

Let A= [ ,1- ] be a vague filter of a residuated lattice L. Then L/  = (L/ ,,,, *, , ) is a residuated lattice. 

Proof: 

We have   =  and   =   if and only if a   b and c  d.  Since  is the congruence relation 

on L by Theorem 4.11, then all above operations are well defined.  It is easy to show that (L/ ,,,, *, , ) is a bounded 

lattice , * is commutative, associative and has  as an identity.  The operation   defines a relation  on L /  by    

 if and only if   =   for all a, b  L.  This relation is a partial order on L / . Using Proposition 4.10, 

we have     if and only if a  b  U( , ) and a  b  L( , 1- ) for all a, b  L.  Now, we 

will show that        if and only if   *    for all a, b, c  L.  we have    

         (a  (b  c))  U( , ) and (a  (b  c))  L( , 1- )   

((a * b)  c)  U( , ) and ((a * b)  c)  L( , 1- )        *   

 .  This completes the proof. 

Theorem 4.14 

Let A= [ ,1- ] be a vague filter of a residuated lattice L and L/  be the corresponding quotient algebra.  Then the map  

 : L  L/  defined by  (a) =  for all a  L is a surjective homomorphism and ker() = U( , )  L( , 

1- ) , where  ker() = {x  L : h(x) = }.  Moreover, L/  is isomorphic to the commutative residuated lattice L / 

. 

Proof: 

It follows from Definition 4.12 and Theorem 4.13, that  is surjective homomorphism.  By Proposition 4.10, we have x  

ker() if and only if  = (x) =  if and only if  (x) =    and 1- (x) =  1-  if and only if x  U( , 

)  L( , 1- ).  Hence by Proposition 4.10, L/  is isomorphic to the commutative residuated lattice L/ .  

Hence Proved. 
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