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1. Introduction 

 In view of [27], we define Hankel type transform as  

     (1.1) 

if the integral converges in some sense (absolutely, improper, or mean convergence), where is the Bessel type function of 

the first kind [1]. According to [27] if then the Hankel type transform is an automorphism of  and its 

inverse on  has the symmetric form 

.    (1.2) 

Following [13,22],  we define the extended Hankel type transform as  

       (1.3) 

where  is the 

truncated (or “cut”) Bessel type function of the first kind and is defined as  

        (1.4)               

where ,  

and the integral is understood in  sense. The extended Hankel type transform (1.3) is a bounded operator in  and its 

inverse, also a bounded operator in   has been proved to have the form (see [12]) 

       (1.5)  

. 

Formula (1.5) can be rewritten in the equivalent form, symmetric to formula (1.3). In fact, if we put 

         (1.6) 

Then  tends to  in  norm. Therefore if  is the inverse of the extended Hankel type transform (1.5) of 

then tends to  in norm. By using the relation 

                             (1.7) 

we have 

 

         (1.8) 

Therefore,  

        (1.9) 

wherethe integral is understood in  sense. 
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In [11,21,24] the range of the Hankel transform in the space  with weight has been described through the range of the 

fractional integral operator and the Fourier cosine transform, or through some Parseval relation. In [28,29] the Hankel transformis 

proved to be an automorphism of the space of functions  introduced there. In [14] the range of the Hankel transform of 

infinitely differentiable functions with compact supports has been discussed. Following Zemanian [31], we construct a testing 

function space consisting of smooth functions on  such that 

,                          (1.10)     

and it can be proved that the Hankel type transform is an automorphism on  if  The space  studied in 

Zemanian [31] has been generalized by different ways in [3,4,5,6,7,8,9,10,15,16,17,18,19] to deal with the Hankel transform of 

distributions. 

In the present paper we describe the range of the Hankel type transform on some spaces of functions. One of the main tools in 

the proofs of our next two theorems is the Plancherel’s theorem for the Hankel type transform. 

           (1.11) 

where, 

that is valid only when  is a real number and . For complex the 

Plancherel’s equation (1.11) is replaced by the inequalities. 

       (1.12) 

where  is a constant independent of   The inequalities (1.12) also holds for the extended Hankel type transform (1.3) 

for , (See [22]). 

2. Hankel type transform of rapid decreasing functions 

The range of the Hankel type transform of rapid decreasing and square integrable functions is described by the following : 

Theorem 2.1 

Let  for all  function  is the Hankel type transform of the 

function  if and only if  

(i) is infinitely differentiable on  

(ii)   

(iii)  

(iv)  

Proof 

First we prove necessary part: Let for all  for all  Let 

 be the Hankel type transform of  

(i) Referring to [1], we have 

        (2.1) 

Therefore, 

  (2.2) 

Here  is the Pochhammer symbol defined by  

The Bessel type function of the first kind has the asymptotics [1] 

 

Consequently,  

            (2.3) 

as a function of  has the order  in the neighbourhood of and at infinity. Thus 

 as a function of  belongs to  for all  Thus  is 

infinitely differentiable on . 

(ii) Since satisfies the differential equation [1] 

        (2.4) 

Then  is a solution of the equation 

.         (2.5) 

Therefore, we have 
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.    (2.6) 

Consequently, 

 (2.7) 

Because of the Plancherel’s inequality (1.12) and  , 

we obtain that . 

(iii) For the kernel has the asymptotics  is uniformly bounded on  if 

and  then applying the dominated convergence theorem, we have 

 

.     (2.8) 

Following the same argument for  we can choose  large enough so that 

         (2.9) 

uniformly with respect to  The Bessel type function  has the asymptotics (2.3), therefore the integral 

              (2.10) 

is uniformly bounded for all non-negative  Hence 

      (2.11) 

tends to  uniformly in  for  as . Now by applying the generalized Riemann-Lebesgue theorem [27], we 

obtain 

     (2.12) 

Since  can be taken arbitrarily small, from (2.9) and (2.12), we have  

      (2.13) 

Thus, 

    (2.14) 

(iv) Using the formula [1] 

     (2.15) 

we have 

          

   

                          (2.16) 

Now from (iii) and especially from (2.8) and (2.13) we see that when  the first and the second expressions on 

the right hand side of (2.16) as functions of tend to  at infinity, whereas the third expression tends to  both at  and infinity. As 

  are uniformly bounded, the first and second expressions on 

the right hand side of (2.16) are uniformly bounded on  and in particular at 0 Hence 

 

tends to  at infinity and is bounded at . 

Now we prove sufficiency part: Suppose that satisfies the conditions (i) to (iv) of the theorem. Then 

 for all 

 Let  be its Hankel type transform, that means  

     (2.17)   

 

where the integral is understood in  sense. Putting  

     (2.18) 
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We see that tends to  in  norm as . Let Integrating (2.18) by parts twice we obtain 

 

 

.           (2.19) 

Now using formulas (2.6) and (2.15) we get 

      (2.20) 

     (2.21) 

     (2.22) 

     (2.23) 

     (2.24)  

     (2.25) 

)    (2.26) 

     (2.27) 

     (2.28)   

Here means . 

Since  is uniformly bounded and tends to as .(property 

(iv)), the expression on the right hand side of (2.20)tends to  as . 

Using property (iv) we see that  is bounded, whereas function 

has the order  at infinity. Hence, expression (2.21) tends to  as  

Similarly, function  has the order and  is 

 therefore both expressions (2.23) and (2.24) tend to  as . 

Functions are bounded, hence all the 

expressions (2.25), (2.26) and (2.27) tend to as . 

Function (2.28) converges to as  approaches infinity, hence  and 

therefore  

But if is the Hankel type transform (1.2) of then is the Hankel type transform (1.1)of  Therefore,  is the Hankel 

type transform of a function such that  and Theorem 2.1 is proved. 

Corollary 2.1 

The Zemanian type space can be characterized as the set of functions satisfying conditions 

(i) to (iv) of Theorem 2.1 and such that  

Proof  

It is well known [5] that  if and only if where  the set of restrictions of even Schwartz 

functions on  It is proved [8] that if and only if  

       (2.29)      

where 

      (2.30) 

Thus  if and only if  

      (2.31)   

Suppose that satisfies conditions (i) to (iv) of Theorem 2.1 and . Then  is bounded 

at Since  at  and infinity,  is bounded on Since the Hankel type transform has the symmetric inverse, 

is also bounded on . But it is equivalent to the fact that  

Now suppose that  Then  Hence, inequality (1.10) is valid with  for both  and  

        (2.32)    

Hence, satisfies conditions (i) to (iv) of Theorem 2.1 and  
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Thus proof is completed. 

3. Hankel type transform of square integrable functions with compact supports 

Here we discuss the Hankel type transforms of square integrable functions with compact supports. 

Theorem 3.1: (The Paley-Wiener Theorem)  

A function  is the Hankel type transform  of a square integrable function  with compact support 

on if and only if satisfies conditions (i) to (iv) of Theorem 2.1 and moreover, 

,      (3.1) 

Where           (3.2)    

and the support of a function is the smallest closed set, outside it the function vanishes almost everywhere [30]. 

Proof 

(a) Let  be the Hankel type transform of  

       (3.3) 

One can assume that  otherwise it is trivial. Since  we have for all  Therefore,  

satisfies conditions (i) to (iv) of Theorem 2.1. 

Furthermore, 

                     (3.4) 

By applying the right hand side inequality in (1.12) for the Hankeltype transform (3.4), we have 
 

    .      (3.5) 

Hence  

   (3.6) 

On the other hand, as  is the least upper bound of the support of  for every , we have 

              (3.7) 

Consequently, using the left hand side inequality in (1.12), we have 

 

    (3.8)  

Because can be chosen arbitrarily small, from (3.8) and (3.6) we obtain (3.1). 

(b) Suppose that  satisfies the conditions (i) to (iv) of Theorem 2.1, and the limit in (3.1) existsand equals . 

Using Theorem 2.1 we see that  is the Hankel type transform of a function such that  We 

shall prove that   and moreover,  From Theorem 2.1we have that (2.7) is valid. Therefore by applying the 

inequalities (1.12) we obtain 

    (3.9)    

Thus 
 

     .               (3.10)  

Consequently,  

          (3.11) 

Suppose that Then there exists a positive  such that 

           (3.12) 

We have 

 

        (3.13) 
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that is impossible. Hence  and therefore,  has a compact support. Suppose that . Then there exists  such that  

             (3.14) 

We have 
 

     (3.15) 

that is impossible. Hence  and consequently  

Thus Theorem 3.1 is proved. 

Remark 3.1 

From Theorem 2.1 and Theorem 3.1 it is not difficult to see that if a function satisfies conditions (i) to (iv) of Theorem 2.1, 

then the limit (3.1) always exists. It equals infinity, if the Hankel type transform  has an unbounded support. 

4. Hankel type transform of infinitely differentiable functions with compact supports 

Let the Erdelyi-Kober fractional type integral operator  be defined by  

    (4.1) 

Now we need the following : 

Lemma 4.1 

The restriction of the Erdelyi-Koberfractional type integral operator in (4.1) on  is a bijection on and a bijection 

on its subspace of functions with compact supports. Moreover,  

Proof  

Following [25], it can be proved that the Weylfractional type integral operator 

       (4.2) 

is a bijection in the space of infinitely differentiable functions which have for  the same behavior as functions in  and 

have a slow growth for  From [14], it is known that the Weyl fractional type integral operator (4.2) is also a bijection on 

the space of infinitely differentiable functions with compact supports on  From (4.2), it is easy to see that Since the 

inverse of the Weyl fractional type operator has the form [25] 

     (4.3) 

one can reverse the inequality  Hence, .  

On  formula (4.3) can be rewritten in the form (4.1) with . One can prove that if 

and only if  and  have compact supports if and only if  have compact supports, and 

moreover, Hence if  then and vice versa. Thus Lemma 4.1 is proved. 

Theorem 4.1 

(The Paley-Wiener-Schwartz type theorem). A function is the Hankel type transform , of 

a function with compact support if and only if 

.                          (4.4) 

Proof 

The Bessel type function  has the integral representation [1] 

     (4.5) 

Substituting  by  and by we have 

       (4.6) 

Consequently, the Hankel type transform (1.1) can be rewrittenin the form 

       (4.7)    

If then the repeated integral (4.7) converges absolutely. Therefore, one can apply the Fubini-Tonelli 

theorem [30] to interchange the order of integration in (4.7) to get 

       (4.8) 

Putting and  we have 

       (4.9) 

Therefore,  can be viewed as a composition of the Fourier Cosine transform 

,                   (4.10) 
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andthe Erdelyi-Kober fractional type integral operator in (4.1) of order  multiplied by a constant. From [2] we see that 

 is the Fourier transform of an infinitely differentiable function  on  with compact support if and only if 

                   (4.11) 

where 

          (4.12) 

Restricting the Fourier transform only on even functions we see that a function is the Fourier Cosine transform 

(4.10) of a function with compact support if and only if  

          (4.13) 

On the other hand, the Erdelyi-Kober fractional integral type operator in (4.1) is a bijection in the space of infinitely 

differentiable functions on  with compact supports and (Lemma 4.1). 

Remarking that if then  Theorem 4.1 follows now from formula (4.9). 

Remark 4.1 

Theorem 3.1 and 4.1 involve the spectral radii [30] of some differential operators (see formulas (3.1) and (4.4)), but the 

proofs are obtained straight forward, without referring to the spectral theory. In [14] the Hankel type transform of infinitely 

differentiable functions with compact supports has been described by classical way through entire functions of exponential type. 

5. Hankel type and extended Hankel type transform of analytic functions 

Let  be the space of functions  that are 

(i) regular in the range  where  

(ii) of the order for small and  forlarge where uniformly in any angle interior to the above 

for any small positive  

(iii) Satisfying the condition  

             (5.1) 

for all non-negative integers on the intervals 

provided there exists one. 

Let be Theorem 4.1. The Hankel type transform (1.1) and the extended Hankel type transform (1.3) map, one-to-one onto 

the space of functions  regular in the angle  of the order  for small and  for large 

uniformly in any angle interior to the above for any small positive  and satisfying conditions 

           (5.2)  

for all non-negative integers  on the interval  

 

Proof 

        Let  satisfy the conditions of Theorem 5.1. Then function  on  belongs to and its Mellin transform  

defined by [27] 

           (5.3) 

is  an analytic function of  regular for and 

          (5.4)   

for every positive  uniformly in any strip interior to Let further,  be the Hankel type transform 

(1.1) or the extended Hankel type transform (1.3) of and  be its Mellin transform (5.3). Since the 

Hankel type and extended Hankel type transforms in are equivalent to the following Parseval equation for  and  

in on the line  [27,13] : 

.          (5.5) 

Because of (5.1) the function  equals 0 at the poles of the gamma function  in the 

strip , if there exists one. Hence from (5.5), we can see that  is analytic in the strip 

.Furthermore since the function 

 

Is uniformly bounded on any compact domain in the strip  containing no poles of the function 

and has at most polynomial growth at infinity, from (5.4) we see that the function also decays exponentially  

,              (5.6)   

for every positive  uniformly in any strip interior to  Hence its inverse Mellin transform  is 

regular for  and of the order for small  and for large  uniformly in any angle interior 
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to the above angle [27]. Moreover,  has zeros at poles of the gamma function  in the strip 

 if there exists one, therefore (5.2) is satisfied. 

Conversely, let  satisfy the conditions of Theorem 4.1. Then  and its Mellin transform is analytic in 

the strip  has zeros at poles of gamma function in the strip  if there 

exists one, and satisfies (5.6). Thus if we express  in the form (5.5), function  is analytic in the strip  and 

has the exponential decay (5.4) for every positive uniformly in any strip interior to            Furthermore  

has zeros at poles of the gamma function  in the strip  hence formula (5.1) is valid for all non-negative 

integers  on the interval  if there exists one. Thus Theorem 5.1 is 

proved. 

If in Theorem 5.1 we take  and  then the spaces of functions  and  coincide, hence denoting 

again by we have: 

Corollary 5.1  

The Hankel type transform (1.1) and the extended Hankel type transform (1.3) are the bijections in the space of functions 

regular in the angle where  of the order for small  and for large 

where  uniformly in any angle interior to the above for any small positive  and satisfying conditions (5.1) 

for all non-negative integers  on the interval  if there exists such  

6. Hankeltype and extended Hankel type transform in some other spaces of functions 

Let  be any linear symmetric subspace of  or  having  

 

as multiplier (symmetric means that if ). The multiplier is infinitely 

differentiable and uniformly bounded on its derivatives grow slowly, therefore many classical spaces on  are special cases of  

(for example, any  space with  weights, space and space of infinitely differentiable functions with compact 

supports [30]). We define by  the space of all functions  on  that can be represented in the form 

          (6.1) 

almost everywhere, where  the integral should be understood in meaning. The space ([28]) 

as well as the space of functions considered in Corollary 2 are special cases of ([28]) as well as the space of functions 

considered in Corollary 2 are spaceial cases of . 

Theorem 6.1 

The Hankel type transform (1.1) and the extended Hankel type transform (1.3) are bijectionsin . 

Proof  

From (6.1) we see that if and only if  can be expressed in the form of the inverse Mellin transform[27] 

          (6.2) 

Where  Let  belong either to or and  be its 

inverse Mellin transform. It is proved (see [27]) for the case  and [28] for the 

case that under these assumptions the Parseval formula for the Hankel type transform 

        (6.3) 

 

holds. The Parseval formula (6.3) is also valid if we replace the Bessel type function by the truncated Bessel type function 

in case : 

                     (6.4) 

 

In fact, it is true if  or equivalently Let now 

From (1.4) we can infer that  at  therefore, 

integral converges absolutelyif  

Integral 
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Also converges absolutely. By applying asymptotic (2.3) of the Bessel type function one can easily see that integral 

is uniformly bounded forall and . Hence integral  

               (6.5) 

Is uniformly bounded for all and  .Consequently, by applying the result from [28] we can obtain 

(6.4). 

Since  then  belongs to  if and only if  belongs to . Hence from 

(6.3) and (6.4) we obtain that  if and only if  Thus Theorem 6.1 is proved. 
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