37445 M. Y. Adamu et al./ Elixir Appl. Math. 90 (2016) 37445-37454

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

ISSM: 2225-712X

twakening
to Reality!

Elixir Appl. Math. 90 (2016) 37445-37454

On the Convergence and Accuracy of the Adomian Decomposition and
Picard Iterative Methods Applying to Nonlinear Ordinary Differential

Equations

M. Y. Adamu®, P. Ogenyi' and M. M. Bamaina®
!Abubakar Tafawa Balewa University, Bauchi. Nigeria.
“Nigerian National Petroleum Cooperation (NNPC), Kano, Nigeria.

ARTICLE.INFO ABSTRACT
Article history: In this work, the Adomian decomposition (ADM) and Picard’s Iterative Methods were
Received: 24 November 2015; used to solve nonlinear ordinary differential equations analytically and numerically using
Received in revised form: the Trapezoidal rule approach, and the results are compared for accuracy and rate of
30 December 2015; convergence. Though a little modification by the use of contraction principle was made
Accepted: 5 January 2016; to the Picard Iteration Method in order to accelerate the convergence of the method and
found out that the ADM converges faster than the Picard’s method.

© 2016 Elixir All rights reserved.

Keywords

Adomian Decomposition
Method,

Picard’s Iteration Method,
Nonlinear Ordinary Differential
Equations,

Trapezoidal Rule.

Introduction

In the 1980’s George Adomian introduced a new powerful method for solving nonlinear functional equations. Since then,
this method has been known as the Adomian decomposition method (ADM). The technique is based on a decomposition of a
solution of a nonlinear operator equation in a series of functions. Each term of the series is obtained from a polynomial generated
from an expansion of analytic functions into a power series. The Adomian technique is very simple in an abstract formulation but
the difficulty arises in calculating the polynomials and in proving the convergence of the series of the functions [1].

Convergence of the Adomian method when applied to some classes of ordinary and partial differential equations was
discussed by many authors. [2] Proved the convergence of the Adomian method for differential and operator equations.
[3]investigated convergence of the Adomian decomposition method when applied to time-dependent heat, wave and beam
equations for both forward and backward time evolution. He showed that the convergence was faster for forward problems than
for backward problems. [4]implemented the Adomian method for variable—depth shallow water equations with a source term and
illustrated the convergence numerically. A comparative study between the ADM and the Sine-Galerkin method for solving
population growth model was performed by [5] while that between ADM and Runge-Kutta method for solving system of ordinary
differential equations was performed by [6]. [7] discussed applications of ADM to a class in acoustics. [8]Compared ADM and
Taylor series method by using some particular example and showed that the decomposition method produced reliable results with
few iterations, whereas Taylor series method suffered from computational difficulties. [9] modified the ADM to accelerate the
convergence of the series solution.

In this work, we intend to study the convergence and accuracy of Adomian decomposition method as compare to Picard’s
iteration method. Both analytical and numerical comparison will be made. The numerical comparison is classified into two
different categories, namely the accuracy and the rate of convergence of the two methods. The first requires the use of trapezoidal
rule and the latter the use of a relatively new method using Banach fixed point theorem.

The work is structured as follows: section 2 contains the methodology. It gives detailed description of how the ADM works
with nonlinear ODEs. Both analytic and numerical comparison between ADM and Picard’s method is made. Formalism for the
convergence of both methods is discussed. A relatively new but simple method is introduced to determine the rate of convergence
of ADM and Picard’s method. Numerical algorithms for ADM and Picard’s method using trapezoidal rule is presented. Section 3
presents the applications and results of ADM and Picard’s method to nonlinear ODEs. Both analytic and numerical results are
considered. The section demonstrates how to use the trapezoidal rule on ADM and Picard’s method.

Methodology
Nonlinear ODEs by Adomian Decomposition Method

It is well known that nonlinear ordinary differential equations are in general difficult to handle [10]. The Adomian
decomposition method which is one of the few recent methods is powerful in handling such difficulty.
[1] reviewed the basic method, by considering an abstract system of nonlinear differential equation:
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% = fley)y e B, fiRxR? — B (2.1)
With initial condition

¥l =y, e B (2.2)
To apply the ADM on nonlinear ordinary differential equations, we consider the equation

Ly + R(y)+Fiy) = gle) (2.3)

Where Lthe highest order derivative in the equation, R is the remainder of the differential operator, F{y} expresses the nonlinear
terms and g(¢) is an inhomogeneous term.
If L is a first order operator defined by

L4 (2.4)
dt

then, it is assumed L is invertible and the inverse operator L% is given by

0= | (e (2.5)

sothat

Ly = i) —5(0) (2.6)

However, if L is a second order differential operator given by

- & 2.7)

de?

The o

)= Jl JI (deds (2.8)

which follows that

L2 L =3} — 300 — ey (0D (2.9)
In the same procedures, we can see that for third order differential operator, we have

o (2.10)

o |:|‘|:= Pk omE ok

.E‘:l:-}:JI Jl JI () dedede

Sothat

£ = 509~ 3(0) - 1y (0) = 2ty (@) (2.11)

Following the same procedures as outlined above, higher order operator and the related inverse operators can easily be defined.
Now applyingf—1 and the initial condition to both sides of (2.3) we have

Wheredy is as follows:
t

=

yl0)forL = (2.13)

(S

4

'EI}+|:_1_,'IJ},|"|:I'3" =3F
P
yiol+ey 'I:I}+—|: ¥ IU}‘FW“:dc

g
»0)+ ey 'I:I}+—c ¥ 'U}+—c_1"ﬂ}fuf'._— e

':-
o)+ Iu}+2—c=; Iu}+—c ¥ nu}+3.:+ Hﬂ}fﬂrr:F

The Adomian decomposmon method as applicable to nonlinear ODEs admits the decomposition of y into an infinite series of
components

. 2.14
yle) = Z ¥e (2.14)
and the nonlinear term F(y)as

- 2.1
F)=) 4, (2.15)

Where_ﬁn’s are the Adomian polynomials.
Now substituting (2.14) and (2 15) into (2 12) we have

Z . =d, — gl — I R(Z; )_r— (Z*’ ) (2.16)

Adomian con5|der the solution y(t)in the series of functions:

¥t =¥, +ZJ'._J?121 (2.17)
and write t_h-e- nonlinear function f{¢,y) as the series of functions

, S 2.18
f'._t_._‘!.':' = ZA—. LEYon Vo ---.IJ-'—_:' ( )

The_'a-ependence of 4,, on ¢ and y, may be non-polynomial.4,, is formally obtained by

S (219)
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where A is a formal parameter. Functions 4, are polynomials in (vg, V4, ..., V), Which are referred to as the Adomian
polynomials.
In what follows, we shall consider a scalar differential equation and set d=1. The first four Adomian polynomials for 7 = 1
are listed as follows
A= flays) (2.20)
Ay =}':f.':|:-'}':}
A; = yaf (v +%}'=f " (6 ya)
A = J-':f.':l:J}':} +J-':J-'=.fm': L, J-'::' +%J-':.fm': L, J-'::'
Where the primes denotes the derivatives with respect to .
It was shown by [2] that the Adomian polynomials 4, are defined explicitly by the formulae:
= ' k (2.21)

A, :Z%f’-“—‘(n}':}( z .1'-.-._----‘»'-.--3)*“21

kw2 3
or equivalently by

s kg a kg
A=) FEd (2.22)

nkmn

TodTg- Tk J

Where
k=i, + - +kandnk =k, + 2k, + - +nk_..
[11] proved a bound for Adomian polynomials by

ndtar 2.23
S CTEy TR (2.23)
where E”pffk}(m:ﬂ} = M for a given time interval | — R. Equations (2.17) and (2.18) lead to a recursive equation in the form:

te]

$us (@ = [ 4 (57:03:(0) s (0))dsim 2 0 (2.24)

Comparison between the ADM and the Picard Method

The Adomian decomposition method was first compared with Picard’s method by [12] on number of examples. [13] showed
that the Adomian method for linear differential equations was equivalent to the classical method of successive approximations
(Picard). However, this equivalence does not hold for nonlinear differential equations. Here, we shall compare the two methods
and show differences of the decomposition method.

Picard’s method was introduced by Emile Picard in 1891 and it is used for the proof of existence and uniqueness of a solution
of a system of differential equations.

In the analysis of the Picard’s method we assume that f{t,) satisfies a local Lipschitze condition in a ball around
t=0andyy: & =tpnyv— ¥
F—¥s EE::JE':FJ}'}_J"':EJ}_'}E""}' —F (225)
where K is the Lipschitze constant and+yis any norm in[Re.
Let y®=y, and define a recurrence relation

yE () = g, + JI_'f (55 1) )dsm = 0 (2.26)

If t,is small enough, the new approximation y(=+1){+) will belong to the same ball as 7 — vy, = &, for all ¢ = ¢, and
(2.24) is a contraction in the sense that
| [lavtsd) - (5.5 lis < 022700 — 5(6)
where
Q = kt, < t,s0thatty < i

By the Banach fixed point theorem, there exists a unique solution y{t} in ¢ ([—tcu ol BSD(}’G}): whereBs, (vo) is an
open ball in R centered at y, with radius &,. Recall here that C{[—t,2,], B%) with the norm
Il ¥ lI= Z2w (e (2.28)
is a complete metric space. Since the integral of a continuous function is continuously differentiable function, y(t) is actually in
c' ([—tuu tu]JBan(}’})'

By contraction mapping principle, the error of the approximation solution Jr'i?ﬂ'(;} is estimated by:

(2.27)

1m. =

E, =lly—y™ ||£% (2.29)
M=) (2.30)
Convérgence Analysis of ADM

It follows from (2.17) that A, are polynomials in 4, ..., v, and thus v,, ., is obtained from (2.22) explicitly, if we are able to
calculated,,. The first proof of the convergence of the ADM was given by [14] who used fixed point theorem for abstract
functional equations.

We will consider a functional equation of the form:
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Y% +Ffl¥), yEH (2.31)
where, H is a Hilbert space and f: H — .

Let

E=pmtrnteotn (2.32)
and ~

£y +s__:-:z_' A (2.33)

The Adomian decomposition method is equivalent to determining the sequence
{5, hnea defined by
Sa=Ffly.+5) 5.=0 (2.34)

If there exist limit
s§=lms, f=lmf
in a Hilbert space, H then § = f(y, + 5} is alsoin H.

The Adomian decomposition method converges if
IFl=Llfi—Fll=& Foasn -« (2.35)

These two conditions are rather restrictive. The first implies a constraint on the nonlinear function while the second implies
the convergence of the series, 3,7 . A,.. Although to satisfy the two conditions for the convergence is difficult. Hence we shall
introduce a new formalism for determining the convergence of the Adomian decomposition method.

Formalism of the Convergence of ADM and Picard’s Method
We consider an operator, f;, from a Hilbert space, H into H and y an exact solution of (2.1). The Adomian series

i}'-. =g —Lg()-LR Ei;_) - (ifz_) (2.36)

converges to y if given

$un @ = | A (55D 76,3 () (2.37)

%t = j "2 (5,70 ()33 yama (D) (2.38)

we can find 0 < o, < 1 such that
I ¥msa I e 135 I E (2.39)

In sufficiently closer condition, the Picard method, being associated to contraction operator, converges in Hilbert space K if
given

s =yt [ £(5y()dsnzo0 (2:40)
() =y, + J"’f l::s_l}_'_—_—:j l:s:l}ds (2.41)
we can find 0 = i, < 1 such that

I3 I & Iy =) (2.42)

Rate of Convergence of ADM and Picard’s Method

Here we shall present a simple method to determine the rate of convergence of ADM and Picard’s method alike. We begin by
assuming (2.39) and (2.42) are satisfied by the ADM and Picard’s method respectively. The rate of convergence, E:C:D v, and
) Jr'in} for the ADM and the Picard’s method respectively depend on the values of o, ande,,. The methodology implies that
the smaller the value, the faster the rate of convergence to the exact solution. And that if by implication
o, i, (2.43)
then the rate of convergence of ADM is higher than that of Picard’s method [1].
Numerical Algorithms for ADM and Picard’s Method
) Consider an abstract initial-value problem for system of nonlinear differential equation
D _fen.  y@=x (244)
where y € B9, and f: RxRE.
Adomian Decomposition Method by Trapezoidal Rule

To solve (2.44) using the Adomian decomposition method numerically, we define elements of the Adomian series by the
recursive equation (2.24) and apply the trapezoidal rule on interval [0,T] with grid points at
b, =mh, m=021L2, ... M
where j, — L. Then

M
¢ m-1 ! (2.45)

Yarilt) = ol 40,300,y (0) + A (em yilead s yale) £ 2 Y A (e3s,) ...,y“nisj)_})

J=1

\
Where y,(t) = ypandy,(0) =0 forn = 1.
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After the Adomian polynomials are computed recursively in the explicit form for n = (0,1,2, ..., N, we can now use the
trapezoidal rule (2.45) on the grid {tm}mm= by incrementing n fromn=0 ton=N. Thus we define the n”th-partial sum of the
Adomian series on the grid {z,,,}* _. by

¥ole) = 7. +z;'s'it}-.

0

(2.46)

2.4.2  Picard’s Method by Trapezoidal Rule

[15] used Simpson’s rule to achieve their results. However, in our case we are going to Trapezoidal rule to implement
our claim. Solving (2.44) using the Picard’s method numerically we consider the recursive equation (2.26) and apply the
trapezoidal rule on the same interval [0,T] and grid point as in case 2.4.1.The trapezoidal rule on Picard method is given in the
form:

i h e LN 2.47
P (e) =y + 2 (F(0.5™00) + £ (£ y™(eD) + D Fle ™ (5 (@47)
which presents the result. -

Applications and Results
Analytic Comparison between ADM and Picard’s Method
Examplel
~ Consider the nonlinear ODE:
%:2}-—}-{, _-!_-I:lj:l:j_ (31)
With exact solution:
y(t)... =1 +tanhit) (3.2)
By the Adomian decomposition method, we write (3.2) in the integral form:
yiei=1 +JI |:2].":S:' — 7 l::}:lds (3.3)
and compl-Jte the Adomian polynomials for f(t,y) = 2y — y? in the form:
1 A =2y, _.'!--:=
Ay = 2¥, — 2% 7
Ay = 2y — 2y, _.'!-':=
A =2y — 2':}':}': 'l'}':}'zjI

W, =2y, — 2':}':_'!-'4 +¥, J-'z:' _J-: (34)
Using (2.24) we determine few terms of the Adomian series:
y.=1

¥ =t

¥ =10

_c!
¥i ==

¥.=10

., = 2t
W =75 (3.5)
Thus
A =1+ o1+ h(t)
yit)= t—3 t g~ =1+mnhiz (3.6)

By Picard’s method, we write (3.1) in the integral form:
y =14 | (29902 — (=0 ) ds
) @) (37)
We now obtain the successive approximations in the form:
¥ =1=y,
v =14e=p+p
yE =1+t —% =yatyat s

L 2t o i _ o

}”_1+G_E+E_E_}:+}:+}:+}5_E (38)
Example 2

Consider
j*—'t'=1 +%, yldd=o0 (3.9)
With exact solution:
¥l(t) o = tamle) (3.10)
By Adomian decomposition method, we write (3.9) in the operator form:
L,=1+5%, y0)=0 (3.11)
Applying }_1 to both sides of (3.11) and using the initial condition gives:
y=t+L0(%) (3.12)

But from (2.14) and (2.15) we noted that:
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= (3.13)
..!'-= :ZA-
- (3.14)
Inserting (3.13) and (3.14) into (3.12) yields :
Z_r__':c}z t+L (ZH__)
(3.15)
Computmg the Adomian polynomials for &) =142 i the form:
A =38
Ay = 2¥.F
Ap = 2¥.; +.'!-':=
Az = 2ygys T 230
WL =2y T2y T (3.16)
Usmg (2.24) we determine few terms of the Adomian series:
¥, =0
wid=t
pld =5
(ey = 2t
sl =3¢
. 17¢7
U}LE} = 3ic (317)
Thus
. o i .
¥ =+ o+ o+ oo Stanle) (3.18)
By Picard’s method we can write (3.9) in the form:
¥ = | Gy (3.19)
We obtain the successive approximation in the form:
¥y =0=y
U =t=y
- t!
YH=tdo =ty
¥ —c+3 +21—°5+E_3—; +y: +, +ﬁ
I 2e* 1767 | E2¢% , 109:%
¥ H'a +15 +31E +2335+519?5 T
E2r7 | 109e%
L =S¥ty trtrotogsE tarems T (3.20)

Numerical Comparison between ADM and Picard’s Method

Here we present two categories of numerical results which make numerical comparison between the Adomian decomposition
method and the Picard’s iteration method. The first case compares the accuracy of the two methods and the second compares the
rate of convergence of the methods.
Example 3
~ We reconsider the problem (3.9):
% =145 ,y0d=0

Io sollve (3.9) numerically by Adomian decomposition method (ADM), we take the interval [0.1]: m = 0,1,2,...,5 T =1 gnd

M5 '2.Where h is the step size; m is the vertical separator of the grids. But tm = ™% g0 that:
I-'E.:El t1=C|2 tﬂ:ﬂ4 tgzﬂ.ﬁjtq_:ﬂ.SJtE:i.ﬂ
It now foIIows from (3.16) that
A, =y =
Zc‘

Ay =2y = T
_ 51
=135

Az = 2pgyy 20 = gi; (321)
Now applying (2.45) we have the successive approximations the form:

yales) =—'|,rA (0,300 )+ Aot v (e }]}=¥Ec§} =0

.

Az =2y + 1

It:l——l,(ﬂ (0,7 II]}:|+H £y % ||::I }:%it:}:ﬂ
P'

}-:'Jz} = E'\.A:I-_U-'}-ZI‘U:I:I

)

)

. . r P r . 0.2 - .
+ A4ty bt } + 2|.r-'q:I-J::-'J-': '._I:::'j+A;l,_tz,}':l\cz}:l}} :?l._ﬂ + F: '|'2LI::= + t:}) = 7.6 = 1077?

. 0.2 .
+.4:I,_|:=,_1;:I,c=}:| +24.0e.1) =?Lc: +2tf) = 24x 1070
. he
-Ic}——(ﬂlu}--u} J

r - s - i - |:|.2 i - -
r () = (A 032000 ) + 4, ' Baa Fo (t)) + 2[-4:[_;:_,}-: '~5::':|+A:I-_5:-}':'~t:}:| +A:|-_'::-J-':'~'::}:|}} :?I'-U +og 20l +eg +'::=:':| =1T7ex 107"
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f-ﬂ (f0 v (o)) + At va(ed) + At va(e)) + 4. (2, _1.':.(5,.}]}} =34 %107
A1

o
7 (5)=

169 =4 0@ (i)
o) :E{A,l__l],_‘!.“,'__l]}j+A,|:I:;.,}‘,':ﬂ;\:':|} 2 2(2c4
)=

" h P . r .
}':'-.5::' = El::ﬂil-.u-'}':ll-l:l}] +A:|__|::_,_'!;':I__|: :'

; h . p R . R 0.2 2ef 4
¥oled =EI:A,|,rIJ,_].‘,LIJ} t At '~cz}:|+ EA,I__c,,}‘,Lt,})}: 3 (IJ +_ 3 J = 182x107
. R, e N . - . ’ A 0.2 2t} 2t 2t )
yale) =EI:A,|__U,;~,LU}+A,I__c,,y,uc,}]+2|:A,I__c,,y,uc,}] + 4[] = : (u + G }J =1.2267 % 107°

2;4 A
+T’}J = 4.8213332 % 107°

02 2:;
+

2

2t}

2e}
l:l+—+2 —

- h - i - ' - - s . s . ' .
¥zl 54::' = E I__A,[_U,_‘!.‘,LU}:I T Al gLl 54}:| +a2iA, ., '._I.‘-,:'j + At _'!-‘1'-.52::':' + Ayl En el 51}]:':' 3
. L . n . , . - . r . .
¥t ZEI‘A,[_IJ,}',I (0] +A,l '-":--}':'w-'::}] +204: t,,}‘,'\l:,:') +A:|-_5z-}':'~'::}:| +A:|-_¢:-}':'~'::}:|+A: |,_|:4_._1.‘,Lt,,,}:|}:|
uz 8 S Zc* 2t}
0 + + 22— +T +—}
. P p . 0.2 (512
(8 =5[ﬂﬂ-.ﬂaatﬂl'll+Azl..cwrzucﬂll}=T'[ns’J
]} 0.2 (5168
2 \135)

. h s . s -
1:'-»'::} = E[Azl._u.l}':'xlj}:l +A: I._F;.-_'!-‘;'.._F;} ; = E

J = 142186666 % 107

=0

= 241778 = 107"

. h, . p . ’ . 0.2 f51e®  102e)
v:le) =§I,A,[u,;'= (0 + 4 [ty (8] + ZA,I._c,,;~=Lc,}:I}=T(135‘ + 135’J = 1595733 % 107*
. hooe . . R . - . 0.2 [51e®  B1®  EBi1r® ) .
yale) =ELA=|._U,J-‘='~U]'+A,|._|:,,J-‘=L|:,}:|+2|~A,|._|:,,J-‘=Lc,]']+A=|._c,,}‘='~c=]':|}:|=?(ﬁ +2g+ 135‘}J=2.U?63?11x1u :
h } uz(ﬁic" 51z® 51t 51.:“‘)
i =— i | | | i | | | i — 4 et S Stiel S Wi
¥t =504 ( 0,72 (00 + 4, (£, 72 (2)) +2fA ey () )+ s (e 1 (8 )+ Al 1l c}]} 7\ 13 2| 5+ o +135/|?
= 13742648 % 1077
h
yile) =2 (4 ( 0. (0) + 4 (e v (e)) +2fA (e (e + A (e e (e )+ A0 (e)) + 4, lcy;,lcj]}}

51t
135

51
135

51t}

_u.z( L (5L L
T2 135 135

}':':D}jl +4, I::;y}‘!l:r.:,:lj:} =0

s1e) ) = 61423644 % 107F
135,'{ -

. h s
}'4'-5:-} = E {A: L0

}uic,}=2[A,[u,}~:£u}]+A:[c,,} lc}]}_s.uas?axiu"

¥t =EL(A (09000 )+ 4, (e (e )+ 2.4,[.:,,;;2.:,}]} = 1.299592381x 10~*

i) = : (A (0,3:000) + 4, (t2 9 (e ) + 2I::.qzlic,,y:'ic,}]l+.4=[c,,y=-ic,}]}} =3,564901587 % 107+

e = |IA (092000 )+ 4 (12D )+ 2[A:I:c,,}':':c,}]+A:I:c=,}': {cz}]+A,[c:,y={c,}]}}= 3.939902887 = 107°

vt = |IA (092000 )+ 4 (e (e )+ 2[A,[c,,y,{c,}]+.4,[c=,}~,-:c=}:l+A,[c,,y:ic:}] +A:I:c+.}'=':c4}:|}}: 26924624 % 1077

Now, using (2.46), we obtain:
Table 1. Numerical result of (3.9) by ADM

¥\t [ 0.0 ] 0.2 0.4 06 0.8 1.0
1 0.0 | g40x107? 2.4¥ 107 7.6%107° 1.7600% 1077 | g3 4x 1077
2 0.0 | 4.1067% 1077 | 25020% 107" | 8.8267% 107" | 2.2421% 107" | 4.8219% 107"
3 |00 41001%1077 | 26080% 107" | 9.0344% 1077 | 23796% 107" | 5.4361% 107"
4 [00]41002%107% | 26093% 107" | 9.0700% 107" | 2.4190% 107" | 57053% 107"
To solve (3.9) numerically by Picard’s method, we consider the same interval [0,1] and the same grids as above. It follows

from (3.20) that :

¥ =t

yE =t +&

©3

e T
W +ci_ . 2t 17l E2eR 109l 4l . gls
= 3 ' 15 ' 315 = 2835 51975 @ 12285 59535

Applying (2. 47) we obtain the successive approximations in the form:

P =y, +

¥l (e) :g[f [u,; = Lﬂ}} +f[cp:-- - LB:}_}} = 2.0 % 107

yiu( 5:} =

}"":’:' |: 5:} =

Eal mba| =

|: fﬂ} "U}}+fl(cy} 'cj}}}——liﬂ}_zumu-’

[f [.;,J},'_:r (u}_} +f [,:p},'_:-r.:.::}_}+f [,:p}.'_:-_‘ .:,::3._}} — 3.0 % 10~

[f [ua}.'_:-.‘ {u}_} +f[¢y}.'_:.‘|:¢:}} +f [,:“}1'_:-.‘ ':t,}}+flicp}"-’7'ic=}_}} — 20 % 10—
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FiEe,) = g(ffu;’lu}}ﬁfn, )+ £ (155000} + £ (227202 ) + £ (22,99 2] | = 5.0 x 207
r’ncJ—i[ffu;’lu}}ch,, 9e) )+ £ (0 (6 )+ £ (5 y @) )+ £ (52,0900 )+ £ (20 y®(2) ) | = 0 x 107

FRE{e) =y, + ( fﬂ} ’-'ﬂ}}+ffcy} 'cj}}}——'2+t=}—zumu‘
r’-*-‘lic,}_EIIffu ¥ ’Iu}}+ffc,,}~ }}——|2+c=}_2u4xiu"
P (e) = 2 (£ (0,58 (00) + £ (e} + £ (10y® () = (3 4 62403 = 32 207
r'-‘-‘l:c:}—g( fu,y'-’-‘liu}}+f|:c:,} B c}}+ffc,,} lc,}}+ffc=,} Ic}}}——l4+c +ei4el) = 456w 1070
r'-*-":c.}:g[ffﬂ; 4 'u}}+f[c4, Fe,) }+ffc,,; 'tl'}+fl(c=,; 'cl'}+ffc 5 't}}}=—'5+t il = 62 %107
}"F-‘Ec,}—g[f{u plt Iu}}+f[c,, it }}+f{c,,; Ic}}+ffc,,3 i, }}+ffc Ly Ic}\}+ffc4,_1,. 4 Itj}}:—'6+c + el el el el
=82 %107
b
¥l lc,}—g[ffu, =-lu}}+f[cj,3. }} I:z+ucj+g—5}=/|=2|:|x1|:l"
T N
¥ g( fﬂar'-‘-“'iﬂ}}+f[t,,:~ * 3'}} (2+-: +Z—’ J:zu410?3??x 107
¥l Ic}_g[flf'u; i IU}}+,|"[¢,,} }}+ff:,,; Ic}}} UT(E +|c=+ }=+ t, +—} J—a.zmsasssmu—’
h t3 t3 £ )
¥ Eliflf'th ‘-'U}}+f[c:,3. e, }}+ffc,,3. 'c,}}+ffc,,3. e }}} (4 +0t, +?} +ie+ ?’]ﬁ +it +?‘}=/| =4.6701795x 1072
e nc.:l=§(ft’u y@(00) + £ (20 y@e)) + £ (23 () + £ (10,320 )+ £ (12,5922 )
0.2 t3 t2 £ £X
—_— ' A ' a3 ' _ZhI ' R -4 — -1
== |:5+.~.:4+3} +HB+3)+ (5 +) +.~c,+3}j|_s.e1za?aaax1u
9060 =2 (7 (09 (0) £ (55 5) £ (59e) + £ (10 y0600) £ (5 62) + £ (7))
z z z z z A
=¥I:6+(c,_+c—"}‘+ (0 + 20+ (B + 2V + (5 + 2 + (5 +';—*}=J =9.3901511x 10°
5 T b
rf‘?'icj=g(ffu, (0)) + £ (£ 'c:}}} 2(2 +|c;+E + ’+; }*J 2.0 %107
TN
ytf.:.:,}:g(f{u FE0)) + £ (£, ucj}}:—(2+.c +'; +i5’ +;3} | = 220270953 % 10>
ya:.:;!}:g( (0.5 .u}}+f[n,,} e ) + £ (2,5 .n,}}} (3 i +E +EE —} it + -+i—ts+ }J_3.5254342x1u"
¥ (e =g|[f (0.5 ) + £ (2,9 2) ) + (295 e, 3'1}+fftp:~"-’-‘"¢ 3'}}
uz t2  2el iy et t 2t ot
z 7 -1
> (4+-c +3 +E+_} +{ r,,+3 +E+ } +i .:,+3 +E+ }J_s.ausz4555x1u
¥ '-»54} =E|I.|F [IJ,_‘!.‘ = U}}+f|.r|:4,y-'-l 54}}"'.:"‘[5:-'}"" '-5:}}"'}"'.(':::}' ""F }}+f|.r5u}""'|:1}}}
0.2 2t} c;z A et ; 2t ; s 2_.: L s
== |:4+..:4+3 +1!5 =) +|‘|:,+3 +15 + } +i .:=+3 +15 + } +it, +3 ST }J_?.azsaazsaxm
Fis '-»5:} =E|I.|F [IJ,_].‘ '-D}}+f|.r5u}""'~54}}+f|:_|::-'}"" '-5:}}"'}"'.(5:!}' i }}+.|F|.rcw}""'51}}+f|.(54-'}""'¢4}}}
) PO =+2—r’5+':—_ e+ +2—+ Tae 4 +2—+ T4 +'::+2—':5+—_=+ +'::+2—':5+£
2':315:'1"’315:":‘315:'5315:'c‘315:'
= 9.30847238 x 107°
Table 2. Numerical result of (3.9) by Picard’s method
¥i™ it ] 0.0 0.2 0.4 0.6 0.8 1.0
1 20x 107t | 20x 1077t 3.0x 1071 4031071 5.0x 1071 6.0x 1071
2 20x 107 | 2.04x 1077 3.2x 107} 456x% 107! 6.2 107 * 8.2x 107 ¢
3 2.0x% 1077 | 2.0411% 1070 | 3.2186x 107 | 4.6702xx 107 * | 6.6124x 10~ | 9.3902x 10~ *
4 2.0 1077 | 2.2027x 107 | 3.6254x 107! | 5.3082x 107* | 7.3259x 10~ | 9.8085x 10~ *
Table 3. Numerical Comparison of Accuracy of ADM and PM
T | Exact ADM PM EADH g™
0.0] 00 0.0 2.0x 107t 0.0 20>< 107!
0.2 | 3.4907x 19" 4.1092x 1077 | 2.2027x 10™" | 6.1850xx 10~ | 2.1678x 101
0.4 | 6.9814x 1077 | 2.6093x 107" | 3.6254x 10~ | 1.9111x 1077 | 3.5556x 10+
0.6 | 1.0472x 1077 | 9.0700x 107 | 5.3082 x 10" | 8.9653x 10~ | 5.2035x 10~*
0.8 | 1.3964x 1077 | 2.4190x 107 | 7.3259xx 10~% | 2.2793x 107! | 7.1863x 107 *
1.0 | 1.7455x 1077 | 5.7053x 10~ | 9.8085x 10~ " | 5.5308x 10~ | 9.6339x 10~*
Rate of Convergence of ADM

Example 4
Reviewing (3.9), we noted that:

By the Adomian decomposition method, we have:

)
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{ ¥ =t
c!
¥z =37
2t
¥z :_5
177
W+ =315 (3.22)
By the Picard’s method, we have:
¥ =
P
¥ =t + 3
;—’P- =t+7 +21—':5+E
e _ 2e* |, 177, 62t7 , 109%™
i =+t +_+ﬁ+7mq+q1q'ﬂ: (3.23)
Now settlng, t= 0.1, it follows from (3.22) that:

II %, I= 1.0= 107°

Il ¥, I=3.333333333 % 107*

Il ¥, I=1.333333333 % 107*

Il ¥ I= 5.396825397 = 1077
Similarly from (3.23), we have:

Il w25 |= 1.0 x 107*
I 3."‘ l= 1.00333333 = 1072
I ¥ |I= 1.00334668 x 1077

Il ¥ = 1.00334672 = 107°
Now from (2.39) we have:
NEAl
A
REAl
Tyl
NEA
Tyl
Similarly from (2.42), we have:
I

=3.333333333= 107°

= 3.999993999 x 107*

= 4.04761304% = 1077

= Q0EETTT44w 107

Ty
T = 1yl = 9.99936694 = 107
=2
20 .
=1 T =08.999990¢& x 10
Table 4. Numerical comparison of rate of convergence of ADM and PM
v, | ADM Picard method | @, [
1 | 1o0x107F 1.0% 107
3.3333x 1077 | 9.9668x 1070
2 | 333332 107% | 10033 1077
39990 10" | 9.9998x 10°°
3 [ 1.3333x 107° | 1.0033x 1077
14,0476 107" | 9.9999x 10°F
4 | 5.3%968x 10" | 1.0033x 10°F
Conclusion

The ADM has been successfully applied to finding the solutions of nonlinear ODE. The obtained results are compared with
those of Picard iterations method. It is noted from the analytical results of the methods that the Picard’s method mixes up powers
of the partial sum for the exact solutions, while the Adomian series is, in the other handequivalent to the power series in time and
the Adomian method requires analyticity of the function, f{t,, which is more restrictive than the Lipschitz condition required
for the Picard method. It is also noted from the numerical results that the ADM presents more accurate resultsthan the Picard’s
method.

In a closely related outcome, the ADM has faster rate of convergence than the Picard’s method. Conclusively, the ADM is a
powerful mathematical tool for solving nonlinear ordinary differential equations, and therefore can be widely applied in the field
of science and engineering.
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