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Statistics 

Introduction 

A dynamical system is a concept in mathematics where a 

fixed rule describes how a part in a geometrical space depends 

on time. Dynamical systems are mathematical objects used to 

model physical phenomena whose state (or instantaneous 

description) changes over time. These models are used in 

physics, mathematics, engineering, financial and economic 

forecasting, environmental modeling, medical diagnosis, 

industrial equipment diagnosis, and a host of other applications. 

Many problems in theoretical economics and finance are 

mathematically formalized as dynamical systems of difference 

and differential equations. The characteristics of dynamical 

systems are characteristics of mathematical models, and these 

can be linear, nonlinear, deterministic, stochastic, discrete, and 

continuous (Kalman, 1960). Dynamical systems are very 

common and are considered to be stochastic processes by virtue 

of their own mechanism. By treating them as stochastic 

processes, meaningful results both in theory and applications 

may be obtained. During the last few decades, interest in the 

study of stochastic phenomena has increased dramatically and 

intense research activity in this area has been stimulated by the 

need to take into account random processes. 

Random Processes are perhaps the most useful objects that 

can be used to model physical processes directly without any 

intervening need to sample the data. Random processes find a 

wide variety of applications in physical sciences. Perhaps the 

most common use is as a model for noise in physical systems, 

this modeling of noise being the necessary first step in deciding 

the best way to lessen its effect (Stark and Woods, 1986). 

According to Cunningham (1995), a random process is a set of 

finite or infinite random variable ordered in time. More 

precisely, a random process is a function of the domain of which 

is the sample space and range of which is set of real functions of 

time. Each time, function is called the realization of the random 

process and this may be either continuous or discrete. A random 

process is a collection or ensemble of time functions, continuous 

or discrete. The discrete time function is referred to as a random 

sequence or stochastic sequence and can be thought of as an 

infinite-dimensional vector of random variables. Many practical 

applications of random sequences involve important case where 

the underlying statistical property is invariant with respect to 

time or space. It is often desirable to partially characterize a 

random sequence based on the knowledge of its first two 

moment functions which are its mean and variance functions. 
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ABSTRACT 

The study of stochastic phenomena has increased dramatically and intensified research 

activity in this area has been stimulated by the need to take into account random effects in 

complicated dynamical systems.  Dynamical systems are ubiquitous and are considered to 

be stochastic processes. In this study, a nonlinear dynamical system was modeled as a 

solution to an Ito stochastic differential equation                        

)( )),(( )),(()( tWttxgtttxftX  . Where )(tW denotes a Wiener or 

Brownian motion process while  f and g are deterministic functions. The solution of the 

integral equation is a Lagenvin equation which is an Ornstein-Uhlenbeck (O-U) 

process . Most real life situations involved modeling of 

physical processes that evolved with time. The understanding of physical processes that 

evolved with time is limited by the ability to model a dynamical system. The O-U process 

which is a Gaussian process was related to the world of time series analysis. The model 

was applied to Nigerian monetary exchange rate and compared with the existing models of 

monetary exchange rate. R package and the Akaike Information Criteria (AIC) were used 

to provide the model of best fit for the Nigerian monetary exchange rate as an 

autoregressive moving average of order one which is given to 

be . The results obtained revealed that the 

structural diffusion model approach gives a first-order autoregressive moving average 

process in continuous time with differentiation in continuous time corresponding to 

differencing in discrete time. The derived structural diffusion model has the least AIC 

value of 1482.61 as compared to the AIC value of 2198.86 from the existing diffusion and 

normal models. 
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The collection of all random functions of a continuous 

parameter is called a random process. It is important to 

understand that the basic concept of random process is 

associated with moment functions. A random process may be 

uncorrelated, orthogonal and independent of itself and the 

orthogonality concept is useful only when the random processes 

under consideration are of zero mean in this case it becomes 

equivalent to the uncorrelated condition. A random process is 

also stationary when its statistics do not change with the 

continuous time parameter. A random process that is particularly 

useful is a stationary or purely white noise process. Random 

processes in continuous time can also be defined as processes 

with independent increment and processes with independent 

increment are Markov processes. A standard Weiner process is a 

process with independent increment. 

Markov processes are random process whose future 

behavior cannot be accurately predicted from its past behavior 

and which involves random chance or probability. Markov 

processes are probabilistic models for describing data with a 

sequential structure. A Markov process is useful for analyzing 

dependent random events; that is, events whose likelihood 

depends on what happened last. Markov processes are 

continuous time process with a denumerable state space and the 

theory of Markov processes has developed rapidly in recent 

years (Dynkin, 2006). A coherent mathematical theory of 

Markov processes in continuous time was first introduced by 

Kolmogorov (Dynkin, 2006). Important contributions to this 

class of stochastic processes were also made by Feller (1971). 

More details on Markov Process with denumerable state space 

can be found in Chung (1982) and Karlin and Taylor (1981). 

Objectives of the Study 

The objectives of this study are to study the behaviour of 

nonlinear dynamical system, identify a suitable model structure 

for the system, estimate the parameters of the identified model 

and check the adequacy of the fitted model 

Literatures Review 

Kalman (1960). Kalman’s formulation of dynamical system 

makes no assumptions regarding characteristics (e.g. discrete 

versus continuous, deterministic versus stochastic of the 

underlying physical processes. According to Kalman (1960), a 

dynamical system is an abstract mathematical object that allows 

one to talk about physical processes. That is Dynamical systems 

are mathematical objects used to model physical phenomena 

whose state (or instantaneous description) changes over time. 

These models are used in financial and economic forecasting 

environmental modeling, medical diagnosis, industrial 

equipment diagnosis, and a host of other applications. 

In most dynamical systems which describe processes in 

engineering, physics and economics, stochastic components and 

random noise are included. The stochastic aspects of the models 

are used to capture the uncertainty about the environment in 

with the system is operating and the structure and parameters of 

the models of physical processes being studied (Milstein, 1988; 

Kloeden and Platen, 1992; Shali et al, 2012). Applications of 

dynamical system are broadly categorized into three main areas 

which are predictive (also referred to as generative), in which 

the objective is to predict future states of the system from 

observations of the past and present states of the systems. The 

second is diagnostics, in which the objective is to infer what 

possibly past states of the system might have led to the present 

state of the system (or observations leading up to the present 

state), and finally, applications in which the objectives is neither 

to predict the future nor explain the past but rather to provide a 

theory for the physical phenomena. These three categories 

correspond roughly to the need to predict, explain and 

understand physical phenomena. Predictive and diagnostic 

reasoning are often described in terms of causes and effects. 

Prediction is reasoning forward in time from causes to effects 

while diagnosis is reasoning backward from effects to causes. 

Not all physical phenomena can be easily predicted or 

diagnosed. Some phenomena appear to be governed by 

influences similar to those governing the role of dice or the 

decay of radioactive material. Other phenomena may be 

deterministic but the equations governing their behaviour are so 

complicated or so critically dependent on accurate observations 

of the state that accurate long-term observations are practically 

impossible. 

The modeling of continuous time dynamical systems from 

uncertain observation is an important task especially in finance. 

Basically in finance, the assumptions for dynamical models are 

formulated by systems of differential equations. In Bayesian 

approach, the dynamics are then incorporated by a priori 

knowledge of the probability distributions on the unknown 

functions which corresponds for example to driving forces and 

appear as coefficients or parameters in the differential equations. 

Hence such functions become stochastic processes in a 

probabilistic Bayesian framework.  

Gaussian processes provide a natural and flexible 

framework in such circumstances. Nevertheless, the applications 

of dynamical systems become highly nontrivial when dynamics 

is nonlinear in the (Gaussian) parameter functions. This happens 

naturally for nonlinear systems which are driven by a Gaussian 

noise process, or when the nonlinearity is needed to provide 

necessary contrasts (e.g. positively) for the parameter functions 

A lot of works had been done on dynamical systems in the last 

few decades. Some of such works are the work of Mukhin et al 

(2006) on modified Bayesian approach to the reconstruction of 

dynamical systems from time series. The work looked at the 

applicability of Bayesian (statistical) approach to reconstruction 

of dynamic systems from experimental data. When a dynamical 

system is known, it is necessary to find values of parameters that 

determined evolution of the system during time series 

generation. Such a formulation of the problem arises, for 

instance, when chaotic regimes of dynamical systems behaviour 

are used for solution of the problem of coded transmission of 

information (Anishchenko and Pavlov, 1998). A formal way of 

modeling a dynamical system for a necessary positive data is to 

model the logarithm of the original data. Agwuegbo et al. (2011) 

suggested a hierarchical structured model for nonlinear 

dynamical process while Cai (2012) proposed a general 

stochastic differential equation to the transformed variable of 

dynamical system. 

Methodology 

In this study, relative change of the process was used as the 

system evolves with time. The study considered structural model 

with partial sum as an approach to statistical model building for 

nonlinear dynamical systems. The approach gave a major 

method in dealing with drastic quantitative changes in the 

behavioural pattern of dynamical systems. The dramatic 

behaviours are associated with some hidden structural changes 

which we looked at as a function of some characteristic 

conditions under which the processes occur sometimes called 

regimes. The structure is based upon the fact that the joint 

probability distribution of a collection of random variables can 

be decomposed into series of conditional models and using law 

of large number with the central limit theorem the combined 

distribution follow a normal distribution. 
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The realization of the stochastic process was partitioned 

from the view point of partial sums which give rise to a random 

walk. The series therefore follow a random walk model which is 

a martingale. The condition for the random walk is  

 
Where  and  are independent and identically distributed 

random variables.  Recursively, we have the martingale 

difference given by 

 
The generating function is the partial sums 

 
In determining the distribution of  for a 

finite t, we made some assumptions about the distribution of  

: 

 
If, starting from the initial position,  with the defining 

trinomial process given as 

 
In this case, we defined three states for the system and the 

sequence  is considered as a Guassian random walk, where 

 are jointly normally distributed. 

The dynamics follows a diffusion process which is a special 

case of stochastic processes under the Markovian assumptions. 

The model arises when the time is made continuous. The 

diffusion process is a continuous Markov process. It allows the 

continuity in the sample paths of the realized stochastic process. 

Differencing in discrete time corresponds to differentiation in 

continuous time. This defines stochastic (Ito) integrals with its 

solution given by the Ornstein-Uhlenbeck process  

 
If , we have 

 
Then, 

 
This is a diffusion process and can be seen as a solution to 

the stochastic differential equation. The randomness introduced 

by (7) is an additive noise which makes it equivalent to the 

Lagenvin equation which is a linear Ito stochastic differential 

equation. Given that  in (6), we get back our random 

walk model of the form 

 

 
which can further be written as 

 

where   which is a constant and  

which is considered to constitute an 

independent identically distributed sequence of . This 

gives an autoregressive process of order one. This can be seen to 

also come from the characteristic of the partial sums combined 

with the central limit theorem and the martingale difference 

which can be seen to provide a generalization of an ARIMA 

 model.  

The diffusion process in a way transforms the original non 

stationary series. The Structure introduced into the diffusion 

process by the partial sums makes the proposed model a more 

robust model. The structure makes the nonlinear time series 

stationary and the parameters of the underlying model can easily 

be estimated. The proposed structural diffusion model was 

adopted for application in the modeling of the Nigerian 

monetary exchange rate time series (financial statistics). R 

software was used in the analysis and parameters estimations of 

the model. The result from the model was further compared with 

diffusion, Weiner (which are considered as solutions of 

stochastic differential equation) and ordinary time series model.  

Data 

The empirical data used in this study are the monthly 

exchange rate of Nigerian Naira to United States Dollar from 

1980 to 2013, collected from the website of Central Bank of 

Nigeria 

Discussion 

The structural diffusion model was used in this study as a 

limiting distribution of the stochastic differential equation. The 

study revealed that the AR (1) is a special case of our structural 

diffusion process. The time plot of the original series (Figure 1) 

shows an indication that the series is non-stationary and 

nonlinear. It revealed a dramatic jump in 1999 and high 

volatility of the monthly exchange rate of Nigerian Naira to 

United States Dollar 

 
Figure 1. Time plot of the Exchange rate of Nigerian Naira 

to US Dollar 

Using the diffusion process, the time plot mimicked the original 

series as evidenced in Figure 2. 

 
Figure 2. Time plot of the Diffusion rate of Nigerian Naira to 

US Dollar 
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The time plot of the rate with the Weiner process (Figure 3) 

also shows that the series is non-stationary and behaves almost 

similar to the original series. 

 
Figure 3. Time plot of the Weiner rate 

Figure 4 shows the time plot of the structural diffusion rate. 

Examining the time plot, it can be seen that the series looks 

more stationary than what obtains in figures 1, 2 and 3. The 

dynamics introduced by the structure reduces the nonlinearity of 

the series. 

 
Figure 4. Time plot of the Structured Diffusion rate of 

Nigerian Naira to US Dollar 

The sample autocorrelation function (ACF) and the sample 

partial autocorrelation function (PACF) are used in the 

identification of an appropriate time series model. Tables 1 and 

2 show the ACF and PACF values for the models of interest. 

Figures 5 -8 imply the presence of trend in the original, diffusion 

and Weiner series (as the ACF die of very slowly) while there is 

no evident trend in the structural diffusion series. The 

Autocorrelation functions for the structural diffusion series 

suggest an Autoregressive (AR) or Autoregressive moving 

average (ARMA) model because of the sinusoidal behavior of 

the series. The Partial autocorellation function (PACF) was 

further used to verify 

 
Figure 5. Auto covariance function plot of Original Rate 

 
Figure 6. Auto covariance function plot of the Diffusion rate 

 
Figure 7. Auto covariance function plot of the Weiner Rate 

 
Figure 8. Autocorrelation function plot (Correlogram) of the 

Structured Diffusion rate 

 
Figure 9. Partial Autocorrelation function plot of the 

Structured Diffusion rate 

Model Selection and Parameter Estimations 

To identify the best fitted model among several linear and 

nonlinear time series models, the Akaike information criterion 

(AIC) (Akaike 1974) was use. These criterion measures the 

deviation of the fitted model from the actual one. The model 

with the minimum value of AIC was chosen.  
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Table 1. Autocorrelation functions at Different Lag values 

Lag 

Value 
Normal variable Diffusion variable Structured Diffusion variable Weiner Variable 

0 1.000 1.000 1.000 1.000 

1 0.994 0.994 0.569 0.993 

2 0.989 0.989 0.236 0.987 

3 0.983 0.983 0.051 0.980 

4 0.977 0.977 -0.107 0.974 

5 0.971 0.971 -0.197 0.967 

6 0.964 0.964 -0.293 0.960 

7 0.958 0.958 -0.291 0.953 

8 0.952 0.952 -0.279 0.946 

9 0.946 0.946 -0.234 0.939 

10 0.939 0.939 -0.187 0.932 

11 0.933 0.933 -0.016 0.925 

12 0.926 0.926 0.170 0.918 

13 0.920 0.920 0.148 0.911 

14 0.913 0.913 0.138 0.904 

15 0.906 0.906 0.121 0.896 

16 0.899 0.899 0.071 0.889 

17 0.892 0.892 -0.001 0.882 

18 0.885 0.885 -0.063 0.875 

19 0.878 0.878 -0.061 0.868 

20 0.871 0.871 -0.105 0.861 

 
Table 2. Partial Autocorrelation functions at Different Lag values 

Lag Value 
Normal 

variable 
Diffusion variable Structural Diffusion variable Weiner Variable 

1 0.994 0.994 0.089 0.993 

2 -0.019 -0.019 0.058 -0.010 

3 -0.008 -0.008 0.022 0.001 

4 -0.014 -0.014 -0.099 -0.001 

5 -0.021 -0.021 -0.003 -0.015 

6 -0.005 -0.005 0.016 -0.009 

7 -0.006 -0.006 0.150 -0.008 

8 -0.009 -0.009 0.060 -0.006 

9 -0.005 -0.005 0.089 -0.016 

10 -0.003 -0.003 0.071 -0.008 

11 -0.010 -0.010 0.044 -0.003 

12 -0.009 -0.009 -0.002 -0.007 

13 -0.023 -0.023 0.030 -0.014 

14 -0.002 -0.002 -0.053 0.000 

15 -0.008 -0.008 -0.085 0.001 

16 -0.012 -0.012 -0.014 0.002 

17 -0.015 -0.015 0.028 -0.008 

18 -0.007 -0.007 -0.036 -0.010 

19 0.004 0.004 -0.063 -0.005 

20 0.005 0.005 -0.027 0.015 

 
Table 3. ARIMA (1,0,0) Models 

 
Normal variable Diffusion variable Structural Diffusion variable Weiner Variable 

AR 0.9989 0.9989 0.5679 0.9993 

SE 0.0014 0.0014 0.0406 0.0009 

MA - - - - 

SE - - - - 

Intercept 72.7936 9.1423 -0.00001 2.5574 

SE 66.6219 66.6229 0.1696 2.5323 

Estimate sigma squared 12.43 12.43 2.205 0.0101 

Log likelihood -1096.04 -1096.04 -740.45 355.22 

AIC 2198.08 2198.08 1486.89 -704.45 
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This work compared twelve different models based on these 

criteria (Tables 3, 4, and 5) 

It can be seen clearly that the structural diffusion model has 

the least AIC values when compared with the other models for 

all the tentative ARIMA models under consideration. This 

suggests that the structural diffusion model is better than the 

other ones under consideration. The Weiner model that seems to 

have been better than the structural diffusion model has 

convergence problems in some of its iterations. As a result it 

cannot be considered adequate for modeling the nonlinear 

dynamics in the data    though very good in modeling linear 

systems. The selection of a tentative time series model is 

frequently accomplished by matching estimated autocorrelations 

with the theoretical autocorrelation (Agwuegbo, 2010).  The 

ACF and PACF of the structured series indicate stationarity for 

the series generated from structural diffusion approach.  

By fitting ARMA (1,0,1) model, then the fitted 

Autoregressive Moving Average model is given as: 

 
   (0.1542)  (0.0769) (0.0839)  

The numbers in parentheses below the coefficients are standard 

errors. 

Diagnostic Checking 

The identified model can further be subjected to test in 

order to examine the quality of the fitted model. This is done by 

seeing if the residuals form an uncorrelated sequence. The 

ARMA model diagnostic is shown in figure 10. The first panel 

of figure 10 shows the standardized residuals from the model fit, 

second panel shows the ACF for the residual while the third 

panel shows the p-values for the Ljung-Box statistics. 

Considering the Ljung-Box Chi-squared statistics, the P-values 

fall within the allowable limits (upper and lower) which 

indicates the diagnostic checking for adequacy of the fitted 

model, the result shows that an autoregressive moving average 

(ARMA (1,1)) of the structural diffusion model best fit the 

monetary exchange rate of Nigerian Naira to US Dollar. 

The intercept can be considered not significant therefore the 

model can be narrowed down be 

 

 
Figure 10. Residual diagnostics for the structural diffusion 

series 

Conclusion 

Diffusion models are under continuous testing. As members 

of the class of sequential sampling models, they appear to 

account for experimental data more successfully than any other 

class of models. This research aims to identify a suitable model 

for the analysis and forecasting of nonlinear time series analysis. 

The study constructed a structural stochastic model for the 

analysis of nonlinear time series using the dynamics of the 

partial sums and the central limit theorem. Diffusion model was 

seen as the limiting distribution of the underlying stochastic 

differential equations.  Structural dynamics was further 

introduced into the resulting diffusion model which gave a better 

model. 

Using the proposed model, the Nigerian exchange rate to 

US Dollar follows an Autoregressive Moving Average (ARMA 

(1,1 )) model given as: 

Table 4. ARIMA (1,0,1) Model 

 
Normal variable Diffusion variable Structural Diffusion variable Weiner Variable 

AR 0.9987 0.9987 0.4287 *PCP 

SE 0.0015 0.0015 0.0769  

MA 0.0544 0.0544 0.2099  

SE 0.0490 0.0490 0.0839  

Intercept 69.8996 6.2484 -0.0001  

SE 65.8779 65.8779 0.1542  

Estimate sigma squared 12.39 12.39 2.1710  

Log likelihood -1095.43 -1095.43 -737.30  

AIC 2198.86 2198.86 1482.61  

*Possible convergence problem 

Table 5. ARIMA (1,1,1) Model 

 
Normal variable Diffusion variable Structural Diffusion variable Weiner Variable 

AR 0.9715 0.9715 0.5718 0.0108 

SE 0.0993 0.0993 0.0408 1.6776 

MA -0.9517 -0.9517 -1.0000 0.0116 

SE 0.1348 0.1348 0.0062 1.6888 

Estimate sigma squared 12.34 12.34 2.211 0.0104 

Log likelihood -1088.92 -1088.92 -741.3 342.6 

AIC 2183.84 2183.84 1488.59 -679.2 
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The fitted model was used to forecast the Nigerian Exchange 

rate to US Dollar. 

References 

Agwuegbo, S.O.N., Solarin, A.R.T. and Asiribo, O.E. (2011) 

Hierarchical Structured Model for Nonlinear Dynamical 

Processes. Journal of the Nigerian Association of Mathematical 

Physics 19: 15-20. 

Anishchenko V.S and Pavlon A.N.(1998) Physical Review E 

(57) 2455 

Cai, Z. (2012) Econometric Analysis of Financial Market Data. 

Manuscript for the Department of Mathematics and Statistics, 

University of North Carolina, Charlotte, U.S.A; 189 pp 

Cunningham E.P. (1995) Digital Filtering: An introduction; 

John Wiley and Sons, New York. 

Dynkin E.B. (2006): Theory of Markov Processes, Dover 

Publications Inc. Mineola, New York 

Kalman, R.E. (1960): A New Approach to Linear Filtering and 

Prediction Problems. Journal of Basic Engineering, Transactions 

ASME, Series D 82: 35-45. 

Kloeden, P. E., Platen, E. (1992). Numerical Solution of 

Stochastic Differential Equations. Springer-Verlag Berlin 

Heidelberg 

Mukhin D.N., Feigin A.M., Loskutov E.M. and Molkov Y.I. 

(2006) Modified Bayesian approach for the reconstruction of 

dynamical system from time series. Physical Review E (73) 

036211 (1-7) 

Shali J.A., Akbarfam J and Bevrani H. (2012) Approximate 

solution of the nonlinear stochastic differential equations; 

International Journal of Mathematical Engineering and Science 

1(4): 53-71 

Stark H. and Woods, J.W. (1986) Probability Random Processes 

and Estimation Theory for Engineers, Prentice-Hall, Engle wood 

cliff, New Jersey 

Feller W (1967) An Introduction to Probability Theory and its 

Applications, 3rd ed. Wiley, New York 

Chung K.L. (1982) Lectures from Markov processes to 

Brownian motion, Springer-verlag, New York 

Karlin S. and Taylor H. (1981) A second course in stochastic 

processes, Academic Press, New York 


