37403

I.Arockiarani and A. Selvi/ Elixir Appl. Math. 90 (2016) 37403-37409

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

© 2016 Elixir All rights reserved.

Elixir Appl. Math. 90 (2016) 37403-37409

π -Closure Local Functions in Ideal Topological Spaces

I.Arockiarani¹ and A. Selvi²

¹Department of Mathematics, Nirmala College for Women, Coimbatore, India. ²Department of Mathematics, Providence College for Women, Coonoor, India.

In this paper we formulate a new local function called π -closure local function and we

construct π -closure compatible spaces using π -open sets. Further we introduce an

operator $\Psi_{\mathbf{Y}}(A)$ for each $A \in P(X)$ by utilizing $\mathbf{Y}(A)$. Moreover we characterize the

properties of π -closure local function and investigate their relationship with other types of

ABSTRACT

similar functions.

ARTICLE INFO

Article history: Received: 13 November 2015; Received in revised form: 28 December 2015; Accepted: 4 January 2016;

Keywords

π-Open Set, π- Closed Set, Local Function, π-Closure Local Function, $Ψ_{Y}(A)$ - Operator.

Introduction

Ideal topology is a topological space endowed with an additional structure namely the ideal. Kuratowski [11] introduced the concept of local functions in ideal topological spaces. The notion of Kuratowski operator plays a vital role in defining ideal topological space which has its application in localization theory in set topology by Vaidyanathaswamy [15]. Ideals have been frequently used in the fields closely related to topology such as real analysis measure theory and lattice theory. In 1990, Jankovic and Hamlett [7, 8] developed new topologies from old via ideals and introduced I-open sets with respect to an ideal I in 1992. Compatibility of the topology τ with an ideal I was first defined by Njastad [13] in 1996. In this paper we define π -closure local function and its properties in ideal topological spaces. Moreover the relationships with other local functions are investigated. **Preliminaries**

Throughout this paper (X, τ) is a topological space on which no separation axioms are assumed unless explicitly stated. The notation (X, τ, \mathcal{J}) will denote the topological space (X, τ) and an ideal \mathcal{J} on X with no separation properties assumed. For $A \subseteq (X, \tau)$, Cl(A) and Int(A) respectively denote the closure and interior of A with respect to τ . N(x) denotes the open neighbourhood system at a point $x \in X$ and P(X) denotes the power set of X.

Definition. 2.1[11]

An ideal \mathbf{J} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies

the following properties:

(1) $A \in \mathcal{J}$ and $B \subseteq A$ implies $B \in \mathcal{J}$.

(2) $A \in \mathcal{J}$ and $B \in \mathcal{J}$ implies $A \cup B \in \mathcal{J}$.

An ideal topological space is a topological space (X, τ) with an ideal \mathcal{J} on X and is denoted by (X, τ, \mathcal{J}) .

Definition. 2.2[11]

For a subset A of X, $\mathbf{A}^*(\mathcal{J}) = \{x \in X : U \cap A \notin \mathcal{J} \text{ for each neighbourhood } U \text{ of } x\}$ is called the local function of A with respect to \mathcal{J} and τ . We simply write \mathbf{A}^* instead of $\mathbf{A}^*(\mathcal{J})$.

Definition. 2.2[11]

It is well known that $\operatorname{Cl}^*(A) = A \cup A^*$ defines a Kuratowski closure operator for $\tau^*(\mathcal{I})$ which finar than τ .

Definition. 2.3[11]

A basis $\beta(\mathcal{J}, \tau)$ for $\tau^*(\mathcal{J})$ can be described as follows: $\beta(\mathcal{J}, \tau) = \{U - E: U \in \tau \text{ and } E \in \mathcal{J}\}$.

Definition. 2.4

A subset A of an ideal topological space (X, τ, \mathbf{J}) is

(1) *-perfect [6], if A = A*

(2) *- closed [7], if $\mathbf{A}^* \subseteq \mathbf{A}$

(3) *-dense [9], if $Cl^*(A) = X$

Tele:

E-mail addresses: selviantony.pc@gmail.com © 2016 Elixir All rights reserved (4) τ^* -closed set [7], if A = Cl^{*}(A)

Definition. 2.5[17]

A subset A of a space (X, τ) is said to be regular open set, if A = int(cl(A)).

Definition. 2.6[15]

Finite union of regular open sets in (X, τ) is π -open in (X, τ) . The complement of π -open in (X, τ) is π -clo π sed in (X, τ) .

Definition. 2.7[10]

Let (X, τ, \mathcal{J}) be an ideal topological space and A be a subset of X. Then $A^{*S}(\mathcal{J}, \tau) = \{x \in X \mid A \cap U \notin \mathcal{J} \text{ for every } U \in SO(X, x)\}$ is called the semi local function of A with respect to \mathcal{J} and τ , where $SO(X, x) = \{U \in SO(X) \mid x \in U\}$.

Definition. 2.8[1]

Let (X, τ, J) be an ideal topological space. For a subset A of X, we define the following operator:

 Γ (A) $(\mathcal{J}, \tau) = \{x \in X \mid A \cap cl(U) \notin \mathcal{J} \text{ for every } U \in \tau(x)\}$ is called the local closure function of A with respect to \mathcal{J} and τ , where $\tau(x) = \{U \in \tau : x \in U\}$.

Definition. 2.9[3]

Given a space (X, τ, \mathcal{J}) , a set operator $()^{*p}$: $P(X) \to P(X)$ is called the pre-local function of \mathcal{J} with respect to τ is defined as follows; for $A \subseteq X$, $(A)^{*p}(\mathcal{J}, \tau) = \{x \in X/U_x \cap A \notin \mathcal{J}, \text{ for every } U_x \in PN(x)\}$, where $PN(x)\} = \{U \in PO(x) \mid x \in U\}$.

Definition. 2.10[2]

Given a space (X, τ, \mathcal{J}) , a set operator $()^{*\pi}$: $P(X) \to P(X)$ is called the π -local function of \mathcal{J} with respect to τ is defined as follows; for $A \subseteq X$, $(A)^{*\pi}(\mathcal{J}, \tau) = \{x \in X/U_x \cap A \notin \mathcal{J}, \text{ for every } U_x \in \pi N(x)\}$, where $\pi N(x)\} = \{U \in \pi O(x) \mid x \in U\}$.

Lemma. 2.10[7]

Let (X, τ, \mathbf{J}) be an ideal space and A, B subsets of X.

(1) If $A \subset B$, then $A^* \subset B^*$.

(2) If $G \in \tau$, then $G \cap A^* \subset (G \cap A)^*$

(3) $A^* = Cl(A^*) \subset Cl(A)$

π -Closure Local Functions

Definition. 3.1

Let (X, τ, \mathcal{J}) be an ideal topological space. For a subset A of X, we define the following operator: $\gamma(A)(\mathcal{J}, \tau) = \{x \in X : A \cap \mathcal{J}\}$

 $\pi cl(U) \notin \mathcal{J}$ for every $U \in \tau(x)$, where $\tau(x) = \{U \in \tau : x \in U\}$. In case there is no confusion $\Upsilon(A)(\mathcal{J}, \tau)$ is briefly denoted by

 Υ (A) and is called π -closure local function of A with respect to J and τ .

Preposition. 3.2

Let (X, τ, \mathbf{J}) be an ideal topological space. Then

1. Every local function is π -closure local function.

2. Every π -local function is π -closure local function.

3. Every semi local function is π -closure local function.

4. Every pre local function is π -closure local function.

Proof

obvious

Remark. 3.3

The reverse implications need not be true as shown in the following examples.

Example. 3.4

 $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, d\}\} \text{ and } \mathcal{J} = \{\phi, \{a\}\}. \text{ Take } A = \{c\}. \text{ Then } A^* = \{c\} \text{ and } \Upsilon(A) = \{a, b, c, d\}. \text{ Hence } \Upsilon(A) \not\subseteq A^*.$

Example. 3.5

 $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, d\}\}$ and $\mathcal{J} = \{\phi, \{a\}\}$. Take $A = \{c\}$. Then $A^{*\pi} = \{c, d\}$ and $\Upsilon(A) = \{a, b, c, d\}$. Hence $\Upsilon(A) \not\subseteq A^{*\pi}$.

Example. 3.6

 $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\} \text{ and } \mathcal{J} = \{\phi, \{a\}\}. \text{ Take } A = \{b\}. \text{ Then } A^{*s} = \{b\} \text{ and } \Upsilon(A) = \{b, c\}. \text{ Hence } \Upsilon(A) \not\subseteq A^{*s}.$

Example. 3.7

 $X = \{a, b, c, d\}, \tau = \{\phi, X, \{d\}, \{a, c\}, \{a, c, d\}\} \text{ and } \mathcal{J} = \{\phi, \{c\}, \{d\}, \{c, d\}\}. \text{ Take } A = \{a, b\}. \text{ Then } A^{*p} = \{a, b\} \text{ and } \mathcal{V}(A) = \{a, b, c, d\}. \text{ Hence } \mathcal{V}(A) \not\subseteq A^{*p}.$

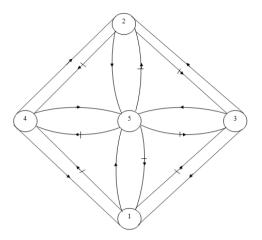
The following diagram represents the above results:

(1). Local function

(2). π -local function

(3). semi local function

- (4). pre local function
- (5). π -closure local function



Theorem. 3.8

Let (X, τ) be a topological space, \mathcal{J} and \mathcal{J} be two ideals on X, and let A and B be subsets of X. Then the following properties hold:

1. If $A \subseteq B$, then $\gamma(A) \subseteq \gamma(B)$.

2. If $\mathcal{J} \subseteq \mathcal{J}$, then $\Upsilon(A)(\mathcal{J}) \supseteq \Upsilon(B)(\mathcal{J})$.

3. $\gamma(A) = \pi cl(\gamma(A)) \subseteq \pi cl(A)$ and $\gamma(A)$ is π -closed.

4. If $A \in \mathcal{J}$, then $\gamma(A) = \emptyset$.

Proof

(1) Suppose that $x \notin \Upsilon(B)$. Then there exists $U \in \tau(x)$ such that $B \cap \pi cl(U) \in \mathcal{J}$. Since $A \cap \pi cl(U) \subseteq B \cap \pi cl(U)$, $A \cap \pi cl(U) \in \mathcal{J}$. Hence $x \notin \Upsilon(A)$. Thus $X - \Upsilon(B) \subseteq X - \Upsilon(A)$ or $\Upsilon(A) \subseteq \Upsilon(B)$.

(2) Suppose that $x \notin \Upsilon(A)(\mathcal{J})$. There exists $U \in \tau(x)$ such that $A \cap \pi cl(U) \in \mathcal{J}$. Since $\mathcal{J} \subseteq \mathcal{J}$, $A \cap \pi cl(U) \in \mathcal{J}$ and $x \notin \Upsilon(A)(\mathcal{J})$. Therefore, $\Upsilon(A)(\mathcal{J}) \subseteq \Upsilon(A)(\mathcal{J})$ or $\Upsilon(A)(\mathcal{J}) \supseteq \Upsilon(B)(\mathcal{J})$.

(3) We have $\Upsilon(A) \subseteq \pi cl(\Upsilon(A))$ in general. Let $x \in \pi cl(\Upsilon(A))$. Then $\Upsilon(A) \cap U \neq \emptyset$ for every $U \in \tau(x)$. Therefore there exists some $y \in \Upsilon(A) \cap U$ and $U \in \tau(y)$. Since $y \in \Upsilon(A)$, $A \cap \pi cl(U) \notin \mathcal{J}$ and hence $x \in \Upsilon(A)$. Hence we have $\pi cl(\Upsilon(A)) \subseteq \Upsilon(A)$. Therefore $\Upsilon(A) = \pi cl(\Upsilon(A))$. Again let $x \in \pi cl(\Upsilon(A)) = \Upsilon(A)$, then $A \cap \pi cl(U) \notin \mathcal{J}$ for every $U \in \tau(x)$. This implies $A \cap \pi cl(U) \neq \emptyset$ for every $U \in \tau(x)$. This shows that $\Upsilon(A) = \pi cl(\Upsilon(A)) \subseteq \pi cl(A)$ and $\Upsilon(A)$ is π -closed.

(4) Suppose that $x \in \Upsilon(A)$. Then for any $U \in \tau(x)$, $A \cap \pi cl(U) \notin \mathcal{J}$. But since $A \in \mathcal{J}$, $A \cap \pi cl(U) \in \mathcal{J}$ for every $U \in \tau(x)$. This is a contradiction. Hence $\Upsilon(A) = \emptyset$.

Lemma. 3.9

Let (X, τ, \mathcal{J}) be an ideal topological space. If $U \in \tau(x)$, then $U \cap \Upsilon(A) = U \cap \Upsilon(U \cap A) \subseteq \Upsilon(U \cap A)$ for any subset A of X. **Proof**

Suppose that $U \in \tau(x)$ and $x \in U \cap \Upsilon(A)$. Then $x \in U$ and $x \in \Upsilon(A)$. Let V be any open set containing x. Then $V \cap U \in \tau(x)$ and $\pi \operatorname{cl}(V \cap U) \cap A \notin \mathcal{J}$ and hence $\pi \operatorname{cl}(V) \cap (U \cap A) \notin \mathcal{J}$. This shows that $x \in \Upsilon(U \cap A)$. Hence we obtain $U \cap \Upsilon(A) \subseteq \Upsilon(U \cap A)$. Moreover $U \cap \Upsilon(A) \subseteq U \cap \Upsilon(U \cap A)$ and by Theorem 3.8 $\Upsilon(U \cap A) \subseteq \Upsilon(A)$ and $U \cap \Upsilon(U \cap A) \subseteq U \cap \Upsilon(A)$. Therefore $U \cap \Upsilon(A) = U \cap \Upsilon(U \cap A)$.

Theorem. 3.10

Let (X, τ, \mathcal{J}) be an ideal topological space and A, B any subsets of X. Then the following properties hold:

1. $\mathbf{\gamma}(\mathbf{\emptyset}) = \mathbf{\emptyset}.$

2. $\gamma(A) \cup \gamma(B) = \gamma(A \cup B).$

Proof

(1) Obvious.

(2) It follows from Theorem 3.8 that $\Upsilon(A \cup B) \supseteq \Upsilon(A) \cup \Upsilon(B)$. To prove the reverse inclusion, let $x \notin \Upsilon(A) \cup \Upsilon(B)$. Then x belongs neither to $\Upsilon(A)$ nor to $\Upsilon(B)$. Therefore there exist U_x , $V_x \in \tau(x)$ such that $\pi cl(U_x) \cap A \in \mathcal{J}$ and $\pi cl(V_x) \cap B \in \mathcal{J}$. Since \mathcal{J} is additive, $(\pi cl(U_x) \cap A) \cup (\pi cl(V_x) \cap B) \in \mathcal{J}$. Moreover, since \mathcal{J} is hereditary and $(\pi cl(U_x) \cap A) \cup (\pi cl(V_x) \cap B) = [(\pi cl(U_x) \cap A) \cup (\pi cl(V_x) \cap B) \in \mathcal{J})]$.

I.Arockiarani and A. Selvi/ Elixir Appl. Math. 90 (2016) 37403-37409

A) $\bigcup \pi cl(V_x)] \cap [(\pi cl(U_x) \cap A) \bigcup B] = (\pi cl(U_x) \bigcup \pi cl(V_x)) \cap (A \bigcup \pi cl(V_x)) \cap (\pi cl(U_x) \bigcup B) \cap (A \cup B) \supseteq \pi cl(U_x \cap V_x) \cap (A \bigcup B)$ B). Then $\pi cl(U_x \cap V_x) \cap (A \bigcup B) \in \mathcal{J}$. Since $U_x \cap V_x \in \tau(x), x \notin \Upsilon(A \bigcup B)$. Hence $(X - \Upsilon(A)) \cap (X - \Upsilon(B) \subseteq X - \Upsilon(A \bigcup B))$ or $\Upsilon(A \bigcup B) \subseteq \Upsilon(A) \cup \Upsilon(B)$. Hence we obtain $\Upsilon(A) \cup \Upsilon(B) = \Upsilon(A \bigcup B)$.

Lemma. 3.11

Let (X, τ, \mathbf{J}) be an ideal topological space and A,B be subsets of X. Then $\gamma(A) - \gamma(B) = \gamma(A - B) - \gamma(B)$.

Proof

We have by Theorem 3.10 $\Upsilon(A) = \Upsilon[(A - B) \bigcup (A \cap B)] = \Upsilon(A - B) \bigcup \Upsilon(A \cap B) \subseteq \Upsilon(A - B) \bigcup \Upsilon(B)$. Thus $\Upsilon(A) - \Upsilon(B) \subseteq \Upsilon(A - B) - \Upsilon(B)$. By Theorem 3.8, $\Upsilon(A - B) \subseteq \Upsilon(A)$ and hence $\Upsilon(A - B) - \Upsilon(B) \subseteq \Upsilon(A) - \Upsilon(B)$. Hence $\Upsilon(A) - \Upsilon(B) = \Upsilon(A - B) - \Upsilon(B)$.

Corollary. 3.12

Let (X, τ, \mathcal{J}) be an ideal topological space and A, B be subsets of X with $B \in \mathcal{J}$. Then $\gamma(A \cup B) = \gamma(A) = \gamma(A - B)$.

Proof

Since $B \in \mathcal{J}$, by Theorem 3.8, $\gamma(B) = \emptyset$. By Lemma 3.11, $\gamma(A) = \gamma(A - B)$ and by Theorem 3.10 $\gamma(A \cup B) = \gamma(A) \cup \gamma(B)$

 $= \gamma(A)$

π -Closure Compatibility of Topological Spaces

Definition. 4.1

Let (X, τ, \mathcal{J}) be an ideal topological space. We say the τ is π -closure compatible with the ideal \mathcal{J} , denoted $\tau \sim^{\Upsilon} \mathcal{J}$ if the following holds: for every $A \subseteq X$ if for every $x \in A$ there exists $U \in \tau(x)$ such that $\pi cl(U) \cap A \in \mathcal{J}$, then $A \in \mathcal{J}$.

Remark. 4.2

1. If τ is compatible with \mathcal{J} , then τ is π -closure compatible with \mathcal{J} .

2. If τ is closure compatible with \mathcal{J} , then τ is π -closure compatible with \mathcal{J} .

Theorem. 4.3

Let (X, τ, \mathbf{J}) be an ideal topological space, the following properties are equivalent:

1. τ ~^Y J

- 2. If a subset A of X has a cover of open sets each of whose π -closure intersection with A is in \mathcal{J} , then $A \in \mathcal{J}$
- 3. For every $A \subseteq X$, $A \cap \gamma(A) = \emptyset$ implies that $A \in \mathcal{J}$
- 4. For every $A \subseteq X$, $A \gamma(A) \in \mathcal{J}$

5. For every $A \subseteq X$, if A contains no nonempty subset B with $B \subseteq \gamma(B)$, then $A \in \mathcal{J}$.

Proof

- (1) \Rightarrow (2): obvious.
- $(2) \Rightarrow (3)$

Let $A \subseteq X$ and $x \in A$. Then $x \notin \Upsilon(A)$ and there exists $V_x \in \tau(x)$ such that $\pi cl(V_x) \cap A \in \mathcal{J}$. Therefore, we have $A \subseteq \bigcup \{V_x : x \in A\}$ and $V_x \in \tau(x)$ and by (2) $A \in \mathcal{J}$.

$(3) \Rightarrow (4)$

For any
$$A \subseteq X$$
, $A - \gamma(A) \subseteq A$ and $(A - \gamma(A)) \cap \gamma(A - \gamma(A)) \subseteq (A - \gamma(A)) \cap \gamma(A) = \emptyset$

By (3) $A - \gamma(A) \in \mathcal{J}$.

$(4) \Rightarrow (5)$

By (4) for every $A \subseteq X$, $A - \gamma(A) \in \mathcal{J}$. Let $A = A - \gamma(A) \cup (A \cap \gamma(A))$ and by Theorem 3.10 (2) and Theorem 3.8(5), $\gamma(A) = \gamma(A - \gamma(A)) \cup \gamma(A \cap \gamma(A)) = \gamma(A \cap \gamma(A))$. Therefore, we have $A \cap \gamma(A) = A \cap \gamma(A \cap \gamma(A)) \subseteq \gamma(A \cap \gamma(A))$ and $A \cap \gamma(A) \subseteq A$. By the assumption $A \cap \gamma(A) = \emptyset$. Hence $A = A - \gamma(A) \in \mathcal{J}$.

$$(5) \Rightarrow (1)$$

Let $A \subseteq X$ and assume that for every $x \in A$, there exists $U \in \tau(x)$ such that $\pi cl(U) \cap A \in \mathcal{J}$. Then $A \cap \Upsilon(A) = \emptyset$. Suppose that A contains B such that $B \subseteq \Upsilon(B)$. Then $B = B \cap \Upsilon(B) \subseteq A \cap \Upsilon(A) = \emptyset$. Therefore, A contains no nonempty subset B with B $\subseteq \Upsilon(B)$. Hence $A \in \mathcal{J}$.

Theorem 4.4

Let (X, τ, \mathcal{J}) be an ideal topological space. If τ is π -closure compatible with \mathcal{J} , then the following equivalent properties hold: 1. For every $A \subseteq X$, $A \cap \gamma(A) = \emptyset$ implies that $\gamma(A) = \emptyset$

2. For every
$$A \subseteq X$$
, $\gamma(A - \gamma(A)) = \emptyset$

3. For every $A \subseteq X$, $\gamma(A \cap \gamma(A)) = \gamma(A)$

Proof $(1) \Rightarrow (2)$

Assume that for every $A \subseteq X$, $A \cap \gamma(A) = \emptyset$ implies that $\gamma(A) = \emptyset$. Let $B = A - \gamma(A)$, then

 $B\cap \boldsymbol{\gamma}(B) = (A-\boldsymbol{\gamma}(A))\cap \boldsymbol{\gamma}(A-\boldsymbol{\gamma}(A)) = (A\cap (X-\boldsymbol{\gamma}(A)))\cap \boldsymbol{\gamma}(A\cap (X-\boldsymbol{\gamma}(A))) \subseteq [A\cap (X-\boldsymbol{\gamma}(A))] \subseteq [A\cap (X-\boldsymbol{\gamma}(A))]$

 $(X - \gamma(A))] \cap [\gamma(A) \cap (\gamma(X - \gamma(A)))] = \emptyset$. By (1) we have $\gamma(B) = \emptyset$. Hence $\gamma(A - \gamma(A)) = \emptyset$.

$(2) \Rightarrow (3)$

Assume for every $A \subseteq X$, $\gamma(A - \gamma(A)) = \emptyset$. $A = (A - \gamma(A)) \cup (A \cap \gamma(A))$. $\gamma(A) = \gamma[(A - \gamma(A)) \bigcup (A \cap \gamma(A))] = \gamma(A \cap \gamma(A)) \cup (A \cap \gamma(A))$

$$(\mathbf{Y}(\mathbf{A})) \bigcup \mathbf{Y}(\mathbf{A} \cap \mathbf{Y}(\mathbf{A})) = \mathbf{Y}(\mathbf{A} \cap \mathbf{Y}(\mathbf{A})).$$

$(3) \Rightarrow (1)$

Assume for every $A \subseteq X$, $A \cap \gamma(A) = \emptyset$ and $\gamma(A \cap \gamma(A)) = \gamma(A)$. This implies that $\emptyset = \gamma(\emptyset) = \gamma(A)$.

Theorem. 4.5

Let (X, τ, \mathbf{J}) be an ideal topological space, then the following properties are equivalent:

1. $\pi cl(\tau) \cap \mathcal{J} = \emptyset$ where $\pi cl(\tau) = \{ \pi cl(V) \colon V \in \tau \}$

2. If $I \in \mathcal{J}$, then $\pi int(I) = \emptyset$

3. For every $G \in \tau$, $G \subseteq \Upsilon(G)$

4. $X = \gamma(X)$

Proof

$(1) \Rightarrow (2)$

Let $\pi cl(\tau) \cap \mathcal{J} = \emptyset$ and $I \in \mathcal{J}$. Suppose that $x \in \pi$ -int(I). Then there exists $U \in \tau$ such that $x \in U \subseteq \pi cl(U) \subseteq I$. Since $I \in \mathcal{J}$ and hence $\emptyset \neq \{x\} \subseteq \pi cl(U) \in \pi cl(\tau) \cap I$. This is contrary to $\pi cl(\tau) \cap \mathcal{J} = \emptyset$. Therefore, $\pi int(I) = \emptyset$.

(2)⇒ (3)

Let $x \in G$. Assume $x \notin \Upsilon(G)$, then there exists $U_x \in \tau(x)$ such that $G \cap \pi cl(U_x) \in \mathcal{J}$ and hence $G \cap U_x \in \mathcal{J}$. By (2) $x \in G \cap U_x = \pi int(G \cap U_x) = \emptyset$. Hence $x \in \Upsilon(G)$ and $G \subseteq \Upsilon(G)$.

(3)⇒ (4)

Since X is clopen, then $X = \gamma(X)$.

(4)⇒ (1)

 $X = \gamma(X) = \{x \in X: \pi cl(U) \cap X = \pi cl(U) \notin \mathcal{J} \text{ for each open set } U \text{ containing } x\}.$ Hence $\pi cl(\tau) \cap \mathcal{J} = \emptyset$.

Theorem. 4.6

Let (X, τ, \mathcal{J}) be an ideal topological space, τ be π -closure compatible with \mathcal{J} . Then for every $G \in \tau$ and any subset A of X, $\pi cl(\gamma(G \cap A)) = \gamma(G \cap A) \subseteq \gamma(G \cap \gamma(A)) \subseteq \pi cl(G \cap \gamma(A)).$

Proof

By Theorem 4.4(3) and Theorem 3.8, we have $\gamma(G \cap A) = \gamma((G \cap A) \cap \gamma(G \cap A)) \subseteq \gamma(G \cap \gamma(A))$. Moreover by Theorem 3.8, $\pi cl(\gamma(G \cap A)) = \gamma(G \cap A) \subseteq \gamma(G \cap \gamma(A)) \subseteq \pi cl(G \cap \gamma(A))$.

$\Psi_{\mathbf{v}}$ -operator

Definition. 5.1

Let (X, τ, \mathcal{J}) be an ideal topological space. An operator $\Psi_{\mathbf{Y}}$: $P(X) \to \tau$ is defined as follows: for every $A \in X$, $\Psi_{\mathbf{Y}}(A) = \{x \in X : \text{there exists } U \in \tau(x) \text{ such that } \pi cl(U) - A \in \mathcal{J} \}$ and observe that $\Psi_{\mathbf{Y}}(A) = X - \Upsilon(X - A)$.

Theorem. 5.2

Let (X, τ, \mathcal{J}) be an ideal topological space. Then the following properties hold:

1. If $A \subseteq X$, then $\Psi_{\Upsilon}(A)$ is π -open. 2. If $A \subseteq B$, then $\Psi_{\Upsilon}(A) \subseteq \Psi_{\Upsilon}(B)$. 3. If $A, B \in P(X)$, then $\Psi_{\Upsilon}(A \cap B) = \Psi_{\Upsilon}(A) \cap \Psi_{\Upsilon}(B)$. 4. If $A \subseteq X$, then $\Psi_{\Upsilon}(A) = \Psi_{\Upsilon}(\Psi_{\Upsilon}(A))$ if and only if $\Upsilon(X - A) = \Upsilon(\Upsilon(X - A))$. 5. If $A \in \mathcal{J}$, then $\Psi_{\Upsilon}(A) = X - \Upsilon(X)$. 6. If $A \subseteq X$, $I \in \mathcal{J}$, then $\Psi_{\Upsilon}(A - I) = \Psi_{\Upsilon}(A)$. 7. If $A \subseteq X$, $I \in \mathcal{J}$, then $\Psi_{\Upsilon}(A \cup I) = \Psi_{\Upsilon}(A)$. 8. If $(A - B) \cup (B - A) \in \mathcal{J}$, then $\Psi_{\Upsilon}(A) = \Psi_{\Upsilon}(B)$. **Proof**

(1) This follows from Theorem 3.8 (3).

(2) This follows from Theorem 3.8 (1).

I.Arockiarani and A. Selvi/ Elixir Appl. Math. 90 (2016) 37403-37409

 $(3) \Psi_{\mathbf{Y}}(A \cap B) = X - \mathbf{Y}(X - (A \cap B)) = X - \mathbf{Y}[(X - A) \cup (X - B)] = X - [\mathbf{Y}(X - A) \cup \mathbf{Y}(X - B)] = [X - \mathbf{Y}(X - A)] \cap [X - \mathbf{Y}(X - B)] = \Psi_{\mathbf{Y}}(A) \cap \Psi_{\mathbf{Y}}(B).$ (4) This follows from the facts: $1. \Psi_{\mathbf{Y}}(A) = X - \mathbf{Y}(X - A).$ $2. \Psi_{\mathbf{Y}}(\Psi_{\mathbf{Y}}(A)) = X - \mathbf{Y}[X - (X - \mathbf{Y}(X - A))] = X - \mathbf{Y}(\mathbf{Y}(X - A)).$ $(5) By Corollary 3.12 we obtain that \mathbf{Y}(X - A) = \mathbf{Y}(X) \text{ if } A \in \mathcal{J}. Then X - \mathbf{Y}(X - A) = X - \mathbf{Y}(X). Hence \Psi_{\mathbf{Y}}(A) = X - \mathbf{Y}(X).$ $(6) This follows from Corollary 3.12 and \Psi_{\mathbf{Y}}(A - I) = X - \mathbf{Y}[X - (A - I)] = X - \mathbf{Y}[(X - A) \cup I] = X - \mathbf{Y}(X - A) = \Psi_{\mathbf{Y}}(A).$ $(7) This follows from Corollary 3.12 and \Psi_{\mathbf{Y}}(A \cup I) = X - \mathbf{Y}[X - (A \cup I)] = X - \mathbf{Y}[(X - A) - I] = X - \mathbf{Y}(X - A) = \Psi_{\mathbf{Y}}(A).$ $(8) Assume (A - B) \cup (B - A) \in \mathcal{J}. Let A - B = I and B - A = J. Observe that I, J \in \mathcal{J} by heredity. Also observe that B = (A - I) \cup J. Thus \Psi_{\mathbf{Y}}(A) = \Psi_{\mathbf{Y}}(A - I) = \Psi_{\mathbf{Y}}(B) by (6) and (7).$

Corollary. 5.3

Let (X, τ, \mathcal{J}) be an ideal topological space. Then $U \subseteq \Psi_{\mathbf{v}}(U)$ for every π -open set $U \subseteq X$.

Proof

We know that $\Psi_{\Upsilon}(U) = X - \Upsilon(X - U)$. Now $\Upsilon(X - U) \subseteq \pi cl(X - U) = X - U$, since X-U is π -closed. Therefore $U = X - (X - U) \subseteq X - \Upsilon(X - U) = \Psi_{\Upsilon}(U)$.

Now we give an example of a set A which is not π -open but satisfies $A \subseteq \Psi_{\mathbf{v}}(A)$.

Example. 5.4

 $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a, c\}, \{d\}, \{a, c, d\}\} \text{ and } \mathbf{J} = \{\phi, \{b\}, \{c\}, \{b, c\}\}. \text{ Let } A = \{a\}.$

Then $\Psi_{\mathbf{Y}}(\{a\}) = X - \mathbf{Y}(X - \{a\}) = X - \mathbf{Y}(\{b, c, d\}) = X - \{b, d\} = \{a, c\}$. Therefore $A \subseteq \Psi_{\mathbf{Y}}(A)$, but A is not π -open.

Theorem. 5.5

Let (X, τ, \mathbf{J}) be an ideal topological space and $A \subseteq X$. Then the following properties hold:

1. $\Psi_{\mathbf{v}}(\mathbf{A}) = \bigcup \{ \mathbf{U} \in \tau : \pi \mathrm{cl}(\mathbf{U}) - \mathbf{A} \in \mathcal{J} \}.$

2. $\Psi_{\mathbf{Y}}(A) \supseteq \cup \{U \in \tau : (\pi cl(U) - A) \cup (A - \pi cl(U)) \in \mathbf{J} \}.$

Proof

(1) This follows immediately from the definition of $\Psi_{\mathbf{v}}$ -operator.

(2) Since \mathcal{J} is heredity, it is obvious that $\cup \{U \in \tau : (\pi cl(U) - A) \cup (A - \pi cl(U)) \in \mathcal{J} \} \subseteq \cup \{U \in \tau : \pi cl(U) - A \in \mathcal{J} \} = \Psi_{\Upsilon}(A)$ for every $A \subseteq X$.

Theorem. 5.6

Let (X, τ, \mathcal{J}) be an ideal topological space. If $\sigma = \{A \subseteq X : A \subseteq \Psi_{\mathbf{v}}(A)\}$. Then σ is a topology for X.

Proof

Let $\sigma = \{A \subseteq X : A \subseteq \Psi_{\mathbf{Y}}(A)\}$. Since $\phi \in \mathcal{J}$, by Theorem 3.8(4) $\mathbf{\Upsilon}(\phi) = \phi$ and $\Psi_{\mathbf{\Upsilon}}(X) = X - \mathbf{\Upsilon}(X - X) = X - \mathbf{\Upsilon}(\phi) = X$. Moreover, $\Psi_{\mathbf{\Upsilon}}(\phi) = X - \mathbf{\Upsilon}(X - \phi) = X - X = \phi$. Therefore we obtain that $\phi \subseteq \Psi_{\mathbf{\Upsilon}}(\phi)$ and $X \subseteq \Psi_{\mathbf{\Upsilon}}(X) = X$, and thus ϕ and $X \in \sigma$. Now if A, B $\in \sigma$, then by Theorem 5.2 A \cap B $\subseteq \Psi_{\mathbf{\Upsilon}}(A) \cap \Psi_{\mathbf{\Upsilon}}(B) = \Psi_{\mathbf{\Upsilon}}(A \cap B)$ which implies that A \cap B $\in \sigma$. If $\{A_{\alpha} : \alpha \in \Delta\} \subseteq \sigma$, then $A_{\alpha} \subseteq \Psi_{\mathbf{\Upsilon}}(A_{\alpha}) \subseteq \Psi_{\mathbf{\Upsilon}}(\bigcup A_{\alpha})$ for every α and hence $\bigcup A_{\alpha} \subseteq \Psi_{\mathbf{\Upsilon}}((\bigcup A_{\alpha}))$. This shows that σ is a topology.

Theorem. 5.7

Let $\sigma_0 = \{A \subseteq X : A \subseteq Int(Cl(\Psi_Y(A)))\}$ then σ_0 is a topology for X.

Proof

By Theorem 5.2, for any subset A of X, $\Psi_{\mathbf{Y}}(A)$ is π -open and $\sigma \subset \sigma_0$. Therefore \emptyset , $X \in \sigma_0$. Let A, $B \in \sigma_0$. Then by Theorem 5.2, we have $A \cap B \subset Int(Cl(\Psi_{\mathbf{Y}}(A))) \cap Int(Cl(\Psi_{\mathbf{Y}}(B))) = Int(Cl(\Psi_{\mathbf{Y}}(A) \cap \Psi_{\mathbf{Y}}(B))) = Int(Cl(\Psi_{\mathbf{Y}}(A \cap B)))$. Therefore, $A \cap B \in \sigma_0$. Let $A_\alpha \in \sigma_0$ for each $\alpha \in \Delta$. By Theorem 5.2, for each $\alpha \in \Delta$, $A_\alpha \subseteq Int(Cl(\Psi_{\mathbf{Y}}(A \cap B))) \subseteq Int(Cl(\Psi_{\mathbf{Y}}(\bigcup A_\alpha)))$. Hence $\bigcup A_\alpha \subset Int(Cl(\Psi_{\mathbf{Y}}(\bigcup A_\alpha)))$. Hence $\bigcup A_\alpha \in \sigma_0$. This shows that σ_0 is a topology for X.

Theorem. 5.8

Let (X, τ, \mathcal{J}) be an ideal topological space. Then $\tau \sim^{\Upsilon} \mathcal{J}$, if and only if $\Psi_{\chi}(A) - A \in \mathcal{J}$ for every $A \subseteq X$.

Proof

Necessity

Assume $\tau \sim^{\Upsilon} \mathcal{J}$ and let $A \subseteq X$. Observe that $x \in \Psi_{\Upsilon}(A) - A$ if and only if $x \notin A$ and $x \notin \Upsilon(X - A)$ if and only if $x \notin A$ and there exists $U_x \in \tau(x)$ such that $\pi \operatorname{cl}(U_x) - A \in \mathcal{J}$ if and only if there exists $U_x \in \tau(x)$ such that $x \in \pi \operatorname{cl}(U_x) - A \in \mathcal{J}$. Now for each $x \in \Psi_{\Upsilon}(A) - A$ and $U_x \in \tau(x)$, $\pi \operatorname{cl}(U_x) \cap (\Psi_{\Upsilon}(A) - A) \in \mathcal{J}$ by heredity. Hence $\Psi_{\Upsilon}(A) - A \in \mathcal{J}$ by assumption that $\tau \sim^{\Upsilon} \mathcal{J}$.

37409

Sufficiency

Let $A \subseteq X$ and assume that for each $x \in A$ there exists $U_x \in \tau(x)$ such that $\pi cl(U_x) \cap A \in \mathcal{J}$. Observe that $\Psi_{\Upsilon}(X - A) - (X - A) = A - \Upsilon(A) = \{x : \text{there exists } U_x \in \tau(x) \text{ such that } x \in \pi cl(U_x) \cap A \in \mathcal{J} \}$. Thus we have $A \subseteq \Psi_{\Upsilon}(X - A) - (X - A) \in \mathcal{J}$. Hence $A \in \mathcal{J}$ by heredity of \mathcal{J} .

Proposition. 5.9

Let (X, τ, \mathcal{J}) be an ideal topological space with $\tau \sim^{\Upsilon} \mathcal{J} A \subseteq X$. If N is a nonempty open subset of $\Upsilon(A) \cap \Psi_{\Upsilon}(A)$, then N -A $\in \mathcal{J}$ and $\pi cl(N) \cap A \notin \mathcal{J}$.

Proof

If $N \subseteq \Upsilon(A) \cap \Psi_{\Upsilon}(A)$, then $N - A \subseteq \Psi_{\Upsilon}(A) - A \in \mathcal{J}$ by Theorem 5.8 and hence $N - A \in \mathcal{J}$ by heredity. Since $N \in \tau - \{\phi\}$ and $N \subseteq \Upsilon(A)$, we have $\pi cl(N) \cap A \notin \mathcal{J}$ by the definition of $\Upsilon(A)$.

In [11], Newcomb defines $A = B \mod \mathfrak{J}$ if $(A - B) \cup (B - A) \in \mathfrak{J}$ and observes that $= \mod \mathfrak{J}$ is an equivalence relation. By Theorem 5.2 (8), we have that if $A = B \mod \mathfrak{J}$ then $\Psi(A) = \Psi_{\chi}(B)$.

Definition. 5.10

Let (X, τ, \mathcal{J}) be an ideal topological space. A subset A of X is called a Baire set with respect to τ and I, denoted $A \in Br(X, \tau, \mathcal{J})$, if there exists a open set U such that $A = U \pmod{\mathcal{J}}$.

Lemma. 5.11

Let (X, τ, \mathcal{J}) be an ideal topological space with $\tau \sim^{\Upsilon} \mathcal{J}$. If $U, V \in \tau$ and $\Psi_{\Upsilon}(U) = \Psi_{\Upsilon}(V)$, then $U = V \pmod{\mathcal{J}}$.

Proof

Since $U \in \tau$, by Corollary 5.3 we have $U \subseteq \Psi_{\Upsilon}(U)$ and hence $U - V \subseteq \Psi_{\Upsilon}(U) - V = \Psi_{\Upsilon}(V) - V \in \mathcal{J}$ by Theorem 5.8 Therefore, $U - V \in \mathcal{J}$. Similarly, $V - U \in \mathcal{J}$. Now $(U - V) \cup (V - U) \in \mathcal{J}$ by additivity. Hence $U = V[\mod \mathcal{J}]$.

Theorem. 5.12

Let (X, τ, \mathcal{J}) be an ideal topological space with $\tau \sim^{\Upsilon} \mathcal{J}$. If $A, B \in Br(X, \tau, \mathcal{J})$, and $\Psi_{\Upsilon}(A) = \Psi_{\Upsilon}(B)$ then $A = B \pmod{\mathcal{J}}$. **Proof**

Let U, V $\in \tau$ be such that A = U [mod \mathcal{J}] and B = V [mod \mathcal{J}]. Now $\Psi_{\Upsilon}(A) = \Psi_{\Upsilon}(U)$ and $\Psi_{\Upsilon}(B) = \Psi_{\Upsilon}(V)$ by Theorem 5.2(8). Since $\Psi_{\Upsilon}(A) = \Psi_{\Upsilon}(B)$ implies that $\Psi_{\Upsilon}(U) = \Psi_{\Upsilon}(V)$ and hence U = V [mod \mathcal{J}] by Lemma 5.11. Hence A = B [mod \mathcal{J}] by transitivity.

Theorem. 5.13

Let (X, τ, \mathbf{J}) be an ideal topological space with $\tau \sim^{\Upsilon} \mathbf{J}$, where $\pi cl(\tau) \cap \mathbf{J} = \phi$. Then for $A \subseteq X, \Psi_{\mathbf{v}}(A) \subseteq \mathbf{\gamma}(A)$.

Proof

Suppose $x \in \Psi_{\Upsilon}(A)$ and $x \notin \Upsilon(A)$. Then there exists a nonempty neighborhood $U_x \in \tau(x)$ such that $\pi cl(U_x) \cap A \in \mathcal{J}$. Since $x \in \Psi_{\Upsilon}(A)$, by Theorem 5.5 $x \in \bigcup \{ U \in \tau : \pi cl(U) - A \in \mathcal{J} \}$ and there exists $V \in \tau(x)$ and $\pi cl(V) - A \in \mathcal{J}$. Now we have $U_x \cap V \in \tau(x)$, $\pi cl(U_x \cap V) \cap A \in \mathcal{J}$ and $\pi cl(U_x \cap V) - A \in \mathcal{J}$ by heredity. Hence by finite additivity we have $\pi cl(U_x \cap V) \cap A \cup (\pi cl(U_x \cap V) - A) \cup (\pi cl(U_x \cap V) - A) = \pi cl(U_x \cap V) \in \mathcal{J}$. Since $(U_x \cap V) \in \tau(x)$, which is contrary to $\pi cl(\tau) \cap \mathcal{J} = \phi$. Therefore, $x \in \Upsilon(A)$. This implies that

$\Psi_{\mathbf{Y}}(\mathbf{A}) \subseteq \mathbf{Y}(\mathbf{A}).$

References

[1] Ahamad Al-omari and Takashi Noiri, Local closure functions in ideal topological spaces, Novi Sad j Math. 43(2)(2013) 139-149.

[2] I.Arockiarani and A.Selvi, Local functions on π -open sets via ideal topological spaces, Global journal of Applied Research (submitted)

- [3] I.Arockiarani and A.A.Nithya, On W β -I^{*P}-open sets via pre local functions, Int. Mathematical forum, 5(63)(2010) 3135- 3140. [4] N. Bourbaki, General topology, Part I, addition Wesley, Reading, Mass 1966.
- [4] N. Bourbaki, General topology, Part 1, addition wesley [5] J. Dugunji, topology, Allyn and Bacon, 1966.
- [6] E. Hayashi, Topologies defined by local properties. Math. Ann., 156 (1964) 205-215.
- [7] D. Jankovic and T.R. Hamlett, New topologies from old via ideals, American Mathematical Monthly, 97 (1990) 295-310.
- [8] D.Jankovic and T.R. Hamlett, Compatible extensions of ideals, Boll.Un.Mat. Ita.B(7) 6(3) (1992) 453-465.
- [9] D.Jankovic, M.Gangter and D. Rose, Ideal resolvability, Topology and its Appl. 93(1999) 1-16

[10] M. khan, T. Noiri, semi local functions in ideal topological spaces, Journal of Advanced Research in Pure Mathematics, 2(1) (2010) 36-42.

- [11] Kuratowski, Topology, Vol I, Academic Press, New York, 1966.
- [12] Newcomb R. L., Topologies which are compact modulo an ideal. Ph. D. dissertation, Univ. of Cal. T santa Barbara, 1967.
- [13] Njastad. O, Remarks on topologies defined by local properties, Norske Vid-Akad. Oslo (N.S), 8(1966) 1-6.
- [14] M.H. stone, Applications of the theory of Boolean rings to general topology, trans. Amer.Math.Soc, 41(1937) 375-481.
- [15] R.Vaidyanathaswamy, The localization theory in set-topology, Proc. Indian Acad. Sci., 20(1945) 51-61.
- [16] R.Vaidyanathaswamy, set topology, Chelse Publishing Company, 1960.
- [17] V.Zaitsev, On certain classes of topological spaes and their bicompactification, Dokl. Akad. Nauk. SSSR., 178(1968) 778-779.