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Introduction 

The graphs considered here are finite, undirected and simple.  The symbols V(G) and E(G) will denote the vertex set and edge set 

of a graph G respectively.  Also p and q denote the number of vertices and edges of G respectively. Rosa [7] defined a triangular 

snake (or -snake) as a connected graph in which all blocks are triangles and the block-cut-point graph is a path. Let k-snake be a -

snake with k blocks while k n∆-snake is a ∆-snake with k blocks and every block has n number of triangles with one common edge. 

Max-min edge antimagic labeling was first introduced by J.Jayapriya and.D.Muruganandam in the year 2012, seeking application 

in Welding Technology [4]. In the year 2013[5 ] Jayapriya showed the existences of Max-min edge antimagic labeling for the graphs 

path, cycle, star, sunflower etc. Max-min edge antimagic labeling was renamed as ratio edge antimagic labeling [6]. In this paper the 

existence of odd and even ratio edge antimagic labeling, for double triangular snakes, 2mk-snake and kC4-snake graphs are shown. 

Definition 1.1 [4]: Let G(V, E) be a simple graph with p vertices and q edges.  A bijective function f : V(G)  {1, 3, 5, ..., 2p1} is 

said to be odd ratio edge antimagic labeling if for every edge uv in E, the edge weights  

)}(),(min{

)}(),(max{
)(

vfuf

vfuf
uv 

 are distinct. 

Definition 1.2 [4]: Let G(V, E) be a simple graph with p vertices and q edges.   

A bijective function  f : V (G)  {2, 4, 6, ..., 2p} is said to be even ratio edge antimagic labeling if for every edge uv in E, 

)}(),(min{

)}(),(max{
)(

vfuf

vfuf
uv 

 are distinct. 

2. Some Class of Triangular Snake Graph with Odd and Even Ratio Edge Antimagic Labeling 

Theorem 2.1: The double triangular snake (2k-snake) graph admits odd and even ratio edge antimagic labeling. 

Proof: Let G(V, E) be a 2k-snake graph.  The graph G consists of the vertices V = {u1, u2, ..., uk}  {v1, v2, ..., vk+1}  {w1, w2, ..., 

wk} and the edges E = {uivi ; 1  i  k}  {uivi+1 ; 1  i  k}  {viwi ; 1  i  k}  {wivi+1 ; 1  i  k}. 

 Let us consider the function f : V(G)  {1, 3, 5, ..., 2p1}, such that f (ui) = 2i1; 1  i  k. 

f (vi) = 4k + (2i1); 1  i  k+1.f (wi) = 2k + (2i1); 1  i  k.Now the edge weights are calculated as follows. 
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  Clearly for 1  i, j  k, i  j, (uivi)  (ujvj), if (uiwi) = (ujwj) then  
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ik  which implies i = j, which is a contradiction.  Therefore all edge labels are distinct. 
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  Clearly for 1  i, j  k, (uivi+1)  (ujvj+1), if (uivi+1) = (ujvj+1) then  
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  Clearly for 1  i, j  k, i  j, (uiwi)  (ujwj), if (uiwi) = (ujwj) then  
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ik  which implies i = j, which is a contradiction.  Therefore all edge labels are distinct. For 1  i  k, 
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  Clearly for 1  i, j  k, i  j, (wivi+1)  (wjvj+1), if (wivi+1) = (wjvj+1) then 
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which implies i = j, which is a contradiction.  Therefore all edge labels are distinct. 

For 1  i  k, 
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Suppose (vivi+1) = (vjvj+1) then 
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jk
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ik

ik  which implies i = j, which is a contradiction.  Therefore all edge labels 

are distinct.  Thus the double triangular snake (2k-snake)  graph admits odd ratio edge antimagic labeling. 

To prove the existences of even ratio edge antimagic labeling, let us define  

f : V(G)  {2, 4, 6, ..., 2p}, such that f (ui) = 2i; 1  i  k. 

f (vi) = 4k + 2i; 1  i  k+1. 

f (wi) = 2k + 2i; 1  i  k. 

Now the edge weights are calculated as follows. 

For 1  i  k, 
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  Clearly for 1  i, j  k, i  j, (uivi)  (ujvj), if (uiwi) = (ujwj) then 
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implies i = j, which is a contradiction.  Therefore all edge labels are distinct. 
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For 1  i  k, if i  j, (vivi+1)  (vjvj+1).  Suppose (vivi+1) = (vjvj+1) then 
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

  which implies i = j, which is 

a contradiction.  Therefore all edge labels are distinct.  Thus the double triangular snakes (2k-snake) graph  admits even ratio edge 

antimagic labeling. 

Theorem 2.2: 2m1-snake graph admits odd and even ratio edge antimagic labeling for m  1. 

Proof: Let G (V, E) be a 2m1-snake graph. 

The graph G consists of the vertex V = {u1, u2}  },...,,{ 1

2

1

1

1

mvvv  },...,,{ 1

2

1

1

1

mwww  and the edges E = {u1u2}  { ivu 11
; 1  i  m}  

{ ivu 12
; 1  i  m}  { iwu 11

; 1  i  m}  { iwu 12
}. 

Let us consider the function f : V(G)  {1, 3, 5, ..., 2p1}, such that )( 1

iwf  = 2i1; 1  i  m. 

)( 1

ivf  = 2m + (2i1); 1  i  m. 

)( iuf  = 4m + 1 and f (u2) = 4m+3. 

Now the edge weights are calculated as follows. 
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Thus all edge labels are distinct.  Hence 2m1-snake are odd ratio edge antimagic for m  1. 

To prove the existence of even ratio edge antimagic labeling, let us define 

f : V(G)  {2, 4, 6, ..., 2p}, such that )( 1

iwf =2i; 1  i  m. 

 )( 1

ivf  = 2m + 2i; 1  i  m. 

 )( 1uf  = 4m + 2 and )( 2uf  = 4m + 4. 

Now the edge weights are calculated as follows. 

For 1  i  m, 
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Thus all edge labels are distinct.  Hence 2m1-snake are even ratio edge antimagic for m  1. 

Theorem 2.3:.The 2m∆k-snake admits odd and even ratio edge antimagic labeling. 

Proof. Let G (V,E) be a 2m∆k-snake graph. The graph G(V,E) consists of k(2m+1)+1 vertices. Let V(G) = {u1, u2, …, uk+1} {v1
1
, v1

2
, 

…, v1
m
}  {v2

1
, v2

2
, …, v2

m
}   … {vk

1
, vk

2
, …, vk

m
}    { w1

1
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2
, …, w1 

m
}   

{w2
1
, w2

2
, …, w2

m
} …, {wk

1
, wk

2
, …, wk

m
} and edges as  

E(G)={ vkui:1 ≤ i ≤ m,2 ≤ k ≤ m }  {vk
i
ui+1:1 ≤ i ≤ m,2 ≤ k ≤ m }  {wk

i
ui :1 ≤ i ≤ m,2 ≤ k ≤ m }  {wk

i
ui+1:1 ≤ i ≤ m,2 ≤ k ≤ m } 

To prove that 2m∆k-snake admits odd ratio edge antimagic labeling let us define, f : V(G) →{1,3,5,…, 4km+2k+1}, such that  
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f(vj
i
) = 2m(j1)+(2i1) ; 1 ≤  j ≤ k, 1 ≤ i ≤ m. 

f(wj
i
) = 2m(k+j1)+(2i1) ; 1 ≤  j ≤ k, 1 ≤ i ≤ m. 

f(uj) = 4km+(2j1); 1 ≤  j ≤ k+1. 

The edge weights are calculated as follows: 

For 1 ≤ j ≤ k1, 1 ≤ i ≤ m ,λ(ujvj
i
)= 

)12()1(2

124
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i
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i
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This implies 2 = 0, which is a contradiction.Thus edge labels are distinct. 

For 1 ≤ j ≤ k,1 ≤ i ≤ m ,λ(ujwj
i
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This implies 2 = 0, which is a contradiction. Thus edge labels are distinct. 

For 1 ≤ j, l ≤ k, clearly for l ≠ j, λ(ujuj+1) ≠ λ(ulul+1). 

If  λ(ujuj+1) =λ(ulul+1) then 
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lkm .  

This implies l = j, which is a contradiction. Thus edge labels are distinct. 

Therefore 2m∆k-snake  graph admits odd ratio edge antimagic labeling.  

To prove the existence of even ratio edge antimagic labeling, let us define  

g :V(G) →{2,4,6,…, 4km+2k+2}, such that g(v1
i
)=2i; 1 ≤ i ≤ m 

g(vj
i
) = 2m(j1)+ 2i; 1 ≤ j ≤k,1 ≤ i ≤ m. 

g(wj
i
) =2m(k+ j1)+2i; 1 ≤ j ≤k,1 ≤ i ≤ m. 

g(uj) = 4km+2j; 1 ≤ j≤ k+1. 

The edge weights are calculated as follows: 

For 1 ≤ j ≤ k, 1 ≤ i ≤ m, λ(uj
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This implies 2 = 0, which is a contradiction. Thus edge labels are distinct. 

For 1 ≤ j ≤ k, 1 ≤ i ≤ m, λ(ujwj
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This implies 2 = 0, which is a contradiction. Thus edge labels are distinct. 

For 1 ≤ j, l ≤ k, clearly for l ≠ j, λ(ujuj+1) ≠ λ(ulul+1). 

If λ (ujuj+1) = λ(ulul+1) then 

jkm

jkm

24

24



 =

lkm

lkm

24

24



 . This implies l = j, which is a contradiction. Thus edge labels are distinct. Therefore  

2m∆k-snake graph admits even ratio edge antimagic labeling.  

Theorem 2.4: The kC4-snake graphs are odd and even ratio edge antimagic labeling. 
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Proof. Let G(V, E) be a  kC4-snake graph where k ≥ 1. This graph has 3k+1 vertices and 4k edges. Let  

V(G) = {wi ; 1 ≤ i ≤ k+1} {ui; 1 ≤ i≤ k} {vi ; 1 ≤   i ≤ k},  

E(G)={ wivi; 1 ≤  i ≤ k } { wiui; 1 ≤  i ≤ k } { wi+1vi; 1 ≤  i ≤ k }  

{ wi+1ui; 1 ≤  i ≤ k }. 

To prove that kC4-snake admits ratio edge antimagic labeling let us define, 

 f : V(G) → {1, 3, 5,….,6k+1} such that f(vi) = 2i1; 1 ≤ i ≤ k,   

f(ui) =2k+2i1 ; 1 ≤ i ≤ k,  f(wi) =4k+2i1; 1 ≤ i ≤ k+1. 

The edge weights are calculated as follows: 

For, 1 ≤  i ≤ k, λ(wivi) =
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For 1 ≤  i, j ≤ k,   clearly  λ(wivi) ≠ λ(wjvj) and i ≠ j. 

If λ(wivi) = λ(wjvj), then 
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This implies i = j, which is a contradiction.  

For 1 ≤  i, j ≤ k,   λ(wiui) =
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



ik

ik .  

For 1 ≤  i, j ≤ k,   clearly  λ(wiui) ≠ λ(wjuj) and i ≠ j. 

If λ(wiui) = λ(wjuj) then
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124





jk

jk .This implies i = j, 

which is a contradiction. 

For 1 ≤  i, j ≤ k,   λ(wi+1vi) =
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214





i

ik
.  

For 1 ≤  i, j ≤ k,   clearly λ(wi+1vi) ≠ λ(wj+1vj) and i ≠ j.  

If  λ(wi+1vi) = λ(wj+1vj) then 
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This implies i = j, which is a contradiction.  

For 1 ≤  i, j ≤ k,   λ(wi+1ui) =

122
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
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.  

For 1 ≤  i, j ≤ k,   clearly λ(wi+1ui) ≠ λ(wj+1uj ) and i ≠ j. 

If λ(wi+1ui) = λ(wj+1uj ) then 
122

124





ik

ik
=
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.  

This implies i = j, which is a contradiction. Thus all edge labels are distinct 

For 1 ≤  i, j ≤ k,   clearly λ(wivi) ≠ λ(wi+1vi) and i ≠ j. 

If λ(wivi) = λ(wi+1vi) then 

12

124


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i

ik =

12

124





i

ik  implies 2 = 0, which is a contradiction.  

Also λ(wiui) ≠ λ(wi+1ui), if λ(wiui) = λ(wi+1ui) then 
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124





ik

ik =
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124





ik

ik  implies 2 = 0, which leads to contradiction.  

Thus all edge labels are distinct. Therefore kC4-snake graph admits odd ratio edge antimagic labeling.  

To prove the existence of even ratio edge antimagic labeling, let us define  

g : V (G) → {2, 4, 6,…, 6k+2)}, such that 

g(vi) = 2i ; 1 ≤ i ≤ k, 

g(ui) = 2k+2i ; 1 ≤ i ≤ k, 
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g(wi) =4k+2i ; 1 ≤ i ≤ k+1. 

The edge weights are calculated as follows: 

For 1 ≤ i ≤ k, λ(wivi) =

i

ik

2

24  . 

For 1 ≤ i, j ≤ k,   clearly λ (wivi) ≠ λ (wjvj) and i ≠ j.  

If λ (wivi) = λ (wjvj), then 

i

ik
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24  =
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24  .This implies i = j, 

which is a contradiction. Thus all edge labels are distinct. 
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
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i
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j

jk . This implies i = j, which is a 

contradiction. Thus all edge labels are distinct. 

For 1 ≤ i ≤ k, λ (wiui) = 
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 . 

For 1 ≤ i, j ≤ k, clearly λ (wiui) ≠ λ (wjuj) and i ≠ j. 
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 .  

This implies i = j, which is a contradiction.  

Thus all edge labels are distinct. 

For 1 ≤ i ≤ k, λ (wiuj+1) =
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. Clearly λ(wivi) ≠ λ(wi+1vi), if λ(wivi) = λ(wi+1vi) then 
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ik

2

224 

 

 implies 2 = 0, 

which leads to a contradiction. Thus edge labels are distinct. 

Clearly λ(wiui) ≠ λ(wi+1ui), if λ(wiui) ≠ λ(wi+1ui) then 
ik

ik

22

24



 =

ik

ik

22

224



  implies 2=0, which leads to a contradiction. Thus edge 

labels are distinct. Therefore kC4-snake graph  admits even ratio edge antimagic labeling.  

Conclusion 

Thus existence of odd and even ratio edge antimagic labeling, for some class of graph is proved. 
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