

J. Jayapriya/ Elixir Dis. Math. 90 (2016) 37784-37789

Available online at www.elixirpublishers.com (Elixir International Journal)

Discrete Mathematics

Elixir Dis. Math. 90 (2016) 37784-37789

Certain class of graph with odd and even ratio edge antimagic Labeling

J. Jayapriya

Department of Mathematics, Sathyabama University, Chennai-119, India.

ARTICLE INFO

Article history: Received: 26 December 2013; Received in revised form: 12 January 2016; Accepted: 18 January 2016;

ABSTRACT

In this paper the existence of odd and even ratio edge antimagic labeling for double triangular snakes ($2\Delta_k$ -snake), $2m\Delta_1$ -snake, $2m\Delta_k$ -snake and kC_4 -snake are proved.

© 2016 Elixir All rights reserved.

Keywords

Graph labeling, Odd and even ratio edge antimagic, Triangular snake, $2m\Delta_1$ -snake, $2m\Delta_k$ -snake, kC_4 -snake.

Introduction

The graphs considered here are finite, undirected and simple. The symbols V(G) and E(G) will denote the vertex set and edge set of a graph *G* respectively. Also *p* and *q* denote the number of vertices and edges of *G* respectively. Rosa [7] defined a triangular snake (or Δ -snake) as a connected graph in which all blocks are triangles and the block-cut-point graph is a path. Let Δ_k -snake be a Δ snake with *k* blocks while *k* $n\Delta$ -snake is a Δ -snake with *k* blocks and every block has *n* number of triangles with one common edge.

Max-min edge antimagic labeling was first introduced by J.Jayapriya and.D.Muruganandam in the year 2012, seeking application in Welding Technology [4]. In the year 2013[5] Jayapriya showed the existences of Max-min edge antimagic labeling for the graphs path, cycle, star, sunflower etc. Max-min edge antimagic labeling was renamed as ratio edge antimagic labeling [6]. In this paper the existence of odd and even ratio edge antimagic labeling, for double triangular snakes, $2m\Delta_k$ -snake and kC₄-snake graphs are shown.

Definition 1.1 [4]: Let G(V, E) be a simple graph with p vertices and q edges. A bijective function $f: V(G) \rightarrow \{1, 3, 5, ..., 2p-1\}$ is said to be odd ratio edge antimagic labeling if for every edge uv in E, the edge weights

 $\lambda(uv) = \frac{\max\{f(u), f(v)\}}{\min\{f(u), f(v)\}}$ are distinct.

Definition 1.2 [4]: Let G(V, E) be a simple graph with p vertices and q edges.

A bijective function $f: V(G) \rightarrow \{2, 4, 6, ..., 2p\}$ is said to be even ratio edge antimagic labeling if for every edge uv in E,

 $\lambda(uv) = \frac{\max\{f(u), f(v)\}}{\min\{f(u), f(v)\}}$ are distinct.

2. Some Class of Triangular Snake Graph with Odd and Even Ratio Edge Antimagic Labeling

Theorem 2.1: The double triangular snake $(2\Delta_k$ -snake) graph admits odd and even ratio edge antimagic labeling.

Proof: Let G(V, E) be a $2\Delta_k$ -snake graph. The graph *G* consists of the vertices $V = \{u_1, u_2, ..., u_k\} \cup \{v_1, v_2, ..., v_{k+1}\} \cup \{w_1, w_2, ..., w_k\}$ and the edges $E = \{u_iv_i; 1 \le i \le k\} \cup \{u_iv_{i+1}; 1 \le i \le k\} \cup \{v_iw_i; 1 \le i \le k\} \cup \{w_iv_{i+1}; 1 \le i \le k\}$.

Let us consider the function $f: V(G) \rightarrow \{1, 3, 5, ..., 2p-1\}$, such that $f(u_i) = 2i-1; 1 \le i \le k$.

 $f(v_i) = 4k + (2i-1); 1 \le i \le k+1$ $f(w_i) = 2k + (2i-1); 1 \le i \le k$. Now the edge weights are calculated as follows.

Tele: E-mail addresses: priyanandam_1975@rediffmail.com © 2016 Elixir All rights reserved

J. Jayapriya/ Elixir Dis. Math. 90 (2016) 37784-37789

For $1 \le i \le k$, $\lambda(u_i v_i) = \frac{4k + 2i - 1}{2i - 1}$. Clearly for $1 \le i, j \le k, i \ne j, \lambda(u_i v_i) \ne \lambda(u_j v_j)$, if $\lambda(u_i w_i) = \lambda(u_j w_j)$ then

 $\frac{4k+2i-1}{2i-1} = \frac{4k+2j-1}{2j-1}$ which implies i = j, which is a contradiction. Therefore all edge labels are distinct.

For
$$1 \le i \le k$$
,

 $\lambda(u_i v_{i+1}) = \frac{4k + (2i+1)}{(2i-1)}.$ Clearly for $1 \le i, j \le k, \lambda(u_i v_{i+1}) \ne \lambda(u_j v_{j+1}), \text{ if } \lambda(u_i v_{i+1}) = \lambda(u_j v_{j+1}) \text{ then}$

 $\frac{4k + (2i+1)}{(2i-1)} = \frac{4k + (2j+1)}{(2j-1)}$ which implies i = j, which is a contradiction. Therefore all edge labels are distinct. For $1 \le i \le k$,

 $\lambda(u_i w_i) = \frac{4k + 2i - 1}{2k + 2i - 1}.$ Clearly for $1 \le i, j \le k, i \ne j, \lambda(u_i w_i) \ne \lambda(u_j w_j)$, if $\lambda(u_i w_i) = \lambda(u_j w_j)$ then

 $\frac{4k+2i-1}{2k+2i-1} = \frac{4k+2j-1}{2k+2j-1}$ which implies i = j, which is a contradiction. Therefore all edge labels are distinct. For $1 \le i \le k$,

 $\lambda(w_{i}v_{i+1}) = \frac{4k + (2i+1)}{2k + (2i-1)}.$ Clearly for $1 \le i, j \le k, i \ne j, \lambda(w_{i}v_{i+1}) \ne \lambda(w_{j}v_{j+1}), \text{ if } \lambda(w_{i}v_{i+1}) = \lambda(w_{j}v_{j+1}) \text{ then } \frac{4k + (2i+1)}{2k + (2i-1)} = \frac{4k + (2j+1)}{2k + (2j-1)}$

which implies i = j, which is a contradiction. Therefore all edge labels are distinct.

For
$$1 \le i \le k$$
, $\lambda(v_i v_{i+1}) = \frac{4k + (2i+1)}{4k + (2i-1)}$.

Suppose $\lambda(v_i v_{i+1}) = \lambda(v_j v_{j+1})$ then $\frac{4k + (2i+1)}{4k + (2i-1)} = \frac{4k + (2j+1)}{4k + (2j-1)}$ which implies i = j, which is a contradiction. Therefore all edge labels

are distinct. Thus the double triangular snake ($2\Delta_k$ -snake) graph admits odd ratio edge antimagic labeling.

To prove the existences of even ratio edge antimagic labeling, let us define

 $f: V(G) \rightarrow \{2, 4, 6, ..., 2p\}$, such that $f(u_i) = 2i; 1 \le i \le k$.

$$f(v_i) = 4k + 2i; 1 \le i \le k+1.$$

$$f(w_i) = 2k + 2i; 1 \le i \le k$$

Now the edge weights are calculated as follows.

For
$$1 \le i \le k$$
, $\lambda(u_i v_i) = \frac{4k + 2i}{2i}$. Clearly for $1 \le i, j \le k, i \ne j, \lambda(u_i v_i) \ne \lambda(u_j v_j)$, if $\lambda(u_i w_i) = \lambda(u_j w_j)$ then $\frac{4k + 2i}{2i} = \frac{4k + 2j}{2j}$ which

implies i = j, which is a contradiction. Therefore all edge labels are distinct.

For
$$1 \le i \le k$$
, $\lambda(u_i v_{i+1}) = \frac{4k + 2i + 2}{2i}$. Clearly for $1 \le i, j \le k, \lambda(u_i v_{i+1}) \ne \lambda(u_j v_{j+1}), \text{ if } \lambda(u_i v_{i+1}) = \lambda(u_j v_{j+1}) \text{ then } \frac{4k + 2i + 2}{2i} = \frac{4k + 2j + 2}{2j}$

which implies i = j, which is a contradiction. Therefore all edge labels are distinct.

For
$$1 \le i \le k$$
, $\lambda(u_i w_i) = \frac{4k + 2i}{2k + 2i}$. Clearly for $1 \le i, j \le k, i \ne j, \lambda(v_i w_i) \ne \lambda(v_j w_j)$, if $\lambda(v_i w_i) = \lambda(v_j w_j)$ then $\frac{4k + 2i}{2k + 2i} = \frac{4k + 2j}{2k + 2j}$ which

implies i = j, which is a contradiction. Therefore all edge labels are distinct.

For $1 \leq i \leq k$, $\lambda(w_iv_{i+1}) = \frac{4k+2i+2}{2k+2i}$. Clearly for $1 \leq i, j \leq k, i \neq j, \lambda(w_iv_{i+1}) \neq \lambda(w_jv_{j+1})$, if $\lambda(w_iv_{i+1}) = \lambda(w_jv_{j+1})$ then

 $\frac{4k+2i+2}{2k+2i} = \frac{4k+2j+2}{2k+2j}$ which implies i = j, which is a contradiction. Therefore all edge labels are distinct.

For $1 \le i \le k$, $\lambda(v_i v_{i+1}) = \frac{4k + (2i+2)}{2k + (2i)}$.

For $1 \le i \le k$, if $i \ne j$, $\lambda(v_i v_{i+1}) \ne \lambda(v_j v_{j+1})$. Suppose $\lambda(v_i v_{i+1}) = \lambda(v_j v_{j+1})$ then $\frac{4k + (2i+2)}{2k + (2i)} = \frac{4k + (2j+2)}{2k + (2j)}$ which implies i = j, which is

a contradiction. Therefore all edge labels are distinct. Thus the double triangular snakes $(2\Delta_k$ -snake) graph admits even ratio edge antimagic labeling.

Theorem 2.2: $2m\Delta_1$ -snake graph admits odd and even ratio edge antimagic labeling for $m \ge 1$.

Proof: Let G(V, E) be a $2m\Delta_1$ -snake graph.

The graph G consists of the vertex $V = \{u_1, u_2\} \cup \{v_1^1, v_1^2, ..., v_1^m\} \cup \{w_1^1, w_1^2, ..., w_1^m\}$ and the edges $E = \{u_1 u_2\} \cup \{u_1 v_1^i; 1 \le i \le m\} \cup \{u_1 v_1^i, v_1^2, ..., v_1^m\}$

 $\{ u_{2}v_{1}^{i}; 1 \leq i \leq m \} \cup \{ u_{1}w_{1}^{i}; 1 \leq i \leq m \} \cup \{ u_{2}w_{1}^{i} \}.$

Let us consider the function $f: V(G) \rightarrow \{1, 3, 5, ..., 2p-1\}$, such that $f(w_i^i) = 2i-1; 1 \le i \le m$.

 $f(v_1^i) = 2m + (2i-1); \ 1 \le i \le m.$

$$f(u_i) = 4m + 1$$
 and $f(u_2) = 4m + 3$.

Now the edge weights are calculated as follows.

For
$$1 \le i \le m$$
, $\lambda(u_1 w_1^i) = \frac{4m+1}{2i-1}$.
 $\lambda(u_2 w_1^i) = \frac{4m+3}{2i-1}$.
 $\lambda(u_1 v_1^i) = \frac{4m+1}{2m+(2i-1)}$.
 $\lambda(u_2 v_1^i) = \frac{4m+3}{2m+(2i-1)}$.

Thus all edge labels are distinct. Hence $2m\Delta_1$ -snake are odd ratio edge antimagic for $m \ge 1$.

To prove the existence of even ratio edge antimagic labeling, let us define

 $f: V(G) \to \{2, 4, 6, ..., 2p\}$, such that $f(w_i^i) = 2i; 1 \le i \le m$.

$$f(v_1^i) = 2m + 2i; 1 \le i \le m.$$

 $f(u_1) = 4m + 2 \text{ and } f(u_2) = 4m + 4.$

Now the edge weights are calculated as follows.

For $1 \le i \le m$, $\lambda(u_1w_1^i) = \frac{4m+2}{2i}$. $\lambda(u_2w_1^i) = \frac{4m+4}{2i}$. $\lambda(u_1v_1^i) = \frac{4m+2}{2m+2i}$. $\lambda(u_2v_1^i) = \frac{4m+4}{2m+2i}$.

Thus all edge labels are distinct. Hence $2m\Delta_1$ -snake are even ratio edge antimagic for $m \ge 1$.

Theorem 2.3: The $2m\Delta_k$ -snake admits odd and even ratio edge antimagic labeling.

Proof. Let G(V,E) be a $2m\Delta_k$ -snake graph. The graph G(V,E) consists of k(2m+1)+1 vertices. Let $V(G) = \{u_1, u_2, ..., u_{k+1}\} \cup \{v_1^{-1}, v_1^{-2}, ..., v_1^{-m}\} \cup \{v_2^{-1}, v_2^{-2}, ..., v_2^{-m}\} \cup ..., \{v_k^{-1}, v_k^{-2}, ..., v_k^{-m}\} \cup \{w_1^{-1}, w_1^{-2}, ..., w_1^{-m}\} \cup \{w_2^{-1}, w_2^{-2}, ..., w_2^{-m}\} \cup ..., \{w_k^{-1}, w_k^{-2}, ..., w_k^{-m}\}$ and edges as $E(G) = \{v_k u_i: 1 \le i \le m, 2 \le k \le m\} \cup \{v_k^{-i} u_{i+1}: 1 \le i \le m, 2 \le k \le m\} \cup \{w_k^{-i} u_i: 1 \le i \le m, 2 \le k \le m\} \cup \{w_k^{-1} u_{i+1}: 1 \le i \le m, 2 \le k \le m\}$ To prove that $2m\Delta_k$ -snake admits odd ratio edge antimagic labeling let us define, $f: V(G) \rightarrow \{1, 3, 5, ..., 4km+2k+1\}$, such that $\begin{aligned} f(v_j^i) &= 2m(j-1) + (2i-1) \ ; \ l \leq j \leq k, \ l \leq i \leq m. \\ f(w_j^i) &= 2m(k+j-1) + (2i-1) \ ; \ l \leq j \leq k, \ l \leq i \leq m. \\ f(u_i) &= 4km + (2j-1); \ l \leq j \leq k+1. \end{aligned}$

The edge weights are calculated as follows:

For
$$l \le j \le k-l$$
, $l \le i \le m$, $\lambda(u_j v_j^i) = \frac{4km + 2j - 1}{2m(j-1) + (2i-1)}$.
Clearly $\lambda(u_j v_j^i) \ne \lambda(u_{j+1} v_j^i)$, if $\lambda(u_j v_j^i) = \lambda(u_{j+1} v_j^i)$ then, $\frac{4km + 2j - 1}{2m(j-1) + (2i-1)} = \frac{4km + 2j + 1}{2m(j-1) + (2i-1)}$.

This implies 2 = 0, which is a contradiction. Thus edge labels are distinct.

For
$$l \le j \le k, l \le i \le m, \lambda(u_j w_j^i) = \frac{4km + 2j - 1}{2m(k + j - 1) + (2i - 1)}$$

Clearly $\lambda(u_j w_j^i) \neq \lambda(u_{j+1} w_j^i)$.

If
$$\lambda(u_j v_j^i) = \lambda(u_{j+1} v_j^i)$$
, then $\frac{4km + 2j - 1}{2m(k+j-1) + (2i-1)} = \frac{4km + 2j + 1}{2m(k+j-1) + (2i-1)}$

This implies 2 = 0, which is a contradiction. Thus edge labels are distinct.

For $l \leq j$, $l \leq k$, clearly for $l \neq j$, $\lambda(u_i u_{i+1}) \neq \lambda(u_l u_{l+1})$.

If
$$\lambda(u_j u_{j+1}) = \lambda(u_l u_{l+1})$$
 then $\frac{4km + 2j + 1}{4km + 2j - 1} = \frac{4km + 2l + 1}{4km + 2l - 1}$.

This implies l = j, which is a contradiction. Thus edge labels are distinct.

Therefore $2m\Delta_k$ -snake graph admits odd ratio edge antimagic labeling.

То prove the existence of labeling, define even ratio edge antimagic let us $g: V(G) \rightarrow \{2, 4, 6, ..., 4km + 2k + 2\}$, such that $g(v_1^i) = 2i; 1 \le i \le m$ $g(v_i^{\ i}) = 2m(j-l) + 2i; \ l \le j \le k, l \le i \le m.$ $g(w_i^i) = 2m(k+j-l)+2i; \ l \le j \le k, l \le i \le m.$ $g(u_i) = 4km + 2j; \ 1 \le j \le k + 1.$

The edge weights are calculated as follows:

For
$$1 \le j \le k$$
, $1 \le i \le m$, $\lambda(u_j^i v_j^i) = \frac{4km + 2j}{2m(j-1) + 2i}$

Clearly $\lambda(u_i v_i^i) \neq \lambda(u_{i+1}^i v_i^i)$,

if
$$\lambda(u_j v_j^i) = \lambda(u_{j+1} v_j^i)$$
 then $\frac{4km+2j}{2m(j-1)+2i} = \frac{4km+2j+2}{2m(j-1)+2i}$.

This implies 2 = 0, which is a contradiction. Thus edge labels are distinct.

For
$$1 \leq j \leq k$$
, $1 \leq i \leq m$, $\lambda(u_j w_j^i) = \frac{4km + 2j}{2m(k+j-1)+2i}$.

Clearly $\lambda(u_i w_i^i) \neq \lambda(u_{i+1} w_i^i)$,

if
$$\lambda(u_j v_j^i) = \lambda(u_{j+1} v_j^i)$$
 then $\frac{4km+2j}{2m(k+j-1)+2i} = \frac{4km+2j+2}{2m(k+j-1)+2i}$.

This implies 2 = 0, which is a contradiction. Thus edge labels are distinct.

For $l \leq j$, $l \leq k$, clearly for $l \neq j$, $\lambda(u_j u_{j+1}) \neq \lambda(u_l u_{l+1})$.

If $\lambda(u_j u_{j+1}) = \lambda(u_l u_{l+1})$ then $\frac{4km+2j}{4km+2j} = \frac{4km+2l}{4km+2l}$. This implies l = j, which is a contradiction. Thus edge labels are distinct. Therefore

 $2m\Delta_k$ -snake graph admits even ratio edge antimagic labeling.

Theorem 2.4: The kC_4 -snake graphs are odd and even ratio edge antimagic labeling.

Proof. Let G(V, E) be a kC_4 -snake graph where $k \ge 1$. This graph has 3k+1 vertices and 4k edges. Let

$$V(G) = \{w_i; \ 1 \le i \le k+1\} \cup \{u_i; \ 1 \le i \le k\} \cup \{v_i; \ 1 \le i \le k\},\$$
$$E(G) = \{w_i v_i; \ 1 \le i \le k\} \cup \{w_i u_i; \ 1 \le i \le k\} \cup \{w_{i+1} v_i; \ 1 \le i \le k\} \cup \{w_{i+1} u_i; \ 1 \le i \le k\}.$$

To prove that kC_4 -snake admits ratio edge antimagic labeling let us define,

$$f: V(G) \to \{1, 3, 5, \dots, 6k+1\}$$
 such that $f(v_i) = 2i-1; 1 \le i \le k$,

 $f(u_i) = 2k + 2i - l$; $l \le i \le k$, $f(w_i) = 4k + 2i - l$; $l \le i \le k + l$.

The edge weights are calculated as follows:

For,
$$l \le i \le k$$
, $\lambda(w_i v_i) = \frac{4k + 2i - 1}{2i - 1}$.
For $l \le i, j \le k$, clearly $\lambda(w_i v_i) \ne \lambda(w_j v_j)$ and $i \ne j$.
If $\lambda(w_i v_i) = \lambda(w_j v_j)$, then $\frac{4k + 2i - 1}{2i - 1} = \frac{4k + 2j - 1}{2j - 1}$.

This implies i = j, which is a contradiction.

For
$$l \le i, j \le k$$
, $\lambda(w_i u_i) = \frac{4k + 2i - 1}{2k + 2i - 1}$.

For $l \leq i, j \leq k$, clearly $\lambda(w_i u_i) \neq \lambda(w_i u_i)$ and $i \neq j$.

If
$$\lambda(w_i u_i) = \lambda(w_j u_j)$$
 then $\frac{4k + 2i - 1}{2k + 2i - 1} = \frac{4k + 2j - 1}{2k + 2j - 1}$. This implies $i = j$,

which is a contradiction.

For
$$l \leq i, j \leq k$$
, $\lambda(w_{i+1}v_i) = \frac{4k+1+2i}{2i-1}$.
For $l \leq i, j \leq k$, clearly $\lambda(w_{i+1}v_i) \neq \lambda(w_{j+1}v_j)$ and $i \neq j$.
If $\lambda(w_{i+1}v_i) = \lambda(w_{j+1}v_j)$ then $\frac{4k+1+2i}{2i-1} = \frac{4k+1+2j}{2j-1}$.

This implies i = j, which is a contradiction.

For
$$l \le i, j \le k$$
, $\lambda(w_{i+1}u_i) = \frac{4k + 2i + 1}{2k + 2i - 1}$.

For $l \leq i, j \leq k$, clearly $\lambda(w_{i+1}u_i) \neq \lambda(w_{j+1}u_j)$ and $i \neq j$.

If
$$\lambda(w_{i+1}u_i) = \lambda(w_{j+1}u_j)$$
 then $\frac{4k+2i+1}{2k+2i-1} = \frac{4k+2j+1}{2k+2j-1}$.

This implies i = j, which is a contradiction. Thus all edge labels are distinct

For $l \leq i, j \leq k$, clearly $\lambda(w_i v_i) \neq \lambda(w_{i+1} v_i)$ and $i \neq j$.

If
$$\lambda(w_i v_i) = \lambda(w_{i+1} v_i)$$
 then $\frac{4k+2i-1}{2i-1} = \frac{4k+2i+1}{2i-1}$ implies $2 = 0$, which is a contradiction.

Also $\lambda(w_i u_i) \neq \lambda(w_{i+1} u_i)$, if $\lambda(w_i u_i) = \lambda(w_{i+1} u_i)$ then $\frac{4k+2i-1}{2k+2i-1} = \frac{4k+2i+1}{2k+2i-1}$ implies 2 = 0, which leads to contradiction.

Thus all edge labels are distinct. Therefore kC_4 -snake graph admits odd ratio edge antimagic labeling.

To prove the existence of even ratio edge antimagic labeling, let us define

 $g: V(G) \rightarrow \{2, 4, 6, ..., 6k+2\}$, such that $g(v_i) = 2i; 1 \le i \le k,$ $g(u_i) = 2k+2i; 1 \le i \le k,$

$$g(w_i) = 4k + 2i$$
; $1 \le i \le k + 1$

The edge weights are calculated as follows:

For
$$l \leq i \leq k$$
, $\lambda(w_i v_i) = \frac{4k + 2i}{2i}$.

For $l \le i, j \le k$, clearly $\lambda(w_i v_i) \ne \lambda(w_j v_j)$ and $i \ne j$.

If
$$\lambda(w_i v_i) = \lambda(w_j v_j)$$
, then $\frac{4k+2i}{2i} = \frac{4k+2j}{2j}$. This implies $i = j$,

which is a contradiction. Thus all edge labels are distinct.

For
$$1 \le i \le k$$
, $\lambda(w_i v_{i+1}) = \frac{4k + 2i}{2i + 2}$.

For $l \leq i, j \leq k$, clearly $\lambda(w_i v_{i+1}) \neq \lambda(w_j v_{j+1})$. If $\lambda(w_i v_{i+1}) \neq \lambda(w_j v_{j+1})$ then $\frac{4k+2i}{2i+2} = \frac{4k+2j}{2j+2}$. This implies i = j, which is a

contradiction. Thus all edge labels are distinct.

For
$$l \le i \le k$$
, $\lambda(w_i u_i) = \frac{4k + 2i}{2k + 2i}$.

For $1 \le i, j \le k$, clearly $\lambda(w_i u_i) \ne \lambda(w_j u_j)$ and $i \ne j$.

If
$$\lambda(w_i u_i) = \lambda(w_j u_j)$$
 then $\frac{4k+2i}{2k+2i} = \frac{4k+2j}{2k+2j}$.

This implies i = j, which is a contradiction.

Thus all edge labels are distinct.

For
$$l \le i \le k$$
, $\lambda(w_i u_{j+1}) = \frac{4k+2i}{2k+2i+2}$. Clearly $\lambda(w_i v_i) \ne \lambda(w_{i+1} v_i)$, if $\lambda(w_i v_i) = \lambda(w_{i+1} v_i)$ then $\frac{4k+2i}{2i} = \frac{4k+2i+2}{2i}$ implies $2 = 0$,

which leads to a contradiction. Thus edge labels are distinct.

Clearly $\lambda(w_i u_i) \neq \lambda(w_{i+1} u_i)$, if $\lambda(w_i u_i) \neq \lambda(w_{i+1} u_i)$ then $\frac{4k+2i}{2k+2i} = \frac{4k+2i+2}{2k+2i}$ implies 2=0, which leads to a contradiction. Thus edge

labels are distinct. Therefore kC_4 -snake graph admits even ratio edge antimagic labeling.

Conclusion

Thus existence of odd and even ratio edge antimagic labeling, for some class of graph is proved.

References

[1] M.E. Abdel-Aal, Odd Harmonic labeling of cyclic snakes, International Journal on Applications of Graph Theory in wireless Ad hoc Networks and Sensor Networks (GRAPH-HOC), Vol. 5, No. 3, September 2013, pp. 1–11.

[2] E.M. Badr and M.E. Abdel-Aal, Odd and graceful labeling for the subdivision of double triangles graphs, International Journal of Soft Computing, Mathematics and Control (IJSCMC), Vol. 2, No. 1, February 2013, pp. 1–8.

[3] J.A. Gallian, A dynamic survey of graph labeling, Electr. J. Combin., Vol. 19, 2012.

[4] J. Jayapriya, D.Muruganandam, K. Thirusangu, Analyzing welding process using graph labeling techniques, European Journal of Scientific Research, Vol. 79, No. 2 (2012), pp. 253-257.

[5] J.Jayapriya, K.Thirusangu, Max-min edge magic and antimagic labeling, European Scientific Journal, Vol. 3, No. 3 (2013), pp. 253-259.

[6] J. Jayapriya and K. Thirusangu, Odd and even ratio edge antimagic labeling, Journal of Advances in Mathematics, Vol. 3, No. 2, pp. 178–183,2013.

[7] A. Rosa, Cyclic Steiner triple systems and labeling of triangular cacti, Scientia, Vol. 5, 1967, pp. 87–95.