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Introduction 

 In the 1980’s George Adomian introduced a new powerful method for solving nonlinear functional equations. Since then, 

this method has been known as the Adomian decomposition method (ADM). The technique is based on a decomposition of a 

solution of a nonlinear operator equation in a series of functions. Each term of the series is obtained from a polynomial generated 

from an expansion of analytic functions into a power series. The Adomian technique is very simple in an abstract formulation but 

the difficulty arises in calculating the polynomials and in proving the convergence of the series of the functions [1]. 

Convergence of the Adomian method when applied to some classes of ordinary and partial differential equations was 

discussed by many authors. [2] Proved the convergence of the Adomian method for differential and operator equations. 

[3]investigated convergence of the Adomian decomposition method when applied to time-dependent heat, wave and beam 

equations for both forward and backward time evolution. He showed that the convergence was faster for forward problems than 

for backward problems. [4]implemented the Adomian method for variable–depth shallow water equations with a source term and 

illustrated the convergence numerically. A comparative study between the ADM and the Sine-Galerkin method for solving 

population growth model was performed by [5] while that between ADM and Runge-Kutta method for solving system of ordinary 

differential equations was performed by [6]. [7] discussed applications of ADM to a class in acoustics. [8]Compared ADM and 

Taylor series method by using some particular example and showed that the decomposition method produced reliable results with 

few iterations, whereas Taylor series method suffered from computational difficulties. [9] modified the ADM to accelerate the 

convergence of the series solution. 

In this work, we intend to study the convergence and accuracy of Adomian decomposition method as compare to Picard’s 

iteration method. Both analytical and numerical comparison will be made. The numerical comparison is classified into two 

different categories, namely the accuracy and the rate of convergence of the two methods. The first requires the use of trapezoidal 

rule and the latter the use of a relatively new method using Banach fixed point theorem.  

The work is structured as follows: section 2 contains the methodology. It gives detailed description of how the ADM works 

with nonlinear ODEs. Both analytic and numerical comparison between ADM and Picard’s method is made. Formalism for the 

convergence of both methods is discussed. A relatively new but simple method is introduced to determine the rate of convergence 

of ADM and Picard’s method. Numerical algorithms for ADM and Picard’s method using trapezoidal rule is presented. Section 3 

presents the applications and results of ADM and Picard’s method to nonlinear ODEs. Both analytic and numerical results are 

considered. The section demonstrates how to use the trapezoidal rule on ADM and Picard’s method. 

Methodology 

Nonlinear ODEs by Adomian Decomposition Method 

It is well known that nonlinear ordinary differential equations are in general difficult to handle [10]. The Adomian 

decomposition method which is one of the few recent methods is powerful in handling such difficulty. 

[1] reviewed the basic method, by considering an abstract system of nonlinear differential equation: 
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ABSTRACT 

In this work, the Adomian decomposition (ADM) and Picard’s Iterative Methods were 

used to solve nonlinear ordinary differential equations analytically and numerically using 

the Trapezoidal rule approach, and the results are compared for accuracy and rate of 

convergence. Though a little modification by the use of contraction principle was made 

to the Picard Iteration Method in order to accelerate the convergence of the method and 

found out that the ADM converges faster than the Picard’s method. 
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         (2.1) 

With initial condition                                          

           (2.2) 

To apply the ADM on nonlinear ordinary differential equations, we consider the equation 

          (2.3) 

Where the highest order derivative in the equation,  is the remainder of the differential operator,  expresses the nonlinear 

terms and  is an inhomogeneous term. 

If  is a first order operator defined by  

            (2.4) 

then, it is assumed L is invertible and the inverse operator  is given by 

           (2.5) 

so that 

          (2.6) 

However, if  is a second order differential operator given by 

            (2.7) 

The 

          (2.8) 

which follows that 

          (2.9) 

In the same procedures, we can see that for third order differential operator, we have 

            (2.10) 

 

So that 

         (2.11) 

Following the same procedures as outlined above, higher order operator and the related inverse operators can easily be defined.  

Now applying  and the initial condition to both sides of (2.3) we have  

Where  is as follows: 

      (2.13) 

The Adomian decomposition method as applicable to nonlinear ODEs admits the decomposition of  into an infinite series of 

components 

           (2.14) 

and the nonlinear term  as 

           (2.15) 

Where ’s are the Adomian polynomials. 

Now substituting (2.14) and (2.15) into (2.12) we have 

       (2.16) 

Adomian consider the solution  in the series of functions: 

          (2.17) 

and write the nonlinear function  as the series of functions 

          (2.18) 

The dependence of  on  may be non-polynomial.  is formally obtained by 

         (2.19) 
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where λ is a formal parameter. Functions  are polynomials in ( ), which are referred to as the Adomian 

polynomials. 

In what follows, we shall consider a scalar differential equation and set d=1. The first four Adomian polynomials for  

are listed as follows 

         

Where the primes denotes the derivatives with respect to . 

It was shown by [2] that the Adomian polynomials  are defined explicitly by the formulae: 

       (2.21) 

or equivalently by 

         (2.22) 

 

Where 

 
[11] proved a bound for Adomian polynomials by 

           (2.23) 

where  for a given time interval Equations (2.17) and (2.18) lead to a recursive equation in the form: 

        (2.24) 

Comparison between the ADM and the Picard Method 

The Adomian decomposition method was first compared with Picard’s method by [12] on number of examples. [13] showed 

that the Adomian method for linear differential equations was equivalent to the classical method of successive approximations 

(Picard). However, this equivalence does not hold for nonlinear differential equations. Here, we shall compare the two methods 

and show differences of the decomposition method. 

Picard’s method was introduced by Emile Picard in 1891 and it is used for the proof of existence and uniqueness of a solution  

of a system of differential equations.  

In the analysis of the Picard’s method we assume that  satisfies a local Lipschitze condition in a ball around  

 

         (2.25) 

where k is the Lipschitze constant and is any norm in  

Let y
(0)

=y0 and define a recurrence relation 

        (2.26) 

If  is small enough, the new approximation  will belong to the same ball as  for all  and 

(2.24) is a contraction in the sense that 

        (2.27) 

where  

.  

By the Banach fixed point theorem, there exists a unique solution  in  is an 

open ball in R centered at y0 with radius . Recall here that  with the norm 

           (2.28) 

is a complete metric space. Since the integral of a continuous function is continuously differentiable function,  is actually in 

.  

By contraction mapping principle, the error of the approximation solution  is estimated by: 

          (2.29) 

           (2.30) 

Convergence Analysis of ADM 

It follows from (2.17) that  are polynomials in  and thus  is obtained from (2.22) explicitly, if we are able to 

calculate . The first proof of the convergence of the ADM was given by [14] who used fixed point theorem for abstract 

functional equations. 

We will consider a functional equation of the form: 
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          (2.31) 

where, H is a Hilbert space and . 

Let          

          (2.32) 

and 

          (2.33) 

The Adomian decomposition method is equivalent to determining the sequence 

, defined by 

          (2.34) 

If there exist limit 

 

in a Hilbert space, H then  is  also in H. 

The Adomian decomposition method converges if  

         (2.35) 

These two conditions are rather restrictive. The first implies a constraint on the nonlinear function while the second implies 

the convergence of the series, . Although to satisfy the two conditions for the convergence is difficult. Hence we shall 

introduce a new formalism for determining the convergence of the Adomian decomposition method. 

Formalism of the Convergence of ADM and Picard’s Method 

We consider an operator,  from a Hilbert space,  and y an exact solution of (2.1). The Adomian series  

       (2.36) 

converges to y if given 

        (2.37) 

        (2.38) 

we can find  such that 

          (2.39) 

In sufficiently closer condition, the Picard method, being associated to contraction operator, converges in Hilbert space  if 

given 

        (2.40) 

         (2.41) 

we can find  such that 

          (2.42) 

Rate of Convergence of ADM and Picard’s Method 

Here we shall present a simple method to determine the rate of convergence of ADM and Picard’s method alike. We begin by 

assuming (2.39) and (2.42) are satisfied by the ADM and Picard’s method respectively. The rate of convergence,   and  

 for the ADM and the Picard’s method respectively depend on the values of . The methodology implies that 

the smaller the value, the faster the rate of convergence to the exact solution. And that if by implication 

           (2.43) 

then the rate of convergence of ADM is higher than that of Picard’s method [1]. 

Numerical Algorithms for ADM and Picard’s Method 

Consider an abstract initial-value problem for system of nonlinear differential equation 

          (2.44) 

where  

Adomian Decomposition Method by Trapezoidal Rule 

To solve (2.44) using the Adomian decomposition method numerically, we define elements of the Adomian series by the 

recursive equation (2.24) and apply the trapezoidal rule on interval [0,T] with grid points at 

 

where . Then  

 

   (2.45) 

Where  
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After the Adomian polynomials are computed recursively in the explicit form for  we can now use the 

trapezoidal  rule (2.45) on the grid by incrementing n fromn=0 ton=N. Thus we define the n^th-partial sum of the 

Adomian series on the grid   by 

          (2.46) 

 

2.4.2 Picard’s Method by Trapezoidal Rule 

 [15] used Simpson’s  rule to achieve their results. However, in our case we are going to Trapezoidal rule to implement 

our claim. Solving (2.44) using the Picard’s method numerically we consider the recursive equation (2.26) and apply the 

trapezoidal rule on the same interval [0,T] and grid point as in case 2.4.1.The trapezoidal rule on Picard method is given in the 

form: 

     (2.47)  

which presents the result. 

Applications and Results 

Analytic Comparison between ADM and Picard’s Method 

Example1  

Consider the nonlinear ODE: 

          (3.1) 

With exact solution: 

          (3.2) 

By the Adomian decomposition method, we write (3.2) in the integral form: 

         (3.3) 

and  compute the Adomian  polynomials for  in the form: 

         (3.4) 
Using (2.24) we determine few terms of the Adomian series: 

            (3.5) 

Thus 

        (3.6) 

By Picard’s method, we write (3.1) in the integral form: 

       (3.7) 

We now obtain the successive approximations in the form: 

       (3.8) 

Example 2 

Consider  

           (3.9) 

With exact solution: 

           (3.10) 

By Adomian decomposition method, we write (3.9) in the operator form: 

          (3.11) 

Applying  to both sides of (3.11) and using the initial condition gives: 

           (3.12) 

But from (2.14) and (2.15) we noted that: 
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           (3.13) 

            (3.14) 

Inserting (3.13) and (3.14) into (3.12) yields : 

          (3.15) 

Computing the Adomian polynomials for  in the form: 

          (3.16) 

Using (2.24) we determine few terms of the Adomian series: 

           (3.17) 

Thus  

         (3.18) 

By Picard’s method we can write (3.9) in the form: 

          (3.19) 

We obtain the successive approximation in the form: 

        (3.20) 

Numerical Comparison between ADM and Picard’s Method 

 Here we present two categories of numerical results which make numerical comparison between the Adomian decomposition 

method and the Picard’s iteration method. The first case compares the accuracy of the two methods and the second compares the 

rate of convergence of the methods. 

Example 3 

We reconsider the problem (3.9): 

 
To solve (3.9) numerically by Adomian decomposition method (ADM), we take the interval ;  and 

.Where h is the step size; m is the vertical separator of the grids. But  so that: 

 
It now follows from (3.16) that  

          (3.21) 

Now applying (2.45) we have the successive approximations the form: 
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Now, using (2.46), we obtain: 

Table 1.  Numerical result of (3.9) by ADM 

 0.0 0.2 0.4 0.6 0.8 1.0 

1 0.0 4.0  2.4  7.6  1.7600  3.4  

2 0.0 4.1067  2.5920  8.8267  2.2421  4.8219  

3 0.0 4.1091  2.6080  9.0344  2.3796  5.4361  

4 0.0 4.1092  2.6093  9.0700  2.4190  5.7053  

To solve (3.9) numerically by Picard’s method, we consider the same interval [0,1] and the same grids as above. It follows 

from (3.20) that : 

 

 

 

 
Applying (2.47) we obtain the successive approximations in the form: 
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Table 2. Numerical result of (3.9) by Picard's method 

 0.0 0.2 0.4 0.6 0.8 1.0 

1   3.0  4.0  5.0  6.0  

2   3.2  4.56  6.2  8.2  

3   3.2186  4.6702  6.6124  9.3902  

4   3.6254  5.3082  7.3259  9.8085  

 

Table 3. Numerical Comparison of Accuracy of ADM and PM 

T Exact ADM PM   
0.0 0.0 0.0 2.0  0.0 2.0  

0.2 3.4907  4.1092  2.2027  6.1850  2.1678  

0.4 6.9814  2.6093  3.6254  1.9111  3.5556  

0.6 1.0472  9.0700  5.308  8.9653  5.2035  

0.8 1.3964  2.4190  7.3259  2.2793  7.1863  

1.0 1.7455  5.7053  9.8085  5.5308  9.6339  

Rate of Convergence of ADM 

Example 4 

Reviewing (3.9), we noted that:  

By the Adomian decomposition method, we have: 
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            (3.22) 

By the Picard’s method, we have: 

        (3.23) 

Now setting, t= 0.1, it follows from (3.22) that: 

 

 

 

 
Similarly from (3.23), we have: 

 

 

 

 
Now from (2.39) we have: 

 

 

 
Similarly from (2.42), we have: 

 

 

 
Table 4. Numerical comparison of rate of convergence of ADM and PM 

 ADM Picard method   
1     

     
2     

     
3     

     
4     

Conclusion 

The ADM has been successfully applied to finding the solutions of nonlinear ODE. The obtained results are compared with 

those of Picard iterations method. It is noted from the analytical results of the methods that the Picard’s method mixes up powers 

of the partial sum for the exact solutions, while the Adomian series is, in the other handequivalent to the power series in time and 

the Adomian method requires analyticity of the function, , which is more restrictive than the Lipschitz condition required 

for the Picard method. It is also noted from the numerical results that the ADM presents more accurate resultsthan the Picard’s 

method.  

In a closely related outcome, the ADM has faster rate of convergence than the Picard’s method. Conclusively, the ADM is a 

powerful mathematical tool for solving nonlinear ordinary differential equations, and therefore can be widely applied in the field 

of science and engineering. 
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