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I-Introduction 

The Weibel instability [1] is a micro-convective instability. It corresponds to the excitation of electromagnetic modes in 

plasma characterized by anisotropy in temperature whichcorresponds toplasma described by an anisotropic velocity distribution 

function. This anisotropy can be generated by several mechanisms, namely: the heat transport [2], the expansion of the plasma [3] 

and the inverse bremsstrahlung absorption [4]. 

The presence of strong magnetic fields in a mega-gauss Range in laser irradiated targets could be detrimental to the process of 

ablative implosion, necessary for achieving thermonuclear fusion reactions. Indeed, several effects could be induced by these 

fields, such as the anomalous reduction of the electron heat flux from the laser energy deposition layer to the ablation surface, 

reduction of the mass ablation rate filamentation of the plasma flow, etc. Various mechanisms responsible for producing such B 

fields have been reported in the literature: thermoelectric effects [5], nonlinear effects [6], Rayleigh-Taylor [7] and 

electromagnetic instabilities [1], etc. 

In this paper, we deal with the Weibel instability due to the inverse bremsstrahlung absorption in homogeneous plasmas and laser-

produced plasmas. It has been shown by Weibel.That anisotropic distribution functions in the velocity space may drive unstable 

electromagnetic modes. For a symmetrical angular distribution function about the x axis, 𝑓(𝑣, 𝑣, 𝑥) a positive second anisotropic 

distribution function 𝑇𝑥 > 𝑇⊥ drives unstable 𝑘⊥ modes, whereas a negative second anisotropic distribution function 𝑇𝑥 < 𝑇⊥ 

drives unstable 𝑘𝑥 modes [8]. 

The present work aims to the investigation of the Weibel instability induced by inverse bremsstrahlung absorption in the laser 

fusion plasma. This requires the investigation of the dispersion relation for low-frequency electromagnetic modes in plasma 

heated by a laser pulse.  

The spatio-temporal dependence of the high-frequency laser pulse is supposed as a normal mode. It results high light new 

terms in the dispersion relation which can contribute to the Weibel modes instability. We will keep all terms and study their role 

in the study of the growth rate of the Weibel instability. 

II-Basic Equation 

Throughout this work we use the Fokker-Planck (FP) equation which describes, in particular, the thermal transport and the 

light energy absorption in fully ionized plasmas. Let us now compute the electron distribution function of an unmagnetized 

plasma in the presence of an oscillating electric field. As we aim at obtaining in this section the IBA contribution to the Weibel 

source, we consider for simplicity, homogeneous plasmas in order to avoid the Weibel sources due to the thermal transport and the 

plasma expansion [3]. Following theBraginski[9] notations, the FP equation for the electrons reads: 
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where 𝑓 is the distribution functions of electrons,𝑚𝑒is the electron mass, eis the elementary charge, 𝐸 ⃗⃗  ⃗ and  𝐵 ⃗⃗ ⃗⃗   are respectively the 

electric and the magnetic fields present in the plasma, 𝐶𝑒𝑒(𝑓) and 𝐶𝑒𝑖(𝑓) are respectively  of electron-electron collision and 

electron-ion operators [10]. 
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 ABSTRACT 

A Numerical scheme for the Weibel instability of low temperature has been developed 

which is a modification of the Darwin model. The Darwin model neglects the ion 

contribution and the theoretical model used considers homogeneous plasma in the 

presence of a wave low amplitude laser in the dipole approximation using the formalism 

of kinetic theory. In this study the coupling of the magnetic field generated by self-

instability with the laser-wave field is taken into account, described by the Fokker-Planck 

equation. This equation is solved analytically zero order and disrupted order and 

distribution functions electrons were explicitly calculated. The dispersion relation of 

modes Weibel, who holds account of the term of coupling the quasi-static magnetic field 

with the high frequency field the laser wave, has been established More specifically, 

typical physical parameters in the experiments melting by laser; it has been revealed a 

reduction in the spectral range of the unstable modes and a reduction of two orders of 

magnitude of the rate instabilities.  
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In order to take into account the high-frequency (HF) response of plasma electrons to the laser field excitation, we split up the 

distribution function into a low-frequency (SF). 

The rating on the indices «s» and «h» refers to secular time scales low frequency and high frequency respectively and will be 

used throughout this work. 

The separation of time scales in equation (1) leads to the following high-frequency and low-frequency kinetic equations: 
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The symbol <> denotes the average over the laser wave cycle time, 𝑇  2𝜋/𝜔.These equations make a system of two coupled 

equations. Note here that the terms in the electric field �⃗� 𝑠 and magnetic field �⃗� 𝑠 reflect the inclusion of the, low frequency 

electromagnetic field effect in our study. In particular, the first term on the right hand side of the equation (2) reflects the coupling 

of quasi-static fields with the laser field. Let us recall here that this field present in the plasma is generated by the mechanism of 

the Weibel instability. These terms do not appear in the work reported in reference [3]. 

II-1-Resolution of the high Frequency Fokker- Planck equation 

We consider the high frequency approximation, where the laser wave frequency 𝜔𝑙 is greater than the collisions frequency 𝑣𝑒𝑖  
This approximation is largely justified in the laser fusion plasma experiments. For example of typical Parameters :( electron 

temperature; overage free scaling and laser wave length respectively) 

𝑇𝑒  1𝐾𝑒𝑉, 𝜆𝑒𝑖  1𝜇𝑚 𝑎𝑛𝑑 𝜆𝐿  1 06𝜇𝑚 ; We have  𝜔𝑙/𝑣𝑒𝑖 ≫ 1. 

In this case, the high frequency electronic distribution function is calculated as follow: 
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where we used the Einstein notation means that the repeated indices represent the summation over the indices The expression (4) 

represents the high-frequency component of the electronic distribution function which depends  on its low-frequency 

component    . 
II-2-Resolution of the low frequency Fokker-Planck equation 

We will now solve the low frequency (Fokker-Planck 3) using the expression of the distribution function of high frequency 𝑓ℎ 

established in the previous paragraph. Substituting (4) in (3), we obtain then after some algebra: 
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The next step of our calculation is to linearize the equation (5) by setting 
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The evolution of the second anisotropy equation 𝑓𝑠2
(0)
> 0 is obtained by projecting the equation (5) on the Legendre polynomial 

𝑃𝑙(µ) [11]. 
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 This result shows that the second anisotropy is positive 𝑓𝑠2
(0)
> 0, which corresponds to a temperature anisotropy where 𝑇𝑥 > 𝑇⊥ 

and  𝑇⊥denote the temperature in the direction ox and the direction perpendicular to ox. Indeed, the plasma is heated preferentially 

along the laser wave field direction: ox. 

III-Analysis of the Weibel instability 

This paragraph is devoted to the analysis of the Weibel instability. We determine the dispersion relation of the Weibel modes 

and deduce the growth rateof Weibel instability. For this it is necessary to calculate the perturbed distribution function due to an 

electromagnetic disturbance. 

III-1-Calculation of the perturbed distribution function. 

The evolution equation of the perturbed function is obtained from low frequency equationFokker_Planck (3) by considering 

the first term order, so: 
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After some manipulation and mathematical equation (11) becomes 
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Note also, for the right-hand side of equation (10) is zero. The result is a recurrence relation between the components: 
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We will now solve the system of equations (9) using mathematical techniques based on continued fractions. Solving kinetic 

equations with continued fractions [11] was used for the first time in [8], where the collisional propagator in the Fokker-Planck 

equation has been explicitly reversed on the basis of spherical harmonics. By applying these results to equation (13), and after 

some mathematical manipulations, we obtain: 
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Where   ,  is the continued fraction defined the following recurrence relation: 
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We must note here that equation (12) is the exact solution of the infinite hierarchy of equations (11). It gives a relationship 

between components 𝑓𝑠3 𝑚
(1)

 and 𝑓𝑠2 𝑚
(1)

 that includes the contribution of all components 𝑓𝑠𝑙 𝑚
(1)

 with 𝑙 > 3. The explicit expressions of 

the components 𝑓𝑠𝑙±1
(1)

 are then obtained as: 
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III-2-Determination of the dispersion relation. 

The calculation of the dispersion relation of electromagnetic modes Weibel in the semi-collisional approximation [12.13] can 

be calculated using the perturbed Fokker-Planck equation coupled with Maxwell's equations presented as follows:  
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where is the current density defined by 

𝐽   𝑒 ∫ 𝑣 𝑓𝑠
(1) 𝑑𝑣                                                           (17)  

By considering that thespatio-temporal dependence of the field �⃗� 𝑠 and  𝐵𝑠⃗⃗⃗⃗  as a Fourier mode:~𝐞𝐱𝐩 (     𝒛), equations (16) 

and (17) can be represented as: 
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(1) 𝑑𝑣                                                           (19) 

By developing the function 𝑓𝑠
(1)

, on the spherical harmonicsbasis 𝑌𝑙
𝑚, the equation (19) reads as: 
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We deduce then the dispersion relation of the Weibel modes as: 
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Here, 𝜔  𝜔𝑟  𝑖𝛾, is the frequency of Weibel mode and  𝛾 being the growth rate which is derived in the linear approximation 

from equation (21) as: 
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IV-Discussion 

The first term of equation (22) is a loss termwhich. It corresponds to a loss term due to collisions between particles in the 

collisional limit (      ) while in the non-collisional limit(     ≫  ) , it describes the Landau damping of electromagnetic 

modes. The second term ~  , corresponds to the Weibel instability source. This Equation gives explicitly the growth rate of the 

Weibel instabilityexcited by inverse bremsstrahlung absorption in laser fusion plasmalow temperature. This expression contains 

continuous fractions which are numerically calculated [5]. We present on Figures 1, the spectra of thegrowth rate of Weibel 

unstable mode for typical parameters of plasma and laser. 

We point out that the profile of the spectrum  𝛾(𝑘) present a maximum. This can be interpreted by the competition between 

the loss effects (collisions and Landau damping) and the inverse bremsstrahlung Weibel instability growing. 

j
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Figure1: Growth rate of Weibel instability as function of the collision parameter 𝑘𝜆𝑒𝑖 for   typical physical parameters. 

Where the dotted line corresponds to the case without   𝐼𝐵𝐼(𝑓𝑠0
(0)) term. 
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V-Conclusion 

In this work we have presented atheoretical investigation and a numerical analysis (Figures 1) of the Weibel instability in the 

laser fusion plasma low temperature using the Fokker-Plank model. The effect due to generated static magnetic field is computed. 

It has been shows that by taking into account the coupling of the self-generated magnetic field by theWeibel instability with the 

laser wave field leads to a significant decreasing in the spectral range of unstable Weibel modes. Also this coupling undergoes a 

reduction in the growth rate values of Weibel instable modes. However, the values of the growth rate remain in the order of 

       . It is found that this reduction is independent of the values of the electron density andtemperature . We believe that this is 

due to the choice of thecollisions operator where the collision frequency is considered constant. This approximation is not realistic 

since it is known that collisions role is to reduce the anisotropy of the plasma by letting it to a steady state described by an 

isotropic distribution function. Therefore, collisions are more important over the anisotropies of the plasma are low.  
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