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Introduction 

 Ideal topology is a topological space endowed with an additional structure namely the ideal. Kuratowski [11] introduced the 

concept of local functions in ideal topological spaces. The notion of Kuratowski operator plays a vital role in defining ideal 

topological space which has its application in localization theory in set topology by Vaidyanathaswamy [15]. Ideals have been 

frequently used in the fields closely related to topology such as real analysis measure theory and lattice theory. In 1990, Jankovic 

and Hamlett [7, 8] developed new topologies from old via ideals and introduced I-open sets with respect to an ideal I in 1992. 

Compatibility of the topology τ with an ideal I was first defined by Njastad [13] in 1996. In this paper we define π-closure local 

function and its properties in ideal topological spaces. Moreover the relationships with other local functions are investigated. 

Preliminaries 

Throughout this paper (X, τ) is a topological space on which no separation axioms are assumed unless explicitly stated. The 

notation (X, τ, ) will denote the topological space (X, τ) and an ideal  on X with no separation properties assumed. For A  (X, 

τ), Cl(A) and Int(A) respectively denote the closure and interior of A with respect to τ. N(x) denotes the open neighbourhood 

system at a point x  X and P(X) denotes the power set of X. 

Definition. 2.1[11] 

An ideal  on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies  

the following properties:  

(1)  A   and B  A implies B   . 

(2)  A   and B   implies A  B  . 

An ideal topological space is a topological space (X, τ) with an ideal   on X and is denoted by (X, τ, ).  

Definition. 2.2[11] 

For a subset A of X,  ( ) = {x  X: U  A  for each neighbourhood U of x} is called the local function of A with 

respect to  and τ. We simply write  instead of  ( ).  

Definition. 2.2[11] 

It is well known that Cl
*
(A) = A   defines a Kuratowski closure operator for  which finar than τ. 

Definition. 2.3[11] 

A basis ( , τ) for  can be described as follows: ( , τ) = {U  E: U   and E }. 

Definition. 2.4 

A subset A of an ideal topological space (X, τ, ) is  

(1) -perfect [6], if A =  

(2)  - closed [7], if A 

(3)  *-dense [9], if Cl
*
(A) = X 
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ABSTRACT 

In this paper we formulate a new local function called π-closure local function and we 

construct π-closure compatible spaces using π-open sets. Further we introduce an 

operator (A) for each A  P(X) by utilizing (A). Moreover we characterize the 

properties of π-closure local function and investigate their relationship with other types of 

similar functions. 
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(4)  τ
*
-closed set [7], if A = Cl

*
(A) 

Definition. 2.5[17]  

A subset A of a space (X, τ) is said to be regular open set, if A = int(cl(A)). 

Definition. 2.6[15] 

Finite union of regular open sets in (X, τ) is π-open in (X, τ).The complement of  π -open in (X, τ) is π -cloπsed in (X, τ). 

Definition. 2.7[10] 

Let (X, τ, ) be an ideal topological space and A be a subset of X. Then A
*S

( , τ) = {x  X | A U   for every U  SO(X, 

x)} is called the semi local function of A with respect to  and τ, where SO(X, x) = {U  SO(X) | x  U}. 

Definition. 2.8[1] 

Let (X, τ, ) be an ideal topological space. For a subset A of X, we define the following operator:  

(A) ( , τ) = {x  X | A cl(U)   for every U  τ(x)} is called the local closure function of A with respect to  and τ, where 

τ(x) = {U  τ :  x  U}. 

Definition. 2.9[3]  

Given a space (X, τ, ), a set operator ()
*p

: P(X)  P(X) is called the pre-local function of  with respect to τ is defined as 

follows; for A X, (A)
*p

 ( , τ) = {x  X/ Ux  A  ,  Ux  PN(x)}, where PN(x)} = {U  PO(x) | x U}.  

Definition. 2.10[2]  

Given a space (X, τ, ), a set operator ()
*π

: P(X)  P(X) is called the π-local function of  with respect to τ is defined as 

follows; for A X, (A)
*π

 ( , τ) = {x  X/ Ux  A  ,  Ux  πN(x)}, where πN(x)} = {U  πO(x) | x U}.  

Lemma. 2.10[7] 

Let (X, τ, ) be an ideal space and A, B subsets of X. 

(1)  If A  B, then A
*
  B

*
. 

(2) If G  τ, then G A
*
  (G A)

*
 

(3)  A
*
 = Cl(A

*
)  Cl(A) 

π-Closure Local Functions 

Definition. 3.1 

Let (X, τ, ) be an ideal topological space. For a subset A of X, we define the following operator: (A)( , τ ) = {x ∈ X : A ∩ 

πcl(U)  for every U ∈ τ (x)}, where τ (x) = {U ∈ τ : x ∈ U}. In case there is no confusion (A)( , τ ) is briefly denoted by 

(A) and is called π-closure  local function of A with respect to  and τ . 

Preposition. 3.2 

Let (X, τ, ) be an ideal topological space. Then 

1. Every local function is π-closure local function. 

2. Every π-local function is π-closure local function. 

3. Every semi local function is π-closure local function. 

4. Every pre local function is π-closure local function. 

Proof  

obvious 

Remark. 3.3  

The reverse implications need not be true as shown in the following examples. 

Example. 3.4 

X = {a, b, c, d}, τ = {ϕ, X, {a}, {b}, {a, b}, {a, b, d}} and   = {ϕ, {a}}. Take A = {c}. Then    A
*
 ={c} and (A) = {a, b, c, 

d}. Hence (A)  A
*
. 

Example. 3.5 

X = {a, b, c, d}, τ = {ϕ, X, {a}, {b}, {a, b}, {a, b, d}} and   = {ϕ, {a}}. Take A = {c}. Then    A
*π

 ={c, d} and (A) = {a, b, 

c, d}. Hence (A)    A
*π

. 

Example. 3.6 

X = {a, b, c, d}, τ = {ϕ, X, {a}, {b}, {a, b}} and   = {ϕ, {a}}. Take A = {b}. Then    A
*s

 = {b} and (A) = {b, c}. Hence 

(A)   A
*s

. 

Example. 3.7 

X = {a, b, c, d}, τ = {ϕ, X, {d}, {a, c}, {a, c,d}} and   ={ϕ, {c}, {d}, {c, d}}. Take A = {a, b}. Then    A
*p

 = {a, b} and 

(A) = {a, b, c, d}. Hence (A)   A
*p

. 

The following diagram represents the above results:        

(1). Local function       

(2). π-local function     

(3). semi local function      
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(4). pre local function 

(5). π-closure local function  

 

 

Theorem. 3.8 

Let (X, τ) be a topological space,  and  be two ideals on X, and let A and B be subsets of X. Then the following properties 

hold: 

1. If A ⊆ B, then (A) ⊆ (B). 

2. If  ⊆   , then (A)( ) ⊇ (B)(  ). 

3. (A) = πcl( (A)) ⊆ πcl(A) and (A) is π-closed. 

4. If A ∈ , then (A) = ∅. 

Proof 

(1) Suppose that x  (B). Then there exists U ∈ τ(x) such that B ∩ πcl(U) ∈ . Since A ∩ πcl(U) ⊆ B ∩ πcl(U), A ∩ πcl(U) ∈ . 

Hence x (A). Thus X  (B) ⊆ X  (A) or (A) ⊆ (B). 

(2) Suppose that x  (A)( ). There exists U ∈ τ(x) such that A ∩ πcl(U) ∈ . Since  ⊆   , A ∩ πcl(U) ∈  and x  (A)(  ). 

Therefore, (A)(  ) ⊆ (A)( ) or (A)( ) ⊇ (B)(  ). 

(3) We have (A) ⊆ πcl( (A)) in general. Let x ∈ πcl( (A)). Then (A) ∩ U  ∅ for every U ∈ τ(x). Therefore there exists 

some y ∈ (A) ∩ U and U ∈ τ(y). Since y ∈ (A), A ∩ πcl(U)   and hence x ∈ (A). Hence we have πcl( (A)) ⊆ (A). 

Therefore (A) = πcl( (A)). Again let x ∈ πcl( (A)) = (A), then A ∩ πcl(U)   for every U ∈ τ(x). This implies A ∩ πcl(U) 

 ∅ for every U ∈ τ(x). This shows that (A) = πcl( (A)) ⊆ πcl(A) and (A) is π-closed. 

 (4) Suppose that x ∈ (A). Then for any U ∈ τ(x), A ∩ πcl(U) . But since A ∈ , A ∩ πcl(U) ∈  for every U ∈ τ(x). This is a 

contradiction. Hence (A) = ∅. 

Lemma. 3.9 

Let (X, τ, ) be an ideal topological space. If U ∈ τ(x), then U ∩ (A) = U ∩ (U ∩ A) ⊆ (U ∩ A) for any subset A of X. 

Proof 

Suppose that U ∈ τ(x)  and x ∈ U ∩ (A). Then x ∈ U and x ∈ (A). Let V be any open set containing x. Then V ∩U ∈ τ(x) 

and πcl(V ∩ U) ∩ A   and hence πcl(V ) ∩ (U ∩ A)  . This shows that x ∈ (U ∩ A). Hence we obtain U ∩ (A) ⊆ (U 

∩ A). Moreover U ∩ (A) ⊆ U ∩ (U ∩ A) and by Theorem 3.8 (U ∩ A) ⊆ (A) and U ∩ (U ∩ A) ⊆ U ∩ (A). Therefore   

U ∩ (A) = U ∩ (U ∩ A). 

Theorem. 3.10 

Let (X, τ, ) be an ideal topological space and A, B any subsets of X. Then the following properties hold: 

1. (∅) = ∅. 

2. (A) ∪ (B) = (A ∪ B). 

Proof 

(1) Obvious. 

(2) It follows from Theorem 3.8 that (A ∪ B) ⊇ (A) ∪ (B). To prove the reverse inclusion, let x  (A) ∪ (B). Then x 

belongs neither to (A) nor to (B). Therefore there exist Ux, Vx ∈ τ(x) such that πcl(Ux) ∩ A ∈  and πcl(Vx) ∩ B ∈ . Since  

is additive, (πcl(Ux) ∩ A) ∪ (πcl(Vx) ∩ B) ∈ . Moreover, since  is hereditary and (πcl(Ux) ∩ A)  (πcl(Vx) ∩ B) = [(πcl(Ux) ∩ 
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A)  πcl(Vx)] ∩ [(πcl(Ux) ∩ A)  B] = (πcl(Ux)  πcl(Vx)) ∩ (A  πcl(Vx)) ∩ (πcl(Ux)  B) ∩ (A ∪ B) ⊇ πcl(Ux ∩ Vx) ∩ (A  

B). Then  πcl(Ux ∩ Vx) ∩ (A  B) ∈ . Since Ux ∩ Vx ∈ τ(x), x (A  B). Hence (X (A)) ∩ (X (B) ⊆ X 

(A B) or (A B) ⊆ (A)  (B). Hence we obtain (A)  (B) = (A  B). 

Lemma. 3.11 

Let (X, τ, ) be an ideal topological space and A,B be subsets of X. Then (A) − (B) = (A − B) − (B). 

Proof 

We have by Theorem 3.10 (A) = [(A − B)  (A ∩ B)] = (A − B)  (A ∩ B) ⊆ (A − B) (B). Thus (A) 

− (B) ⊆ (A − B) − (B). By Theorem 3.8, (A − B) ⊆ (A) and hence (A − B) − (B) ⊆ (A) − (B). Hence (A) 

− (B) = (A − B) − (B). 

Corollary. 3.12 

Let (X, τ, ) be an ideal topological space and A, B be subsets of X with B ∈ . Then (A  B) = (A) = (A − B). 

Proof 

Since B ∈ , by Theorem 3.8, (B) = ∅. By Lemma 3.11, (A) = (A − B) and by Theorem 3.10 (A ∪ B) = (A) ∪ (B) 

= (A) 

π-Closure Compatibility of Topological Spaces 

Definition. 4.1 

Let (X, τ, ) be an ideal topological space. We say the τ is π-closure compatible with the ideal , denoted τ   if the 

following holds: for every A ⊆ X if for every x ∈ A there exists U ∈ τ(x) such that πcl(U) ∩ A ∈ , then A ∈ . 

Remark. 4.2 

1. If τ is compatible with , then τ is π-closure compatible with . 

2. If τ is closure compatible with , then τ is π-closure compatible with . 

Theorem. 4.3 

Let (X, τ, ) be an ideal topological space, the following properties are equivalent: 

1. τ   

2. If a subset A of X has a cover of open sets each of whose π-closure intersection with A is in   

    , then A ∈  

3. For every A ⊆ X, A ∩ (A) = ∅ implies that A ∈  

4. For every A ⊆ X, A − (A) ∈  

5. For every A ⊆ X, if A contains no nonempty subset B with B ⊆ (B), then A ∈ . 

Proof 

(1) ⇒ (2): obvious. 

(2) ⇒ (3) 

Let A ⊆ X and x ∈ A. Then x (A) and there exists Vx ∈ τ(x) such that πcl(Vx) ∩ A ∈ . Therefore, we have A ⊆ {Vx : 

x ∈ A} and Vx ∈ τ(x) and by (2) A ∈ . 

(3) ⇒ (4) 

For any A ⊆ X, A − (A) ⊆ A and (A − (A)) ∩ (A − (A)) ⊆ (A − (A)) ∩ (A) = ∅.  

By (3)  A − (A) ∈ . 

(4) ⇒ (5) 

By (4) for every A ⊆ X, A − (A) ∈ . Let A = A − (A) ∪ (A ∩ (A)) and by Theorem 3.10 (2) and Theorem 

3.8(5), (A) = (A − (A))  (A ∩ (A)) = (A ∩ (A)). Therefore, we have A ∩ (A) = A ∩ (A ∩ (A)) ⊆ (A ∩ 

(A)) and A ∩ (A) ⊆ A. By the assumption    A∩ (A) = ∅. Hence A = A − (A) ∈ . 

(5) ⇒ (1) 

Let A ⊆ X and assume that for every x ∈ A, there exists U ∈ τ(x) such that πcl(U) ∩ A ∈ . Then A ∩ (A) = ∅. Suppose 

that A contains B such that B ⊆ (B). Then B = B ∩ (B) ⊆ A ∩ (A) = ∅. Therefore, A contains no nonempty subset B with B 

⊆ (B). Hence A ∈ . 

Theorem 4.4 

Let (X, τ, ) be an ideal topological space. If τ is π-closure compatible with , then the following equivalent properties hold: 

1. For every A ⊆ X, A ∩ (A) = ∅ implies that (A) = ∅ 

2. For every A ⊆ X, (A − (A)) = ∅ 

3. For every A ⊆ X, (A ∩ (A)) = (A) 
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Proof 

(1) ⇒ (2) 

Assume that for every A ⊆ X, A∩ (A) = ∅ implies that (A) = ∅. Let B = A − (A), then  

B ∩ (B) = (A − (A)) ∩ (A − (A)) = (A ∩ (X − (A))) ∩ (A ∩ (X − (A))) ⊆ [A ∩  

(X − (A))] ∩ [ (A) ∩ ( (X − (A)))] = ∅. By (1) we have (B) = ∅. Hence (A − (A)) = ∅. 

(2) ⇒ (3) 

Assume for every A ⊆ X, (A − (A)) = ∅. A = (A − (A)) ∪ (A ∩ (A)). (A) = [(A − (A))  (A ∩ (A))]  = (A 

− (A)) (A ∩ (A)) = (A ∩ (A)). 

(3) ⇒ (1) 

Assume for every A ⊆ X, A ∩ (A) = ∅ and (A ∩ (A)) = (A). This implies that ∅ = (∅) = (A). 

Theorem. 4.5 

Let (X, τ, ) be an ideal topological space, then the following properties are equivalent: 

1. πcl(τ ) ∩  = ∅ where πcl(τ ) = { πcl(V): V  τ} 

2. If I ∈ , then πint(I) = ∅ 

3. For every G  τ, G ⊆ (G) 

4. X = (X) 

Proof 

(1) ⇒ (2) 

Let πcl(τ ) ∩  = ∅ and I ∈ . Suppose that x ∈ π-int(I). Then there exists U ∈ τ such that x ∈ U ⊆ πcl(U) ⊆ I. Since I ∈  and 

hence ∅  {x} ⊆ πcl(U) ∈ πcl(τ ) ∩ I. This is contrary to πcl(τ ) ∩  = ∅. Therefore, πint(I) = ∅. 

(2)⇒ (3) 

Let x ∈ G. Assume x (G), then there exists Ux ∈ τ(x) such that G ∩ πcl(Ux) ∈  and hence G ∩ Ux ∈ . By (2) x ∈ G ∩ 

Ux = πint(G ∩ Ux) = ∅. Hence x ∈ (G) and G ⊆ (G). 

(3)⇒ (4) 

Since X is clopen, then X = (X). 

(4)⇒ (1) 

X = (X) ={x ∈ X: πcl(U) ∩ X = πcl(U)   for each open set U containing x}. Hence πcl(τ )∩  = ∅. 

Theorem. 4.6 

Let (X, τ, ) be an ideal topological space, τ be π-closure compatible with . Then for every G ∈τ and any subset A of X, 

πcl( (G ∩ A)) = (G ∩ A) ⊆ (G ∩ (A)) ⊆ πcl(G ∩ (A)). 

Proof 

By Theorem 4.4(3) and Theorem 3.8, we have (G ∩ A) = ((G ∩ A) ∩ (G ∩ A)) ⊆ (G ∩ (A)). Moreover by 

Theorem 3.8, πcl( (G ∩ A)) = (G ∩ A) ⊆ (G ∩ (A))⊆ πcl(G ∩ (A)). 

-operator  

Definition. 5.1 

Let (X, τ, ) be an ideal topological space. An operator : P(X) → τ is defined as follows: for every A ∈ X, (A) = {x ∈ 

X : there exists U ∈ τ(x) such that πcl(U)−A ∈  } and observe that  (A) = X − (X −A). 

Theorem. 5.2 

Let (X, τ, ) be an ideal topological space. Then the following properties hold: 

1. If A ⊆ X, then (A) is π-open. 

2. If A ⊆ B, then (A) ⊆ (B). 

3. If A, B ∈ P(X), then (A ∩ B) = (A) ∩ (B). 

4. If A ⊆ X, then (A) = ( (A)) if and only if (X − A) = ( (X − A)). 

5. If A ∈ , then (A) = X − (X). 

6. If A ⊆ X, I ∈ , then (A − I) = (A). 

7. If A ⊆ X, I ∈ , then (A ∪ I) = (A). 

8. If (A − B) ∪ (B − A) ∈ , then (A) = (B). 

Proof 

(1) This follows from Theorem 3.8 (3). 

(2) This follows from Theorem 3.8 (1). 
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(3) (A ∩ B) = X − (X − (A ∩ B)) =X − [(X − A) ∪ (X − B)] =X − [ (X − A) ∪ (X − B)] =[X − (X − A)] ∩ [X − (X 

− B)] = (A) ∩ (B). 

(4) This follows from the facts: 

1. (A) = X − (X − A). 

2. ( (A)) = X − [X − (X − (X − A))] = X − ( (X − A)). 

(5) By Corollary 3.12 we obtain that (X − A) = (X) if A ∈  . Then X (X − A) = X (X). Hence (A) = X (X). 

(6) This follows from Corollary 3.12 and (A − I) = X − [X − (A − I)] = X − [(X − A) ∪ I] = X − (X − A) = (A). 

(7) This follows from Corollary 3.12 and (A ∪ I) = X − [X − (A ∪ I)] = X − [(X − A) − I] = X − (X − A) = (A). 

(8) Assume (A − B) ∪ (B − A) ∈ . Let A − B = I and B − A = J. Observe that I, J ∈   by heredity. Also observe that B = (A − I) 

∪ J. Thus (A) = (A − I) = [(A − I) ∪ J] = (B) by (6) and (7). 

Corollary. 5.3 

 Let (X, τ, ) be an ideal topological space. Then U ⊆ (U) for every π-open set U ⊆ X. 

Proof 

We know that (U) = X− (X−U). Now (X−U) ⊆ πcl(X−U) = X−U, since X−U is -closed. Therefore U = X− (X − U) 

⊆ X− (X−U) = (U). 

Now we give an example of a set A which is not π-open but satisfies A ⊆ (A). 

Example. 5.4 

X = {a, b, c, d}, τ = {ϕ, X, {a, c}, {d}, {a, c, d}} and   = {ϕ, {b}, {c}, {b, c}}. Let A = {a}.  

Then ({a}) = X − (X − {a}) = X − ({b, c, d}) = X − {b, d} = {a, c}.Therefore A ⊆ (A), but A is not π-open. 

Theorem. 5.5 

Let (X, τ, ) be an ideal topological space and A ⊆ X. Then the following properties hold: 

1. (A) = ∪{U ∈ τ : πcl(U) − A ∈  }. 

2. (A) ⊇ ∪{U ∈ τ : (πcl(U) − A) ∪ (A − πcl(U)) ∈ }. 

Proof 

(1) This follows immediately from the definition of -operator. 

(2) Since  is heredity, it is obvious that ∪{U ∈ τ: (πcl(U)−A)∪(A−πcl(U)) ∈  } ⊆ ∪{U ∈ τ : πcl(U) − A ∈  } = (A) for 

every A ⊆ X. 

Theorem. 5.6 

Let (X, τ, ) be an ideal topological space. If σ = {A ⊆ X : A ⊆ (A)}. Then σ is a topology for X. 

Proof 

Let σ = {A ⊆ X : A ⊆ (A)}. Since ϕ ∈ , by Theorem 3.8(4) (ϕ) = ϕ and (X) = X − (X − X) = X − (ϕ) = X. 

Moreover, (ϕ) = X − (X − ϕ) = X − X = ϕ. Therefore we obtain that ϕ ⊆ (ϕ) and X ⊆ (X) = X, and thus ϕ and X ∈ σ. 

Now if A, B ∈ σ, then by Theorem 5.2 A ∩ B ⊆ (A) ∩ (B) = (A ∩ B) which implies that A ∩ B ∈ σ. If {Aα : α ∈ Δ} ⊆ 

σ, then Aα ⊆ (Aα) ⊆ ( Aα) for every α and hence Aα ⊆ (( Aα). This shows that σ is a topology. 

Theorem. 5.7 

Let  = {A ⊆ X : A ⊆ Int(Cl( (A)))}  then  is a topology for X. 

Proof 

By Theorem 5.2, for any subset A of X, (A) is π-open and σ ⊂ . Therefore ∅, X ∈ . Let A, B ∈ . Then by Theorem 

5.2, we have A ∩ B ⊂ Int(Cl( (A))) ∩ Int(Cl(  (B))) = Int(Cl( (A) ∩ (B))) = Int(Cl( (A ∩ B))). Therefore, A ∩ B ∈ 

. Let Aα ∈  for each α ∈ Δ. By Theorem 5.2, for each α ∈ Δ, Aα ⊆ Int(Cl( (A_))) ⊆ Int(Cl( ( Aα))). Hence Aα ⊂ 

Int(Cl( ( Aα))). Hence Aα ∈ .This shows that  is a topology for X. 

Theorem. 5.8 

Let (X, τ, ) be an ideal topological space. Then τ  , if and only if  (A) − A ∈  for every A ⊆ X. 

Proof 

Necessity 

Assume τ   and let A ⊆ X. Observe that x ∈ (A)−A if and only if x  A and x (X − A) if and only if x  A and 

there exists Ux ∈ τ(x) such that πcl(Ux) − A ∈  if and only if there exists Ux ∈ τ(x) such that x ∈ πcl(Ux) − A ∈ . Now for each x 

∈ (A) − A and Ux ∈ τ (x), πcl(Ux) ∩ ( (A)−A) ∈  by heredity.  Hence (A)−A ∈  by assumption that τ  . 
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Sufficiency 

Let A ⊆ X and assume that for each x ∈ A there exists Ux ∈ τ(x) such that πcl(Ux) ∩ A ∈ . Observe that (X − A) − (X − 

A) = A − (A) = {x : there exists Ux ∈ τ(x) such that x ∈ πcl(Ux) ∩ A ∈  }.Thus we have A ⊆ (X −A)−(X −A) ∈ . Hence A 

∈  by heredity of  . 

Proposition. 5.9 

Let (X, τ, ) be an ideal topological space with τ   A ⊆ X. If N is a nonempty open subset of (A)∩ (A), then N −A 

∈  and πcl(N) ∩ A  . 

Proof 

If N ⊆ (A) ∩ (A), then N − A ⊆ (A) − A ∈  by Theorem 5.8 and hence N − A ∈  by heredity. Since N ∈ τ − {ϕ} 

and N ⊆ (A), we have πcl(N) ∩ A   by the definition of (A). 

In [11], Newcomb defines A = B [mod ] if (A − B) ∪ (B − A) ∈  and observes that = [mod ] is an equivalence relation. 

By Theorem 5.2 (8), we have that if A = B [mod ] then Ψ(A) = (B). 

Definition. 5.10 

Let (X, τ, ) be an ideal topological space. A subset A of X is called a Baire set with respect to τ and I, denoted A ∈ Br(X, τ, 

), if there exists a open set U such that A = U [mod ]. 

Lemma. 5.11 

Let (X, τ, ) be an ideal topological space with τ  . If U, V ∈ τ and (U) = (V), then U = V [mod ]. 

Proof 

Since U ∈ τ, by Corollary 5.3 we have U ⊆ (U) and hence U −V ⊆ (U) − V = (V) − V ∈  by Theorem 5.8 

Therefore, U − V ∈ . Similarly, V −U ∈ . Now (U −V) ∪ (V −U) ∈   by additivity. Hence U = V[mod ]. 

Theorem. 5.12 

Let (X, τ, ) be an ideal topological space with τ  . If A, B ∈ Br(X, τ, ), and (A) = (B) then A = B [mod ]. 

Proof 

Let U, V ∈ τ be such that A = U [mod ] and B = V [mod ]. Now (A) = (U) and (B) = (V) by Theorem 

5.2(8). Since (A) = (B) implies that (U) = (V) and hence U = V [mod ] by Lemma 5.11. Hence A = B [mod ] by 

transitivity. 

Theorem. 5.13 

Let (X, τ, ) be an ideal topological space with τ  , where πcl(τ ) ∩  = ϕ. Then for A ⊆ X, (A) ⊆ (A). 

Proof 

Suppose x ∈ (A) and x (A). Then there exists a nonempty neighborhood Ux ∈ τ(x) such that πcl(Ux) ∩ A ∈ . Since x 

∈ (A), by Theorem 5.5 x ∈ ∪{U ∈ τ : πcl(U) − A ∈  } and there exists V ∈ τ(x) and πcl(V ) − A ∈ . Now we have Ux ∩ V ∈ 

τ(x), πcl(Ux ∩ V ) ∩ A ∈  and πcl(Ux ∩ V ) − A ∈  by heredity. Hence by finite additivity we have πcl(Ux ∩ V ) ∩A) ∪ (πcl(Ux 

∩ V )−A) = πcl(Ux ∩ V ) ∈ . Since (Ux ∩ V) ∈ τ(x), which is contrary to πcl(τ ) ∩  = ϕ. Therefore, x ∈ (A). This implies that 

(A) ⊆ (A). 
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