Certain class of graph with odd and even ratio edge antimagic Labeling

J. Jayapriya

Department of Mathematics, Sathyabama University, Chennai-119, India.

ARTICLE INFO

Article history:

Received: 26 December 2013;
Received in revised form:
12 January 2016;
Accepted: 18 January 2016;

Keywords

Graph labeling,
Odd and even ratio edge antimagic,
Triangular snake,
$2 \mathrm{~m} \Delta_{1}$-snake,
$2 \mathrm{~m} \Delta_{\mathrm{k}}$-snake,
kC_{4}-snake.

Abstract

In this paper the existence of odd and even ratio edge antimagic labeling for double triangular snakes ($2 \Delta_{\mathrm{k}}$-snake), $2 \mathrm{~m} \Delta_{1}$-snake, $2 \mathrm{~m} \Delta_{\mathrm{k}}$-snake and kC_{4}-snake are proved.

© 2016 Elixir All rights reserved.

Introduction

The graphs considered here are finite, undirected and simple. The symbols $V(G)$ and $E(G)$ will denote the vertex set and edge set of a graph G respectively. Also p and q denote the number of vertices and edges of G respectively. Rosa [7] defined a triangular snake (or Δ-snake) as a connected graph in which all blocks are triangles and the block-cut-point graph is a path. Let Δ_{k}-snake be a Δ snake with k blocks while $k n \Delta$-snake is a Δ-snake with k blocks and every block has n number of triangles with one common edge.

Max-min edge antimagic labeling was first introduced by J.Jayapriya and.D.Muruganandam in the year 2012, seeking application in Welding Technology [4]. In the year 2013[5] Jayapriya showed the existences of Max-min edge antimagic labeling for the graphs path, cycle, star, sunflower etc. Max-min edge antimagic labeling was renamed as ratio edge antimagic labeling [6]. In this paper the existence of odd and even ratio edge antimagic labeling, for double triangular snakes, $2 m_{\Delta_{\mathrm{k}}}$-snake and kC_{4}-snake graphs are shown.
Definition 1.1 [4]: Let $G(V, E)$ be a simple graph with p vertices and q edges. A bijective function $f: V(G) \rightarrow\{1,3,5, \ldots, 2 p-1\}$ is said to be odd ratio edge antimagic labeling if for every edge $u v$ in E, the edge weights
$\lambda(u v)=\frac{\max \{f(u), f(v)\}}{\min \{f(u), f(v)\}}$ are distinct.
Definition 1.2 [4]: Let $G(V, E)$ be a simple graph with p vertices and q edges.
A bijective function $f: V(G) \rightarrow\{2,4,6, \ldots, 2 p\}$ is said to be even ratio edge antimagic labeling if for every edge $u v$ in E,
$\lambda(u v)=\frac{\max \{f(u), f(v)\}}{\min \{f(u), f(v)\}}$ are distinct.

2. Some Class of Triangular Snake Graph with Odd and Even Ratio Edge Antimagic Labeling

Theorem 2.1: The double triangular snake ($2 \Delta_{k}$-snake) graph admits odd and even ratio edge antimagic labeling.
Proof: Let $G(V, E)$ be a $2 \Delta_{\mathrm{k}}$-snake graph. The graph G consists of the vertices $V=\left\{u_{1}, u_{2}, \ldots, u_{\mathrm{k}}\right\} \cup\left\{v_{1}, v_{2}, \ldots, v_{\mathrm{k}+1}\right\} \cup\left\{w_{1}, w_{2}, \ldots\right.$, $\left.w_{\mathrm{k}}\right\}$ and the edges $E=\left\{u_{\mathrm{i}} v_{\mathrm{i}} ; 1 \leq i \leq k\right\} \cup\left\{u_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} ; 1 \leq i \leq k\right\} \cup\left\{v_{\mathrm{i}} w_{\mathrm{i}} ; 1 \leq i \leq k\right\} \cup\left\{w_{\mathrm{i}} v_{\mathrm{i}+1} ; 1 \leq i \leq k\right\}$.

Let us consider the function $f: V(G) \rightarrow\{1,3,5, \ldots, 2 p-1\}$, such that $f\left(u_{\mathrm{i}}\right)=2 \mathrm{i}-1 ; 1 \leq \mathrm{i} \leq \mathrm{k}$.
$f\left(v_{\mathrm{i}}\right)=4 k+(2 i-1) ; 1 \leq i \leq k+1 . f\left(w_{\mathrm{i}}\right)=2 k+(2 i-1) ; 1 \leq i \leq k$.Now the edge weights are calculated as follows.

Tele:

E-mail addresses: priyanandam_1975@rediffmail.com
© 2016 Elixir All rights reserved

For $1 \leq i \leq k, \quad \lambda\left(u_{i} v_{i}\right)=\frac{4 k+2 i-1}{2 i-1}$. Clearly for $1 \leq i, j \leq k, i \neq j, \lambda\left(u_{\mathrm{i}} v_{\mathrm{i}}\right) \neq \lambda\left(u_{\mathrm{j}} v_{\mathrm{j}}\right)$, if $\lambda\left(u_{\mathrm{i}} w_{\mathrm{i}}\right)=\lambda\left(u_{\mathrm{j}} w_{\mathrm{j}}\right)$ then $\frac{4 k+2 i-1}{2 i-1}=\frac{4 k+2 j-1}{2 j-1}$ which implies $i=j$, which is a contradiction. Therefore all edge labels are distinct.

For $1 \leq i \leq k$,
$\lambda\left(u_{i} v_{i+1}\right)=\frac{4 k+(2 i+1)}{(2 i-1)}$. Clearly for $1 \leq i, j \leq k, \lambda\left(u_{\mathrm{i}} v_{\mathrm{i}+1}\right) \neq \lambda\left(u_{\mathrm{j}} v_{\mathrm{j}+1}\right)$, if $\lambda\left(u_{\mathrm{i}} v_{\mathrm{i}+1}\right)=\lambda\left(u_{\mathrm{j}} v_{\mathrm{j}+1}\right)$ then
$\frac{4 k+(2 i+1)}{(2 i-1)}=\frac{4 k+(2 j+1)}{(2 j-1)}$ which implies $i=j$, which is a contradiction. Therefore all edge labels are distinct. For $1 \leq i \leq k$,
$\lambda\left(u_{i} w_{i}\right)=\frac{4 k+2 i-1}{2 k+2 i-1} . \quad$ Clearly for $1 \leq i, j \leq k, i \neq j, \lambda\left(u_{\mathrm{i}} w_{\mathrm{i}}\right) \neq \lambda\left(u_{\mathrm{j}} w_{\mathrm{j}}\right)$, if $\lambda\left(u_{\mathrm{i}} w_{\mathrm{i}}\right)=\lambda\left(u_{\mathrm{j}} w_{\mathrm{j}}\right)$ then
$\frac{4 k+2 i-1}{2 k+2 i-1}=\frac{4 k+2 j-1}{2 k+2 j-1}$ which implies $i=j$, which is a contradiction. Therefore all edge labels are distinct. For $1 \leq i \leq k$, $\lambda\left(w_{i} v_{i+1}\right)=\frac{4 k+(2 i+1)}{2 k+(2 i-1)}$. Clearly for $1 \leq i, j \leq k, i \neq j, \lambda\left(w_{i} v_{i+1}\right) \neq \lambda\left(w_{j} v_{\mathrm{j}+1}\right)$, if $\lambda\left(w_{\mathrm{i}} v_{\mathrm{i}+1}\right)=\lambda\left(w_{\mathrm{j}} v_{\mathrm{j}+1}\right)$ then $\frac{4 k+(2 i+1)}{2 k+(2 i-1)}=\frac{4 k+(2 j+1)}{2 k+(2 j-1)}$
which implies $i=j$, which is a contradiction. Therefore all edge labels are distinct.
For $1 \leq i \leq k, \quad \lambda\left(v_{i} v_{i+1}\right)=\frac{4 k+(2 i+1)}{4 k+(2 i-1)}$.
Suppose $\lambda\left(v_{\mathrm{i}} v_{\mathrm{i}+1}\right)=\lambda\left(v_{\mathrm{j}} \mathrm{v}_{\mathrm{j}+1}\right)$ then $\frac{4 k+(2 i+1)}{4 k+(2 i-1)}=\frac{4 k+(2 j+1)}{4 k+(2 j-1)}$ which implies $i=j$, which is a contradiction. Therefore all edge labels are distinct. Thus the double triangular snake ($2 \Delta_{\mathrm{k}}$-snake) graph admits odd ratio edge antimagic labeling.

To prove the existences of even ratio edge antimagic labeling, let us define
$f: V(G) \rightarrow\{2,4,6, \ldots, 2 p\}$, such that $f\left(u_{\mathrm{i}}\right)=2 i ; 1 \leq i \leq k$.
$f\left(v_{\mathrm{i}}\right)=4 k+2 i ; 1 \leq i \leq k+1$.
$f\left(w_{\mathrm{i}}\right)=2 k+2 i ; 1 \leq i \leq k$.
Now the edge weights are calculated as follows.
For $1 \leq i \leq k, \quad \lambda\left(u_{i} v_{i}\right)=\frac{4 k+2 i}{2 i}$. Clearly for $1 \leq i, j \leq k, i \neq j, \lambda\left(u_{\mathrm{i}} v_{\mathrm{i}}\right) \neq \lambda\left(u_{\mathrm{j}} v_{\mathrm{j}}\right)$, if $\lambda\left(u_{\mathrm{i}} w_{\mathrm{i}}\right)=\lambda\left(u_{\mathrm{j}} w_{\mathrm{j}}\right)$ then $\frac{4 k+2 i}{2 i}=\frac{4 k+2 j}{2 j}$ which
implies $i=j$, which is a contradiction. Therefore all edge labels are distinct.
For $1 \leq i \leq k, \lambda\left(u_{i} v_{i+1}\right)=\frac{4 k+2 i+2}{2 i}$. Clearly for $1 \leq i, j \leq k, \lambda\left(u_{\mathrm{i}} v_{\mathrm{i}+1}\right) \neq \lambda\left(u_{\mathrm{j}} v_{j+1}\right)$, if $\lambda\left(u_{\mathrm{i}} v_{\mathrm{i}+1}\right)=\lambda\left(u_{\mathrm{j}} v_{j+1}\right)$ then $\frac{4 k+2 i+2}{2 i}=\frac{4 k+2 j+2}{2 j}$
which implies $i=j$, which is a contradiction. Therefore all edge labels are distinct.
For $1 \leq i \leq k, \quad \lambda\left(u_{i} w_{i}\right)=\frac{4 k+2 i}{2 k+2 i}$. Clearly for $1 \leq i, j \leq k, i \neq j, \lambda\left(v_{\mathrm{i}} w_{\mathrm{i}}\right) \neq \lambda\left(v_{\mathrm{j}} w_{\mathrm{j}}\right)$, if $\lambda\left(v_{\mathrm{i}} w_{\mathrm{i}}\right)=\lambda\left(v_{\mathrm{j}} w_{\mathrm{j}}\right)$ then $\frac{4 k+2 i}{2 k+2 i}=\frac{4 k+2 j}{2 k+2 j}$ which implies $i=j$, which is a contradiction. Therefore all edge labels are distinct.
For $1 \leq i \leq k, \lambda\left(w_{i} v_{i+1}\right)=\frac{4 k+2 i+2}{2 k+2 i}$. Clearly for $1 \leq i, j \leq k, i \neq j, \lambda\left(w_{\mathrm{i}} v_{\mathrm{i}+1}\right) \neq \lambda\left(w_{\mathrm{j}} v_{j+1}\right)$, if $\lambda\left(w_{\mathrm{i}} v_{\mathrm{i}+1}\right)=\lambda\left(w_{\mathrm{j}} v_{j+1}\right)$ then $\frac{4 k+2 i+2}{2 k+2 i}=\frac{4 k+2 j+2}{2 k+2 j}$ which implies $i=j$, which is a contradiction. Therefore all edge labels are distinct.

For $1 \leq i \leq k, \quad \lambda\left(v_{i} v_{i+1}\right)=\frac{4 k+(2 i+2)}{2 k+(2 i)}$.

For $1 \leq i \leq k$, if $i \neq j, \lambda\left(v_{\mathrm{i}} v_{\mathrm{i}+1}\right) \neq \lambda\left(v_{\mathrm{j}} v_{\mathrm{j}+1}\right)$. Suppose $\lambda\left(v_{\mathrm{i}} v_{\mathrm{i}+1}\right)=\lambda\left(v_{\mathrm{j}} v_{\mathrm{j}+1}\right)$ then $\frac{4 k+(2 i+2)}{2 k+(2 i)}=\frac{4 k+(2 j+2)}{2 k+(2 j)}$ which implies $i=j$, which is a contradiction. Therefore all edge labels are distinct. Thus the double triangular snakes ($2 \Delta_{\mathrm{k}}$-snake) graph admits even ratio edge antimagic labeling.

Theorem 2.2: $2 m \Delta_{1}$-snake graph admits odd and even ratio edge antimagic labeling for $m \geq 1$.
Proof: Let $G(V, E)$ be a $2 m \Delta_{1}$-snake graph.
The graph G consists of the vertex $V=\left\{u_{1}, u_{2}\right\} \cup\left\{v_{1}^{1}, v_{1}^{2}, \ldots, v_{1}^{m}\right\} \cup\left\{w_{1}^{1}, w_{1}^{2}, \ldots, w_{1}^{m}\right\}$ and the edges $\mathrm{E}=\left\{u_{1} u_{2}\right\} \cup\left\{u_{u_{1} v_{1}^{i}} ; 1 \leq i \leq m\right\} \cup$ $\left\{u_{2} v_{1}^{i} ; 1 \leq i \leq m\right\} \cup\left\{u_{1} w_{1}^{i} ; 1 \leq i \leq m\right\} \cup\left\{u_{2} w_{1}^{i}\right\}$.

Let us consider the function $f: V(G) \rightarrow\{1,3,5, \ldots, 2 p-1\}$, such that $f\left(w_{1}^{i}\right)=2 i-1 ; 1 \leq i \leq m$.
$f\left(v_{1}^{i}\right)=2 m+(2 i-1) ; 1 \leq i \leq m$.
$f\left(u_{i}\right)=4 m+1$ and $f\left(u_{2}\right)=4 m+3$.
Now the edge weights are calculated as follows.
For $1 \leq \mathrm{i} \leq \mathrm{m}, \quad \lambda\left(u_{1} w_{1}^{i}\right)=\frac{4 m+1}{2 i-1}$.

$$
\lambda\left(u_{2} w_{1}^{i}\right)=\frac{4 m+3}{2 i-1} .
$$

$$
\lambda\left(u_{1} v_{1}^{i}\right)=\frac{4 m+1}{2 m+(2 i-1)}
$$

$$
\lambda\left(u_{2} v_{1}^{i}\right)=\frac{4 m+3}{2 m+(2 i-1)}
$$

Thus all edge labels are distinct. Hence $2 m \Delta_{1}$-snake are odd ratio edge antimagic for $m \geq 1$.
To prove the existence of even ratio edge antimagic labeling, let us define
$f: V(G) \rightarrow\{2,4,6, \ldots, 2 p\}$, such that $f\left(w_{1}^{i}\right)=2 i ; 1 \leq i \leq m$.

$$
\begin{aligned}
& f\left(v_{1}^{i}\right)=2 m+2 i ; 1 \leq i \leq m \\
& f\left(u_{1}\right)=4 m+2 \text { and } f\left(u_{2}\right)=4 m+4 .
\end{aligned}
$$

Now the edge weights are calculated as follows.

$$
\begin{gathered}
\text { For } 1 \leq \mathrm{i} \leq \mathrm{m}, \quad \lambda\left(u_{1} w_{1}^{i}\right)=\frac{4 m+2}{2 i} . \\
\lambda\left(u_{2} w_{1}^{i}\right)=\frac{4 m+4}{2 i} . \\
\lambda\left(u_{1} v_{1}^{i}\right)=\frac{4 m+2}{2 m+2 i} . \\
\lambda\left(u_{2} v_{1}^{i}\right)=\frac{4 m+4}{2 m+2 i} .
\end{gathered}
$$

Thus all edge labels are distinct. Hence $2 m_{\Delta_{1}}$-snake are even ratio edge antimagic for $m \geq 1$.
Theorem 2.3: The $2 m \Delta_{k}$-snake admits odd and even ratio edge antimagic labeling.
Proof. Let $G(V, E)$ be a $2 m \Delta_{k}$-snake graph. The graph $G(V, E)$ consists of $k(2 m+1)+1$ vertices. Let $V(G)=\left\{u_{l}, u_{2}, \ldots, u_{k+l}\right\} \cup\left\{v_{l}{ }^{l}, v_{l}{ }^{2}\right.$, $\left.\ldots, v_{1}^{m}\right\} \cup\left\{v_{2}{ }^{l}, v_{2}{ }^{2}, \ldots, v_{2}^{m}\right\} \cup \ldots\left\{v_{k}{ }^{l}, v_{k}{ }^{2}, \ldots, v_{k}^{m}\right\} \cup\left\{w_{1}{ }^{l}, w_{l}{ }^{2}, \ldots, w_{l}{ }^{m}\right\} \cup$
$\left\{w_{2}{ }^{l}, w_{2}{ }^{2}, \ldots, w_{2}{ }^{m}\right\} \cup \ldots,\left\{w_{k}{ }^{l}, w_{k}{ }^{2}, \ldots, w_{k}{ }^{m}\right\}$ and edges as
$E(G)=\left\{v_{k} u_{i}: 1 \leq i \leq m, 2 \leq k \leq m\right\} \cup\left\{v_{k}{ }^{i} u_{i+1}: 1 \leq i \leq m, 2 \leq k \leq m\right\} \cup\left\{w_{k}{ }^{i} u_{i}: 1 \leq i \leq m, 2 \leq k \leq m\right\} \cup\left\{w_{k}{ }^{i} u_{i+1}: 1 \leq i \leq m, 2 \leq k \leq m\right\}$
To prove that $2 m \Delta_{k}$-snake admits odd ratio edge antimagic labeling let us define, $f: V(G) \rightarrow\{1,3,5, \ldots, 4 k m+2 k+1\}$, such that
$f\left(v_{j}^{i}\right)=2 m(j-1)+(2 i-1) ; 1 \leq j \leq k, l \leq i \leq m$.
$f\left(w_{j}^{i}\right)=2 m(k+j-1)+(2 i-1) ; 1 \leq j \leq k, l \leq i \leq m$.
$f\left(u_{j}\right)=4 k m+(2 j-1) ; 1 \leq j \leq k+1$.
The edge weights are calculated as follows:
For $l \leq j \leq k-1, l \leq i \leq m, \lambda\left(u_{j} v_{j}^{i}\right)=\frac{4 k m+2 j-1}{2 m(j-1)+(2 i-1)}$.
Clearly $\lambda\left(u_{j} v_{j}^{i}\right) \neq \lambda\left(u_{j+1} v_{j}^{i}\right)$, if $\lambda\left(u_{j} v_{j}^{i}\right)=\lambda\left(u_{j+1} v_{j}^{i}\right)$ then, $\frac{4 k m+2 j-1}{2 m(j-1)+(2 i-1)}=\frac{4 k m+2 j+1}{2 m(j-1)+(2 i-1)}$.
This implies $2=0$, which is a contradiction.Thus edge labels are distinct.
For $l \leq j \leq k, l \leq i \leq m, \lambda\left(u_{j} w_{j}^{i}\right)=\frac{4 k m+2 j-1}{2 m(k+j-1)+(2 i-1)}$.
Clearly $\lambda\left(u_{j} w_{j}^{i}\right) \neq \lambda\left(u_{j+1} w_{j}^{i}\right)$.
If $\lambda\left(u_{j} v_{j}^{i}\right)=\lambda\left(u_{j+1} v_{j}^{i}\right)$, then $\frac{4 k m+2 j-1}{2 m(k+j-1)+(2 i-1)}=\frac{4 k m+2 j+1}{2 m(k+j-1)+(2 i-1)}$.
This implies $2=0$, which is a contradiction. Thus edge labels are distinct.
For $l \leq j, l \leq k$, clearly for $l \neq j, \lambda\left(u_{j} u_{j+1}\right) \neq \lambda\left(u_{l} u_{l+1}\right)$.
If $\lambda\left(u_{j} u_{j+1}\right)=\lambda\left(u_{l} u_{l+1}\right)$ then $\frac{4 k m+2 j+1}{4 k m+2 j-1}=\frac{4 k m+2 l+1}{4 k m+2 l-1}$.
This implies $l=j$, which is a contradiction. Thus edge labels are distinct.
Therefore $2 m \Delta_{k}$-snake graph admits odd ratio edge antimagic labeling.
To prove the existence of even ratio edge antimagic labeling, let us define $g: V(G) \rightarrow\{2,4,6, \ldots, 4 k m+2 k+2\}$, such that $g\left(v_{l}{ }^{i}\right)=2 i ; 1 \leq i \leq m$
$g\left(v_{j}^{i}\right)=2 m(j-1)+2 i ; 1 \leq j \leq k, 1 \leq i \leq m$.
$g\left(w_{j}^{i}\right)=2 m(k+j-1)+2 i ; 1 \leq j \leq k, l \leq i \leq m$.
$g\left(u_{j}\right)=4 k m+2 j ; 1 \leq j \leq k+1$.
The edge weights are calculated as follows:
For $l \leq j \leq k, l \leq i \leq m, \lambda\left(u_{j}^{i} v_{j}^{i}\right)=\frac{4 k m+2 j}{2 m(j-1)+2 i}$.
Clearly $\lambda\left(u_{j} v_{j}^{i}\right) \neq \lambda\left(u_{j+1}{ }^{i} v_{j}^{i}\right)$,
if $\lambda\left(u_{j} v_{j}^{i}\right)=\lambda\left(u_{j+1} v_{j}^{i}\right)$ then $\frac{4 k m+2 j}{2 m(j-1)+2 i}=\frac{4 k m+2 j+2}{2 m(j-1)+2 i}$.
This implies $2=0$, which is a contradiction. Thus edge labels are distinct.
For $l \leq j \leq k, l \leq i \leq m, \lambda\left(u_{j} w_{j}^{i}\right)=\frac{4 k m+2 j}{2 m(k+j-1)+2 i}$.
Clearly $\lambda\left(u_{j} w_{j}^{i}\right) \neq \lambda\left(u_{j+1} w_{j}^{i}\right)$,
if $\lambda\left(u_{j} v_{j}^{i}\right)=\lambda\left(u_{j+1} v_{j}^{i}\right)$ then $\frac{4 k m+2 j}{2 m(k+j-1)+2 i}=\frac{4 k m+2 j+2}{2 m(k+j-1)+2 i}$.
This implies $2=0$, which is a contradiction. Thus edge labels are distinct.
For $l \leq j, l \leq k$, clearly for $l \neq j, \lambda\left(u_{j} u_{j+1}\right) \neq \lambda\left(u_{l} u_{l+1}\right)$.
If $\lambda\left(u_{j} u_{j+1}\right)=\lambda\left(u_{l} u_{l+1}\right)$ then $\frac{4 k m+2 j}{4 k m+2 j}=\frac{4 k m+2 l}{4 k m+2 l}$. This implies $l=j$, which is a contradiction. Thus edge labels are distinct. Therefore $2 m \Delta_{k}$-snake graph admits even ratio edge antimagic labeling.

Theorem 2.4: The $k C_{4}$-snake graphs are odd and even ratio edge antimagic labeling.

Proof. Let $G(V, E)$ be a $k C_{4}$-snake graph where $k \geq 1$. This graph has $3 k+1$ vertices and $4 k$ edges. Let
$V(G)=\left\{w_{i} ; 1 \leq i \leq k+1\right\} \cup\left\{u_{i} ; 1 \leq i \leq k\right\} \cup\left\{v_{i} ; 1 \leq i \leq k\right\}$,
$E(G)=\left\{w_{i} v_{i} ; 1 \leq i \leq k\right\} \cup\left\{w_{i} u_{i} ; 1 \leq i \leq k\right\} \cup\left\{w_{i+1} v_{i} ; 1 \leq i \leq k\right\} \cup$ $\left\{w_{i+1} u_{i} ; l \leq i \leq k\right\}$.
To prove that $k C_{4}$-snake admits ratio edge antimagic labeling let us define,
$f: V(G) \rightarrow\{1,3,5, \ldots ., 6 k+1\}$ such that $f\left(v_{i}\right)=2 i-1 ; 1 \leq i \leq k$,
$f\left(u_{i}\right)=2 k+2 i-1 ; 1 \leq i \leq k, f\left(w_{i}\right)=4 k+2 i-1 ; 1 \leq i \leq k+1$.
The edge weights are calculated as follows:
For, $l \leq i \leq k, \lambda\left(w_{i} v_{i}\right)=\frac{4 k+2 i-1}{2 i-1}$.
For $1 \leq i, j \leq k$, clearly $\lambda\left(w_{i} v_{i}\right) \neq \lambda\left(w_{j} v_{j}\right)$ and $\mathrm{i} \neq \mathrm{j}$.
If $\lambda\left(w_{i} v_{i}\right)=\lambda\left(w_{j} v_{j}\right)$, then $\frac{4 k+2 i-1}{2 i-1}=\frac{4 k+2 j-1}{2 j-1}$.
This implies $i=j$, which is a contradiction.
For $l \leq i, j \leq k, \quad \lambda\left(w_{i} u_{i}\right)=\frac{4 k+2 i-1}{2 k+2 i-1}$.
For $l \leq i, j \leq k$, clearly $\lambda\left(w_{i} u_{i}\right) \neq \lambda\left(w_{j} u_{j}\right)$ and $i \neq j$.
If $\lambda\left(w_{i} u_{i}\right)=\lambda\left(w_{j} u_{j}\right)$ then $\frac{4 k+2 i-1}{2 k+2 i-1}=\frac{4 k+2 j-1}{2 k+2 j-1}$. This implies $i=j$,
which is a contradiction.
For $l \leq i, j \leq k, \quad \lambda\left(w_{i+1} v_{i}\right)=\frac{4 k+1+2 i}{2 i-1}$.
For $1 \leq i, j \leq k, \quad$ clearly $\lambda\left(w_{i+1} v_{i}\right) \neq \lambda\left(w_{j+1} v_{j}\right)$ and $i \neq j$.
If $\lambda\left(w_{i+1} v_{i}\right)=\lambda\left(w_{j+1} v_{j}\right)$ then $\frac{4 k+1+2 i}{2 i-1}=\frac{4 k+1+2 j}{2 j-1}$.
This implies $i=j$, which is a contradiction.
For $l \leq i, j \leq k, \quad \lambda\left(w_{i+1} u_{i}\right)=\frac{4 k+2 i+1}{2 k+2 i-1}$.
For $1 \leq i, j \leq k$, clearly $\lambda\left(w_{i+1} u_{i}\right) \neq \lambda\left(w_{j+l} u_{j}\right)$ and $i \neq j$.
If $\lambda\left(w_{i+1} u_{i}\right)=\lambda\left(w_{j+1} u_{j}\right)$ then $\frac{4 k+2 i+1}{2 k+2 i-1}=\frac{4 k+2 j+1}{2 k+2 j-1}$.
This implies $i=j$, which is a contradiction. Thus all edge labels are distinct
For $l \leq i, j \leq k$, clearly $\lambda\left(w_{i} v_{i}\right) \neq \lambda\left(w_{i+1} v_{i}\right)$ and $i \neq j$.
If $\lambda\left(w_{i} v_{i}\right)=\lambda\left(w_{i+1} v_{i}\right)$ then $\frac{4 k+2 i-1}{2 i-1}=\frac{4 k+2 i+1}{2 i-1}$ implies $2=0$, which is a contradiction.
Also $\lambda\left(w_{i} u_{i}\right) \neq \lambda\left(w_{i+1} u_{i}\right)$, if $\lambda\left(w_{i} u_{i}\right)=\lambda\left(w_{i+1} u_{i}\right)$ then $\frac{4 k+2 i-1}{2 k+2 i-1}=\frac{4 k+2 i+1}{2 k+2 i-1}$ implies $2=0$, which leads to contradiction.
Thus all edge labels are distinct. Therefore $k C_{4}$-snake graph admits odd ratio edge antimagic labeling.
To prove the existence of even ratio edge antimagic labeling, let us define
$g: V(G) \rightarrow\{2,4,6, \ldots, 6 k+2)\}$, such that
$g\left(v_{i}\right)=2 i ; 1 \leq i \leq k$,
$g\left(u_{i}\right)=2 k+2 i ; 1 \leq i \leq k$,
$g\left(w_{i}\right)=4 k+2 i ; 1 \leq i \leq k+1$.
The edge weights are calculated as follows:
For $l \leq i \leq k, \lambda\left(w_{i} v_{i}\right)=\frac{4 k+2 i}{2 i}$.
For $l \leq i, j \leq k$, clearly $\lambda\left(w_{i} v_{i}\right) \neq \lambda\left(w_{j} v_{j}\right)$ and $i \neq j$.
If $\lambda\left(w_{i} v_{i}\right)=\lambda\left(w_{j} v_{j}\right)$, then $\frac{4 k+2 i}{2 i}=\frac{4 k+2 j}{2 j}$. This implies $i=j$,
which is a contradiction. Thus all edge labels are distinct.
For $l \leq i \leq k, \lambda\left(w_{i} v_{i+1}\right)=\frac{4 k+2 i}{2 i+2}$.
For $1 \leq i, j \leq k$, clearly $\lambda\left(w_{i} v_{i+1}\right) \neq \lambda\left(w_{j} v_{j+1}\right)$. If $\lambda\left(w_{i} v_{i+1}\right) \neq \lambda\left(w_{j} v_{j+1}\right)$ then $\frac{4 k+2 i}{2 i+2}=\frac{4 k+2 j}{2 j+2}$. This implies $i=j$, which is a contradiction. Thus all edge labels are distinct.

For $l \leq i \leq k, \lambda\left(w_{i} u_{i}\right)=\frac{4 k+2 i}{2 k+2 i}$.
For $l \leq i, j \leq k$, clearly $\lambda\left(w_{i} u_{i}\right) \neq \lambda\left(w_{j} u_{j}\right)$ and $i \neq j$.
If $\lambda\left(w_{i} u_{i}\right)=\lambda\left(w_{j} u_{j}\right)$ then $\frac{4 k+2 i}{2 k+2 i}=\frac{4 k+2 j}{2 k+2 j}$.
This implies $i=j$, which is a contradiction.
Thus all edge labels are distinct.
For $1 \leq i \leq k, \lambda\left(w_{i} u_{j+1}\right)=\frac{4 k+2 i}{2 k+2 i+2}$. Clearly $\lambda\left(w_{i} v_{i}\right) \neq \lambda\left(w_{i+1} v_{i}\right)$, if $\lambda\left(w_{i} v_{i}\right)=\lambda\left(w_{i+1} v_{i}\right)$ then $\frac{4 k+2 i}{2 i}=\frac{4 k+2 i+2}{2 i}$ implies $2=0$,
which leads to a contradiction. Thus edge labels are distinct.
Clearly $\lambda\left(w_{i} u_{i}\right) \neq \lambda\left(w_{i+l} u_{i}\right)$, if $\lambda\left(w_{i} u_{i}\right) \neq \lambda\left(w_{i+l} u_{i}\right)$ then $\frac{4 k+2 i}{2 k+2 i}=\frac{4 k+2 i+2}{2 k+2 i}$ implies $2=0$, which leads to a contradiction. Thus edge labels are distinct. Therefore $k C_{4}$-snake graph admits even ratio edge antimagic labeling.

Conclusion

Thus existence of odd and even ratio edge antimagic labeling, for some class of graph is proved.

References

[1] M.E. Abdel-Aal, Odd Harmonic labeling of cyclic snakes, International Journal on Applications of Graph Theory in wireless Ad hoc Networks and Sensor Networks (GRAPH-HOC), Vol. 5, No. 3, September 2013, pp. 1-11.
[2] E.M. Badr and M.E. Abdel-Aal, Odd and graceful labeling for the subdivision of double triangles graphs, International Journal of Soft Computing, Mathematics and Control (IJSCMC), Vol. 2, No. 1, February 2013, pp. 1-8.
[3] J.A. Gallian, A dynamic survey of graph labeling, Electr. J. Combin., Vol. 19, 2012.
[4] J. Jayapriya , D.Muruganandam , K. Thirusangu, Analyzing welding process using graph labeling techniques, European Journal of Scientific Research, Vol. 79, No. 2 (2012), pp. 253-257.
[5] J.Jayapriya, K.Thirusangu, Max-min edge magic and antimagic labeling, European Scientific Journal, Vol. 3, No. 3 (2013), pp. 253-259.
[6] J. Jayapriya and K. Thirusangu, Odd and even ratio edge antimagic labeling, Journal of Advances in Mathematics, Vol. 3, No. 2, pp. 178-183,2013.
[7] A. Rosa, Cyclic Steiner triple systems and labeling of triangular cacti, Scientia, Vol. 5, 1967, pp. 87-95.

