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Introduction 

Background 

The electrocardiogram (ECG) is an indirect measure of the 

electrical activity of the heart. In fact, QRS waveform detection 

is necessary to determine the heart rate, and several related 

arrhythmias such as Tachycardia, Bradycardia and Heart Rate 

variation. It is also necessary for further processing of the ECG 

signal in order to detect abnormal beats [1]. Particularly, the 

detection and classification of QRS complexes between normal 

and abnormal waveforms are very important clinical criteria for 

diagnosing of patients. Producing an algorithm for the detection 

of QRS waveforms is a difficult problem due to the time-varying 

morphology of the signal subject to physiological conditions and 

with a presence of noise. Signatures of new QRS are obviously 

unknown. One common property of all QRS is that they appear 

frequently within a short time. In other words, the signature of 

the QRS is frequently repeated in a certain time interval. 

Therefore, during an outbreak, similar patterns of signature are 

received across the entire ECG signal.  

After the beat detection, effective beat classification is 

required for correct analysis of different types of arrhythmia as 

well as normal and abnormal ECG waveform. So far, several 

techniques such as maximum likelihood, (artificial) neural 

networks [27], and support vector machines [25, 26] have been 

introduced for the ECG beat classification. Automated 

arrhythmia-diagnosis systems that can provide high-

classification accuracy rates for inter and intra-patient variation 

cases are still an active area of research. 

Implementation Challenges 

It is crucial for ECG QRS detection systems to result in 

high sensitivity, even if this results in a large number of false 

detections. Such systems can be used to reduce considerably the 

amount of data that need to be reviewed then cardiologists can 

easily discard false detections. Additionally, false positive and 

false negative detection errors are inevitably generated in any 

imperfect detection system. A false positive indicates a normal 

QRS that is incorrectly identified. In other words, it means 

labeling a normal QRS as abnormal, while it is actually not. A 

false negative means missing the detection of a normal QRS by 

incorrectly labeling abnormal QRS one.  

Basic Concept and Paper Organization 

An efficient software based QRS detection and 

classification system is presented in this paper. The basic idea 

used for QRS detection was the technique of Network Intrusion 

Detection Systems (NIDS) used in networking application for 

finding the frequently repeated strings in a packet stream for 

further investigation [2].Our technique relies more on the data 

stream corresponding to ECG beats than any particular feature. 

ECG signal is converted in the form of string and the part of 

QRS waveform string can be treated as a worm. The strategy 

search algorithm for finding frequently repeated strings 

(signature) within a given time frame of the stream has been 

used to detect the R-peak and QRS waveform. We use a phase 

hashing in which shared counters are used to determine whether 

a string has been repeated more than a certain number of times. 

Second, we introduce a novel technique for profiling a patient‟s 

normal ECG. As our system was proposed on binary data 

stream, any variation in the morphology on QRS waveform 

(amplitude and time) all comes under consideration as compared 

to conventional system which worked on fixed parameters to 

derive certain ECG patterns specific to a patient. Our technique 

clearly identifies a normal region for a person and can, thus, 

identify abnormal beats that fall outside this normal region. 

             The rest of this paper is organized as follows. In 

Section II we take a glance at prior work related to QRS 

detection and classification systems. We describe the functions 

of our QRS detection and classification system in Section III. 

We summarize our simulation results in Section IV. Finally, 

concluding remarks are in Section V. 

Database used 

We used data from the MIT-BIH arrhythmia database to test 

the performance of our methodology [3]. All ECG data used
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here are sampled at 360 Hz, and the resolution of each sample is 

8 bits/sample, therefore the bit rate of these data is 2880 bps. All 

of the tests were conducted both on normal and abnormal ECG 

for the robustness of the proposed method. 

Prior Work 

Particularly, the detection and classification of QRS 

complexes between normal and abnormal waveforms are very 

important clinical criteria for diagnosing of patients. Over the 

last decades there have been a number of techniques proposed to 

detect these waveforms. For instance early attempts of Senhadji 

et al who compared the ability of wavelet transform based on 

three different wavelets (Daubechies, Spline, and Morlet) to 

recognize and describe isolated cardiac beats [4]. Sahambi et al 

used a first-order derivative of the Gaussian function as a 

wavelet for the characterization of the ECG waveforms, where 

they used modulus maxima-based wavelet analysis to detect and 

measure various parts of signal, especially the location of the 

onset and offset of the QRS complex and P and T waves [5]. 

The other algorithms have been developed based on spectral [6, 

7] or wavelet features [8, 9], amplitude relative to background 

activity [10, 11] and spatial context [12, 13] to characterize the 

ECG signal.[14-19] Jiapu Pan and Willis J. Tompkins of the 

University of Wisconsin were perhaps the first to develop a real-

time QRS detection algorithm on a Z-80 microprocessor [14]. 

Ning et al. proposed the location of the true peak can be 

determined according to the fact that the true peak has the 

largest magnitude within its 200 ms time window [20]. Jain et al. 

Proposed, the ECG Feature Extractor provided by LabVIEW 

Biomedical toolkit detects QRS waves [21]. Yazdani et al. 

proposed that for QRS detection with peaks at R-waves and 

valleys before and after, Q- and S- points. QRS-onset and QRS-

Offset are calculated [22]. Nallathambi et al. proposed, the 

preprocessed ECG signal is converted into a train of pulses 

using the IF sampler [23].After the beat detection, effective beat 

classification is required for correct analysis of different types of 

arrhythmia. Methods such as pattern recognition, maximum 

likelihood, (artificial) neural network, and support vector 

machines have been widely used for classifying ECG beats [25, 

26]. Machine-learning techniques learn from the samples of 

training data and map new data instances based on the 

information extracted from the annotated training data samples 

[27]. De Chazal et al. classified the beats by analyzing the RR 

intervals and ECG morphology features along with heart beat 

segmentation information [28].Christov et al. provided a 

thorough comparison of time–frequency ECG features for beat 

classification [29]. Pathological cardiac events identified using 

the method introduced in [30] is also a patient-adaptive 

classifier. This method analyzes the deviation of the RR interval 

from the mean value and the deviation of QRS patterns from the 

sustained rhythm. Haseena et al. [31] use a hybrid of fuzzy 

clustering and artificial neural networks to discriminate between 

different classes of beats. 

QRS  Detection And Classification System 

System Design Approach 

Our technique relies more on the data stream corresponding 

to ECG waveform than any particular feature. The basic idea is 

to break the input ECG signal into binary string. For this, analog 

to digital conversion was performed. The final output was the 

binary data stream corresponding to ECG waveform. These data 

stream was now used for further processing. Next step was to 

select a string of L bytes. The boundaries of these strings are 

chosen so that when a long string is repeated, the boundaries 

within that string are repeated at the same parameter locations. 

To achieve this, the boundaries are decided based on R-peak. 

Between these two consecutive boundaries the minimum value 

of binary data bits Q and S points starting from middle R-peak 

to the left and right are determine for frequent occurrence within 

a fixed time duration. Hereafter the data bits between Q point 

and S point will be called as signature which is W bytes. L is not 

fixed as it depends on the boundaries, which in turn depends on 

R-R interval. Similarly W is not fixed because it depends on Q 

point and S point locations. To achieve real-time QRS detection 

and classification, we use the concept of shared counters. In 

order to avoid counting approach using numerous memory 

arrays number of times, a string was hashed to a certain value. 

Instead, we use shared-counters in which smaller memory units 

are simulated to function in parallel. In our design, a two-level 

hashing is used in two phases. The string is used to first generate 

a Phase 1 hash. This hash value is used as the signature of the 

string henceforth for simplification. The signature is used in a 

second phase hash to produce „m‟ independent hash values 

indexed into „m‟ arrays. Assuming the width of each memory 

array to be „n‟, each „m‟ hash memory would have 2
n
 locations 

in depth. Each array location that is indexed is incremented. 

Effectively, „m‟ shared counters per signature during monitoring 

are used. If, say „k‟ out of „m‟ counters exceeds the threshold 

THR value, the signature is suspect as a QRS waveform. Than 

cardiac profile is plotted against the time duration of the 

suspected QRS waveform (In form of number of samples) and 

the number of count the suspected QRS waveform has repeated. 

Our technique is a local beat classifier that can be designed on 

top of a global classifier for performance enhancement.    

Architecture 

Phase 1: 

In Phase 1, we assumed the width of sliding window to be 

one R-R interval as shown in “Fig.1,”.It means, every 

consecutive two R-R interval blocks in the packet stream is 

processed. Therefore size of the string between two boundaries 

(in bytes) in the first phase is the data stream between two 

consecutive R-R intervals. On each clock cycle, one R-R 

interval string is shifted and a new byte for the packet stream of 

two consecutive R-R intervals was taken to form a next packet 

stream i.e. boundaries (in bytes).Now from this packet stream 

we search for the second consecutive eight ones (binary) which 

is actually R-peak. With reference to this R-peak   we go on 

finding Q point and S point to the left and right side 

respectively. Between these two consecutive boundaries the 

minimum value of binary data bits starting from middle R-peak 

to the left and right are determine for frequent occurrence within 

a fixed time duration. This minimum value is taken as Q and S 

point. Now the binary stream found between this detected Q and 

S point, we declare that portion of the stream as a boundary of 

detected signature and can act as a hash value in phase 1. This 

hash value is obtained by compacting L bytes using an eight bit 

comparator .We use the binary stream between Q point and S 

point as a signature of W bytes as the final result of phase 1. The 

next signature boundary is considered to be part of the next L 

byte. In other words, the resulting string in phase 1 results from 

L-bytes hashing to W -bits. “Fig. 1,” shows the function blocks 

of phase 1. 
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Table I. Performance of our QRS detector on mit-bih 

Arrhythmia dataset 103 (10 sec. Long) 

Sr. No. 

R-peak Time 

MIT BIH    R-peak 

Sample  

Index 

R-peak Index 

Calcul--ated 
R-R interval 

QRS Duration 

(No of Samples) 
Sum of Q-S Array 

1 0 21 0 0.736111 20 3584 

2 0.736111 265 265 0.863889 18 3446 

3 1.6 575 576 0.836111 19 3567 

4 2.436111 876 877 0.844444 18 3411 

5 3.280556 1180 1181 0.836111 18 3688 

6 4.11667 1482 1482 0.897212 18 3516 

7 5.013887 1795 1802 0.897111 20 3942 

8 5.911111 2127 2128 0.897333 18 3379 

9 6.788889 2444 2444 0.836111 20 3664 

10 7.625 2744 2745 0.830556 19 3599 

11 8.455556 3044 3044 0.841667 20 3767 

12 9.297222 3347 3347 0.833333 20 3963 

13 10.13056 3647 3647 0.883315 22 4161 

 

Table II. Performance of our qrs classification on mit- 

Bih arrhythmia database (15 min. Long each) 

Sr. 

 

No. 

Data Sets 

232 100 200 

No. of Samples 

between  

Q & S points 

Counts 

of 

sample 

No. of Samples 

between  

Q & S points 

Counts 

of 

sample 

No. of Samples 

between  

Q & S points 

Counts 

of 

sample 

1 8 4 4 1 4 2 

2 9 1 5 1 7 2 

3 10 5 6 1 8 1 

4 11 13 7 1 9 8 

5 12 11 8 6 10 11 

6 13 15 9 3 11 13 

7 14 8 10 4 12 11 

8 15 22 11 3 13 14 

9 16 10 12 2 14 10 

10 17 8 13 2 15 25 

11 18 16 14 46 16 12 

12 19 29 15 303 17 6 

13 20 33 16 309 18 10 

14 21 44 17 200 19 25 

15 22 245 18 97 20 16 

16 23 341 19 65 21 23 

17 24 43 20 56 22 75 

18 25 11 21 25 23 190 

19 26 2 22 6 24 270 

20 27 1 23 5 25 277 

21 28 7 25 1 26 138 

22 29 79 29 1 27 41 

23 30 1   28 28 

24     29 205 

25     30 1 
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Phase 2 : 

In Phase 2, we use the phase 1 hash value (final signature of 

phase 1) to produce m independent hash values as shown in 

“Fig. 2,”.We use these hash values as memory indices in phase 

2.Similar to phase 1, the hash functions were designed .The 

index (hash value) i is used to index into array i. The hit location 

is incremented hence the 2
n
   locations also function as counters. 

If out of the „m‟ counters, for a given string, „k‟ counters exceed 

the threshold, an alert flag is raised that the string may be a QRS 

waveform. “Fig.2,” shows the conceptual diagram of phase 2. 

The counters chosen by hash units (black locations in “Fig. 2,”) 

will be incremented. After calculating final result for phase 1, 

which is binary stream between Q point and S point as a 

signature of W bytes, the „m‟ independent hash value for phase 

2 has been determined. The number of samples between Q point 

and S point of first R-peak has been calculated. This total 

number of sample will act as an independent hash value i.e. m. 

This process is repeated for all the determined R-peak. Due to 

the time-varying morphology of the signal subject to 

physiological conditions there is a variation in QRS waveform 

(duration and amplitude), hence the number of samples as 

shown in Table I. This different number of sample will act as an 

independent hash value in phase 2 i.e. „m‟. Once the hash value 

has been found for phase 2, then for the respective hash value of 

the entire signature, the binary addition was performed for the 

entire sample found between Q point and S point. This addition 

was used to index into array i. The resultant value acts as a 

memory address „n‟ for the array i. Therefore when hit location 

is incremented, the array locations also function as a counter. 

If any counter exceeds the threshold, the string is reported 

as a suspicious worm i.e. QRS waveform. In other words, all the 

processing, e.g. counting of number of samples in a signature, 

addition of binary value of all the sample within the signature 

and threshold computation are done within each time frame. 

 

Figure1. Functional blocks of Phase 1. 

We clear counters and entries from the hash tables periodically. 

Our parametric settings of the system are summarized as 

follows: 

• L ≈ 288-432: L is a variable as it depends on boundaries .Size 

of the string between two boundaries (in bytes) in the first phase 

depends on two consecutive R – R interval. 

•W≈ 12 - 28: W size of the signature (in bytes) in the first                  

phase. W is variable as it depends on the location of Q point and 

S point. 

•l=8: size of the number (in bits) for boundary check of                       

the signature in the first phase of hashing. 

 
 

 
  

Figure 2. Functional blocks of Phase 2. 

•m≈ 12-21:  number of hash units in the second phase of 

hashing. 

•n≥12: address bus size of memory arrays in the second   phase. 

The binary addition of the entire sample found between Q point 

and S point. 

•k:  number of hash units that need to exceed threshold to          

raise an alert flag. The term policy „k‟ out of „m‟ is referred to 

when „k, out of „m‟ counters exceeds the threshold value. 

•THR: threshold value for counters was chosen to be a factor 

          of average content of counters for the best performance. 

The main idea in ECG profiling is based on the underlying 

concept of pattern matching. We treat ECG signals as data 

packets and in ECG packets there is no global pattern (with 

fixed waveform dimensions) for a normal ECG waveform, 

making the problem more complicated. Therefore, we need a 

patient-adaptive profiling scheme, similar to repetition-based 

pattern detection schemes, to derive a normal ECG pattern for an 

individual. Based on the contents of the counters as shown in 

Table II, a bell-shaped profiling curve would be provided, where 

anomalies would lie on the tail(s) of the curve [24]. Abnormal 

ECG beats of the ECG profiling curve will be seen where humps 

exist on the tail of the bell-shaped curve. Essentially, different 

ECG features or a combination of features, can collectively 

classify the beats into normal versus abnormal beats, where the 

abnormality type (class) depends on the ECG features used for 

profiling. 

Experimemtal Results 

Performance Evaluation of Beat Classification 

We have applied our patient-adaptive profiling scheme on 

the entire 15-min timeframe of each record in the open-source 

MIT-BIH arrhythmia database [3]. In this proposed technique, 

we have used one hash function (Number of samples between Q 

and S points) in the first and second phases. In general, 
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abnormal ECG beats are reflected as distortions and humps on 

the tail of the bell-shaped curve. Highly distorted bell curve 

indicates the presence of too many irregular beats. “Fig. 3,” 

shows the distribution of the counter contents for datasets 103, 

100, 200 and 232, respectively, when considering a 15-min (first 

fifteen minutes) timeframe of 

 

 
 

 
 

 

 
Figure3. Distribution of counter contents for MIT-BIH 

arrhythmia database  readings. 

profiling analysis. As can be seen, a bell-shaped curve represents 

the normal distribution of the content of the counters. The curve 

clearly depicts a normal region of the ECG beats. Any nonzero 

counter content that falls outside the normal region would 

indicate the existence of abnormal beats as shown in “Fig. 3,” 

.Datasets 103 do not contain any abnormal beats, as the curves 

reflect this fact. Datasets 100 contain very few abnormal beats, 

which is reflected on the curves as very few counter contents 

outside the normal region. Datasets 200 and 232 contain too 

many abnormal beats, as a normal region can be hardly defined 

on the curves. All these results match the MIT-BIH arrhythmia 

database annotations for beat classification. To numerically 

verify our results, we computed the percentage of area under the 

curve for the abnormal region and compared it with the 

percentage of abnormal beats within the same analysis 

timeframe of the MIT-BIH database shown in Table III. 

The Equation 1 gives the area under the curve for abnormal 

regions. 

                                (1) 

where a and b are the points (often on the tail of the curve) that 

fall out of the normal (bell-shaped) region, and y(x) refers to the 

content of counter with index x. Table IV compares the 

performance of our scheme with the MIT-BIH arrhythmia 

database beat annotations (normal versus abnormal). The y-axis 

corresponds to the number of memory with index x. For 

example, point (16,309) in “Fig. 3,” (b) corresponds to the hash 

value of 16 as the ECG features (Number of samples between Q 

and S points) of particular beat. The memory location required is 

309.Our approach demonstrate which beats are irregular in terms 

of time sequencing and it graphically represents the presence of 

abnormal beats on the distorted tail of the curve. 

Significance of proposed method 

1. The significance of our proposed method lies within the 

efficiency of the binary data processing and the accuracy 

required in the ECG profiling technique. Since we consider the 

ECG signal record as a stream of binary data only one feature is 

sufficient for classification. 

2.  Another significance is that this type of binary data stream 

processing could be effectively applied to other biometrics 

signal. The reason is that our type of processing is relatively 

feature-independent, and rather looks into the biometric signal as 

one single string of binary data. 

3. Our architecture requires simple logic, e.g., comparator, 

counters; it could be easily implemented on customized 

hardware for clinical applications. 

4. Our approach demonstrates which beats are irregular in terms 

of time sequencing and it graphically represents the presence of 

abnormal beats on the distorted tail of the curve. 

Conclusion 

We proposed a technique for profiling of ECG waveform 

for any individual irrespective of the patient‟s physical condition 

by first detecting the beat accurately. Our beat detection scheme 

was the technique of Network Intrusion Detection Systems 

(NIDS). We then classified the detected features of the beats by 

means of repetition-based packet-processing techniques. Most 

approaches rely on extracting several features, adding to the 

complexity and overall latency of the beat classification 

procedure. Our technique relies more on the data stream 

corresponding to ECG beats than any particular feature therefore 

any variation in the morphology on QRS waveform (amplitude 

and time) all comes under consideration as compared to 

conventional classification system. The outcome of our work is 

a profiling curve specific to any individual, representing a 

graphical view of the existence of abnormal beats. This is a 

novel technique that can be used for early warning monitoring 

systems. More specifically, our method has resulted in high 

accuracy in the range of other well known approaches. 
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